Phase and Index of Refraction Imaging by Hyperspectral Reflectance Confocal Microscopy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Mathematical Basis of Reflectance Manipulation
2.2. Simplified Approach of Reflectance Manipulation
2.3. Fast KK Algorithm
2.4. Sample Preparation and Geometry
3. Results
RBC Data
4. Discussion
Supplementary Materials
Acknowledgments
Conflicts of Interest
References
- Selci, S.; Bertani, F.R.; Ferrari, L. Supercontinuum ultra wide range confocal microscope for reflectance spectroscopy of living matter and material science surfaces. AIP Adv. 2011, 1, 032143. [Google Scholar] [CrossRef]
- Bertani, F.R.; Ferrari, L.; Mussi, V.; Botti, E.; Costanzo, A.; Selci, S. Living matter observations with a novel hyperspectral supercontinuum confocal microscope for VIS to near-IR reflectance spectroscopy. Sensors 2013, 13, 14523–14542. [Google Scholar] [CrossRef] [PubMed]
- Bertani, F.R.; Botti, E.; Costanzo, A.; Ferrari, L.; Mussi, V.; D’Alessandro, M.; Selci, S. Label-free discrimination of cells undergoing apoptosis by hyperspectral confocual reflectance imaging. J. Eur. Opt. Soc. Rapid Publ. 2013, 8, 13078. [Google Scholar] [CrossRef]
- Bertani, F.R.; Botti, E.; Ferrari, L.; Mussi, V.; Costanzo, A.; D’Alessandro, M.; Cilloco, F.; Selci, S. Label-free and non-invasive discrimination of hacat and melanoma cells in a co-culture model by hyperspectral confocal reflectance microscopy. J. Biophotonics 2016, 9, 619–625. [Google Scholar] [CrossRef] [PubMed]
- Garini, Y.; Young, I.T.; McNamara, G. Spectral imaging: Principles and applications. Cytom. Part A 2006, 69, 735–747. [Google Scholar] [CrossRef] [PubMed]
- Lu, G.; Fei, B. Medical hyperspectral imaging: A review. J. Biomed. Opt. 2014, 19, 010901. [Google Scholar] [CrossRef] [PubMed]
- Gao, L.; Smith, R.T. Optical hyperspectral imaging in microscopy and spectroscopy—A review of data acquisition. J. Biophotonics 2015, 8, 441–456. [Google Scholar] [CrossRef] [PubMed]
- Wooten, F. Optical Properties of Solids; Academic Press: New York, NY, USA, 1972. [Google Scholar]
- Born, M.; Wolf, E. Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, 7th ed.; Cambridge University Press: Cambridge, UK, 1999. [Google Scholar]
- Selci, S.; Ciccacci, F.; Chiarotti, G.; Chiaradia, P.; Cricenti, A. Surface differential reflectivity spectroscopy of semiconductor surfaces. J. Vac. Sci. Technol A 1987, 5, 327–332. [Google Scholar] [CrossRef]
- Booth, M.; Juškaitis, R.; Wilson, T. Spectral confocal reflection microscopy using a white light source. J. Eur. Opt. Soc. Rapid Publ. 2008, 3, 08026. [Google Scholar] [CrossRef]
- Beuthan, J.; Minet, O.; Helfmann, J.; Herrig, M.; Müller, G. The spatial variation of the refractive index in biological cells. Phys. Med. Biol. 1996, 41, 369–382. [Google Scholar] [CrossRef] [PubMed]
- Yoden, K.; Ohmi, M.; Ohnishi, Y.; Kunizawa, N.; Haruna, M. An approach to optical reflection tomography along the geometrical thickness. Opt. Rev. 2000, 7, 402–405. [Google Scholar] [CrossRef]
- Curl, C.L.; Bellair, C.J.; Harris, T.; Allman, B.E.; Harris, P.J.; Stewart, A.G.; Roberts, A.; Nugent, K.A.; Delbridge, L.M. Refractive index measurement in viable cells using quantitative phase-amplitude microscopy and confocal microscopy. Cytom. Part A 2005, 65, 88–92. [Google Scholar] [CrossRef] [PubMed]
- Rappaz, B.; Charrière, F.; Depeursinge, C.; Magistretti, P.J.; Marquet, P. Simultaneous cell morphometry and refractive index measurement with dual-wavelength digital holographic microscopy and dye-enhanced dispersion of perfusion medium. Opt. Lett. 2008, 33, 744–746. [Google Scholar] [CrossRef] [PubMed]
- Alm, K.; Cirenajwis, H.; Gisselsson, L.; Gjörloff Wingren, A.; Janicke, B.; Mölder, A.; Oredsson, S.; Persson, J. Digital holography and cell studies. In Digital Holography and Cell Studies, Holography, Research and Technologies; Rosen, P.J., Ed.; InTech Europe: Rijeka, Croatia, 2011. [Google Scholar]
- Shaked, N.T.; Wax, A. Quantitative analysis of three-dimensional biological cells using interferometric microscopy. In Proceeding of the Three-Dimensional Imaging, Visualization, and Display, Orlando, FL, USA, 27–28 April 2011; Javidi, B., Son, J.-Y., Eds.; SPIE: Orlando, FL, USA, 2011; pp. 80430U-1–80430U-13. [Google Scholar]
- Park, Y.; Yamauchi, T.; Choi, W.; Dasari, R.; Feld, M.S. Spectroscopic phase microscopy for quantifying hemoglobin concentrations in intact red blood cells. Opt. Lett. 2009, 34, 3668–3670. [Google Scholar] [CrossRef] [PubMed]
- Bista, R.K.; Uttam, S.; Wang, P.; Staton, K.; Choi, S.; Bakkenist, C.J.; Hartman, D.J.; Brand, R.E.; Liu, Y. Quantification of nanoscale nuclear refractive index changes during the cell cycle. J. Biomed. Opt. 2011, 16, 070503. [Google Scholar] [CrossRef] [PubMed]
- Popescu, G. Quantitative Phase Imaging of Cells and Tissues; McGraw Hill Professional: New York, NY, USA, 2011. [Google Scholar]
- Mir, M.; Bhaduri, B.; Wang, R.; Zhu, R.; Popescu, G. Quantitative phase imaging. Prog. Opt. 2012, 57, 133–217. [Google Scholar]
- Lee, K.; Kim, K.; Jung, J.; Heo, J.; Cho, S.; Lee, S.; Chang, G.; Jo, Y.; Park, H.; Park, Y. Quantitative phase imaging techniques for the study of cell pathophysiology: From principles to applications. Sensors 2013, 13, 4170–4191. [Google Scholar] [CrossRef] [PubMed]
- Rinehart, M.; Zhu, Y.; Wax, A. Quantitative phase spectroscopy. Biomed. Opt. Express 2012, 3, 958–965. [Google Scholar] [CrossRef] [PubMed]
- Banihashemian, S.M.; Periasamy, V.; Mohammadi, S.M.; Ritikos, R.; Rahman, S.A. Optical characterization of oligonucleotide DNA influenced by magnetic fields. Molecules 2013, 18, 11797–11808. [Google Scholar] [CrossRef] [PubMed]
- Calin, M.A.; Calin, M.R.; Munteanu, C. Determination of the complex refractive index of cell cultures by reflectance spectrometry. Eur. Phys. J. Plus 2014, 129, 116. [Google Scholar] [CrossRef]
- Grosse, P.; Offermann, V. Analysis of reflectance data using the Kramers-Kronig relations. Appl. Phys. A 1991, 52, 138–144. [Google Scholar] [CrossRef]
- Cundin, L.X.; Roach, W.P. Kramers-Kronig analysis of biological skin. arXiv 2011. [Google Scholar]
- Giannios, P.; Koutsoumpos, S.; Toutouzas, K.G.; Matiatou, M.; Zografos, G.C.; Moutzouris, K. Complex refractive index of normal and malignant human colorectal tissue in the visible and near-infrared. J. Biophotonics 2016. [Google Scholar] [CrossRef] [PubMed]
- Dunn, A.K.; Smithpeter, C.; Welch, A.J.; Richards-Kortum, R. Sources of contrast in confocal reflectance imaging. Appl. Opt. 1996, 35, 3441–3446. [Google Scholar] [CrossRef] [PubMed]
- Schonbrun, E.; Malka, R.; Caprio, G.; Schaak, D.; Higgins, J.M. Quantitative absorption cytometry for measuring red blood cell hemoglobin mass and volume. Cytom. Part A 2014, 85, 332–338. [Google Scholar] [CrossRef] [PubMed]
- Sample Availability: Not available.
© 2016 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Selci, S. Phase and Index of Refraction Imaging by Hyperspectral Reflectance Confocal Microscopy. Molecules 2016, 21, 1727. https://doi.org/10.3390/molecules21121727
Selci S. Phase and Index of Refraction Imaging by Hyperspectral Reflectance Confocal Microscopy. Molecules. 2016; 21(12):1727. https://doi.org/10.3390/molecules21121727
Chicago/Turabian StyleSelci, Stefano. 2016. "Phase and Index of Refraction Imaging by Hyperspectral Reflectance Confocal Microscopy" Molecules 21, no. 12: 1727. https://doi.org/10.3390/molecules21121727
APA StyleSelci, S. (2016). Phase and Index of Refraction Imaging by Hyperspectral Reflectance Confocal Microscopy. Molecules, 21(12), 1727. https://doi.org/10.3390/molecules21121727