Simultaneous Determination of Multiple Components in Guanjiekang in Rat Plasma via the UPLC–MS/MS Method and Its Application in Pharmacokinetic Study
Abstract
:1. Introduction
2. Results and Discussion
2.1. Optimization of Chromatographic Conditions
2.2. Method Validation
2.2.1. Selectivity
2.2.2. Linearity and LLOQ
2.2.3. Precision and Accuracy
2.2.4. Extraction Recovery and Matrix Effect
2.2.5. Stability
2.3. Pharmacokinetic Study
3. Materials and Methods
3.1. Herbal Materials and Chemicals
3.2. Chromatographic and Mass Spectrometric Conditions
3.3. Preparation of GJK
3.4. Preparation of the Stock, Standard and QC Solutions
3.5. Plasma Sample Preparation
3.6. Method Validation
3.6.1. Specificity
3.6.2. Linearity and Low Limits of Quantification (LLOQ)
3.6.3. Precision and Accuracy
3.6.4. Extraction Recovery and the Matrix Effect
3.6.5. Stability
3.7. Pharmacokinetic Study
4. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Buriani, A.; Garcia-Bermejo, M.L.; Bosisio, E.; Xu, Q.; Li, H.; Dong, X.; Simmonds, M.S.; Carrara, M.; Tejedor, N.; Lucio-Cazana, J.; et al. Omic techniques in systems biology approaches to traditional chinese medicine research: Present and future. J. Ethnopharmacol. 2012, 140, 535–544. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Seto, S.W.; Chang, D.; Kiat, H.; Razmovski-Naumovski, V.; Chan, K.; Bensoussan, A. Synergistic effects of chinese herbal medicine: A comprehensive review of methodology and current research. Front. Pharmacol. 2016, 7, 201. [Google Scholar] [CrossRef] [PubMed]
- Che, C.T.; Wang, Z.J.; Chow, M.S.; Lam, C.W. Herb-herb combination for therapeutic enhancement and advancement: Theory, practice and future perspectives. Molecules 2013, 18, 5125–5141. [Google Scholar] [PubMed]
- Kono, T.; Shimada, M.; Yamamoto, M.; Kaneko, A.; Oomiya, Y.; Kubota, K.; Kase, Y.; Lee, K.; Uezono, Y. Complementary and synergistic therapeutic effects of compounds found in kampo medicine: Analysis of daikenchuto. Front. Pharmacol. 2015, 6, 159. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Zhang, B.; Zhang, N. Network target for screening synergistic drug combinations with application to traditional chinese medicine. BMC Syst. Biol. 2011, 5. [Google Scholar] [CrossRef] [PubMed]
- Tian, X.Y.; Liu, L. Drug discovery enters a new era with multi-target intervention strategy. Chin. J. Integr. Med. 2012, 18, 539–542. [Google Scholar] [CrossRef] [PubMed]
- Qiao, X.; Ye, M.; Xiang, C.; Wang, Q.; Liu, C.F.; Miao, W.J.; Guo, D.A. Analytical strategy to reveal the in vivo process of multi-component herbal medicine: A pharmacokinetic study of licorice using liquid chromatography coupled with triple quadrupole mass spectrometry. J. Chromatogr. A 2012, 1258, 84–93. [Google Scholar] [CrossRef] [PubMed]
- Lan, K.; Jia, W. An integrated metabolomics and pharmacokinetics strategy for multi-component drugs evaluation. Curr. Drug Metab. 2010, 11, 105–114. [Google Scholar] [CrossRef] [PubMed]
- Xin, G.Z.; Qi, L.W.; Shi, Z.Q.; Li, P.; Hao, H.P.; Wang, G.J.; Shang, J. Strategies for integral metabolism profile of multiple compounds in herbal medicines: Pharmacokinetics, metabolites characterization and metabolic interactions. Curr. Drug Metab. 2011, 12, 809–817. [Google Scholar] [CrossRef] [PubMed]
- El-Seedi, H.R.; El-Said, A.M.; Khalifa, S.A.; Goransson, U.; Bohlin, L.; Borg-Karlson, A.K.; Verpoorte, R. Biosynthesis, natural sources, dietary intake, pharmacokinetic properties, and biological activities of hydroxycinnamic acids. J. Agric. Food Chem. 2012, 60, 10877–10895. [Google Scholar] [CrossRef] [PubMed]
- Lam, P.; Cheung, F.; Tan, H.Y.; Wang, N.; Yuen, M.F.; Feng, Y. Hepatoprotective effects of chinese medicinal herbs: A focus on anti-inflammatory and anti-oxidative activities. Int. J. Mol. Sci. 2016, 17, 465. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, D.R.; Kim, H.Y.; Park, J.K.; Park, S.K.; Chang, M.S. Aconiti lateralis preparata radix activates the proliferation of mouse bone marrow mesenchymal stem cells and induces osteogenic lineage differentiation through the bone morphogenetic protein-2/smad-dependent runx2 pathway. Evid. Based Complement. Altern. Med. 2013, 2013, 586741. [Google Scholar] [CrossRef] [PubMed]
- Jiang, J.B.; Qiu, J.D.; Yang, L.H.; He, J.P.; Smith, G.W.; Li, H.Q. Therapeutic effects of astragalus polysaccharides on inflammation and synovial apoptosis in rats with adjuvant-induced arthritis. Int. J. Rheum. Dis. 2010, 13, 396–405. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Xie, Y.; Xiang, Z.; Zhou, H.; Liu, L. Simultaneous determination of thirteen major active compounds in guanjiekang preparation by uhplc-qqq-ms/ms. J. Pharm. Biomed. Anal. 2016, 118, 315–321. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Jiang, P.; Wang, S.; Yan, S.; Xiang, L.; Zhang, W.; Liu, R. Plasma pharmacochemistry based approach to screening potential bioactive components in huang-lian-jie-du-tang using high performance liquid chromatography coupled with mass spectrometric detection. J. Ethnopharmacol. 2012, 141, 728–735. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Jiang, P.; Ye, F.Y.; Shi, R.; Ma, Y.M.; Zhong, J.; Wu, J.S.; Liu, P.; Liu, C.H.; Jia, Y.Q. Identification and pharmacokinetics of multiple constituents in rat plasma after oral administration of yinchenzhufu decoction. J. Ethnopharmacol. 2014, 153, 714–724. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.; Tang, M.H.; Chen, L.J.; Li, R.; Wang, X.H.; Duan, J.G.; Zhao, X.; Wei, Y.Q. Simultaneous quantitation of aconitine, mesaconitine, hypaconitine, benzoylaconine, benzoylmesaconine and benzoylhypaconine in human plasma by liquid chromatography-tandem mass spectrometry and pharmacokinetics evaluation of “shen-fu” injectable powder. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2008, 873, 173–179. [Google Scholar] [CrossRef] [PubMed]
- Xie, Y.; Jiang, Z.H.; Zhou, H.; Xu, H.X.; Liu, L. Simultaneous determination of six aconitum alkaloids in proprietary chinese medicines by high-performance liquid chromatography. J. Chromatogr. A 2005, 1093, 195–203. [Google Scholar] [CrossRef] [PubMed]
- Fei, F.; Yang, H.; Peng, Y.; Wang, P.; Wang, S.; Zhao, Y.; Huang, J.; Yu, X.; Feng, S.; Sun, R.; et al. Sensitive analysis and pharmacokinetic study of the isomers paeoniflorin and albiflorin after oral administration of total glucosides of white paeony capsule in rats. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2016, 1022, 30–37. [Google Scholar] [CrossRef] [PubMed]
- Bory, S.; Bun, S.S.; Baghdikian, B.; Mabrouki, F.; Cheng, S.K.; Elias, R.; Bune, H.; Ollivier, E. Simultaneous hplc determination of three bioactive alkaloids in the asian medicinal plant stephania rotunda. Nat. Prod. Commun. 2010, 5, 877–882. [Google Scholar] [PubMed]
- Dou, Z.; Li, K.; Wang, P.; Cao, L. Effect of wine and vinegar processing of rhizoma corydalis on the tissue distribution of tetrahydropalmatine, protopine and dehydrocorydaline in rats. Molecules 2012, 17, 951–970. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.H.; Zhao, J.B.; Guo, L.; Yang, Y.L.; Hu, F.; Zhu, R.J.; Feng, S.L. Simultaneous determination of calycosin-7-O-beta-d-glucoside, ononin, calycosin, formononetin, astragaloside iv, and astragaloside ii in rat plasma after oral administration of radix astragali extraction for their pharmacokinetic studies by ultra-pressure liquid chromatography with tandem mass spectrometry. Cell Biochem. Biophys. 2014, 70, 677–686. [Google Scholar] [PubMed]
- Shi, J.; Zheng, L.; Lin, Z.F.; Hou, C.Q.; Liu, W.Q.; Yan, T.M.; Zhu, L.J.; Wang, Y.; Lu, L.L.; Liu, Z.Q. Study of pharmacokinetic profiles and characteristics of active components and their metabolites in rat plasma following oral administration of the water extract of astragali radix using uplc-ms/ms. J. Ethnopharmacol. 2015, 169, 183–194. [Google Scholar] [CrossRef] [PubMed]
- Choi, Y.H.; Kim, Y.J.; Chae, H.S.; Chin, Y.W. In vivo gastroprotective effect along with pharmacokinetics, tissue distribution and metabolism of isoliquiritigenin in mice. Planta Med. 2015, 81, 586–593. [Google Scholar] [CrossRef] [PubMed]
- Li, T.; Yan, Z.; Zhou, C.; Sun, J.; Jiang, C.; Yang, X. Simultaneous quantification of paeoniflorin, nobiletin, tangeretin, liquiritigenin, isoliquiritigenin, liquiritin and formononetin from si-ni-san extract in rat plasma and tissues by liquid chromatography-tandem mass spectrometry. Biomed. Chromatogr. 2013, 27, 1041–1053. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.H.; Feng, L.; Zhu, M.M.; Gu, J.F.; Wu, C.; Jia, X.B. Antioxidative and anti-inflammatory activities of paeoniflorin and oxypaeoniflora on ages-induced mesangial cell damage. Planta Med. 2013, 79, 1319–1323. [Google Scholar] [CrossRef] [PubMed]
- Kong, P.; Chi, R.; Zhang, L.; Wang, N.; Lu, Y. Effects of paeoniflorin on tumor necrosis factor-alpha-induced insulin resistance and changes of adipokines in 3t3-l1 adipocytes. Fitoterapia 2013, 91, 44–50. [Google Scholar] [CrossRef] [PubMed]
- Honda, H.; Nagai, Y.; Matsunaga, T.; Saitoh, S.; Akashi-Takamura, S.; Hayashi, H.; Fujii, I.; Miyake, K.; Muraguchi, A.; Takatsu, K. Glycyrrhizin and isoliquiritigenin suppress the lps sensor toll-like receptor 4/md-2 complex signaling in a different manner. J. Leukoc. Biol. 2012, 91, 967–976. [Google Scholar] [CrossRef] [PubMed]
- Honda, H.; Nagai, Y.; Matsunaga, T.; Okamoto, N.; Watanabe, Y.; Tsuneyama, K.; Hayashi, H.; Fujii, I.; Ikutani, M.; Hirai, Y.; et al. Isoliquiritigenin is a potent inhibitor of nlrp3 inflammasome activation and diet-induced adipose tissue inflammation. J. Leukoc. Biol. 2014, 96, 1087–1100. [Google Scholar] [CrossRef] [PubMed]
- Sample Availability: Samples of the compounds benzoylhypaconine, benzoylmesaconine, paeoniflorin, calycosin-7-glucoside, tetrahydropalmatine, isoliquiritigenin, formononetin and naringenin are available from the authors.
Analytes | Linear Range (ng∙mL−1) | Regression Equation | R2 |
---|---|---|---|
Benzoylhypaconine | 0.335–209 | Y = 0.00490x + 0.00200 | 0.9984 |
Benzoylmesaconine | 0.607–379 | Y = 0.00100x + 0.0237 | 0.9987 |
Paeoniflorin | 11.3–7.08 × 103 | Y = 0.000500x + 0.0523 | 0.9977 |
Tetrahydropalmatine | 0.519–324 | Y = 0.0354x + 0.577 | 0.9936 |
Calycosin-7-glucoside | 0.619–386 | Y = 0.00760x − 0.163 | 0.9989 |
Formononetin | 0.542–338 | Y = 0.00290x + 0.00890 | 0.9991 |
Isoliquiritigenin | 1.06–666 | Y = 0.00220x − 0.00370 | 0.9938 |
Analytes | Concentration (ng/mL) | Inter-Day RSD (%) | Intra-Day RSD (%) | Accuracy | Recovery (%) | Matrix Effect (%) |
---|---|---|---|---|---|---|
Paeoniflorin | 20.8 | 5.3 | 2.9 | 105.0% | 86.1 ± 7.4 | 90.3 ± 3.4 |
332 | 2.6 | 4.2 | 107.1% | 90.8 ± 5.7 | 92.7 ± 3.1 | |
5315 | 4.7 | 1.8 | 106.8% | 88.6 ± 3.4 | 90.9 ± 1.8 | |
Tetrahydro-palmatine | 0.949 | 4.7 | 2.1 | 101.9% | 101.2 ± 6.9 | 101.6 ± 4.2 |
15.2 | 8.9 | 4.8 | 102.5% | 90.4 ± 3.7 | 105.3 ± 3.6 | |
243 | 5.6 | 3.6 | 96.3% | 85.8 ± 3.7 | 95.3 ± 2.5 | |
Benzoylmes-aconitine | 1.11 | 5.8 | 3.8 | 94.1% | 95.1 ± 5.8 | 93.4 ± 5.6 |
17.8 | 4.8 | 8.6 | 107.8% | 96.7 ± 3.9 | 94.2 ± 5.2 | |
285 | 3.9 | 5.2 | 103.4% | 94.6 ± 2.4 | 87.8 ± 3.1 | |
Calycosin-7-glucoside | 1.13 | 4.5 | 8.3 | 106.7% | 93.6 ± 9.3 | 86.8 ± 2.0 |
18.1 | 3.8 | 2.6 | 103.6% | 90.6 ± 7.2 | 102.4 ± 3.6 | |
290 | 2.3 | 2.3 | 102.5% | 86.6 ± 6.1 | 92.5 ± 2.7 | |
Benzoylhyp-aconitine | 0.614 | 9.7 | 2.7 | 92.9% | 107.0 ± 7.8 | 95.3 ± 7.2 |
9.84 | 6.3 | 6.9 | 105.8% | 89.7 ± 5.2 | 98.2 ± 6.4 | |
157 | 6.4 | 4.2 | 104.6% | 93.5 ± 4.1 | 87.2 ± 5.4 | |
Isoliquiritigenin | 1.95 | 2.7 | 8.7 | 103.5% | 101.4 ± 4.9 | 93.8 ± 7.2 |
31.2 | 4.5 | 4.3 | 103.1% | 90.4 ± 3.7 | 98.2 ± 6.0 | |
499 | 18 | 3.7 | 102.1% | 85.4 ± 4.2 | 93.1 ± 4.1 | |
Formononetin | 0.993 | 5.8 | 6.4 | 107.2% | 87.2 ± 6.8 | 96.5 ± 8.2 |
15.9 | 4.5 | 6.1 | 103.9% | 91.3 ± 3.4 | 88.6 ± 7.1 | |
254 | 2.5 | 1.7 | 102.3% | 86.7 ± 2.5 | 91.2 ± 3.8 |
Analytes | Conc. ng/mL | 25 °C for 4 h | At −70 °C for 15 Days | Freeze–Thaw Cycles | 4 °C for 24 h | ||||
---|---|---|---|---|---|---|---|---|---|
RSD (%) | Remaining (%) | RSD (%) | Remaining (%) | RSD (%) | Remaining (%) | RSD (%) | Remaining (%) | ||
Paeoniflorin | 20.8 | 5.4 | 101.5 | 4.5 | 98.6 | 5.6 | 107.8 | 6.1 | 98.3 |
332 | 3.2 | 102.3 | 5.2 | 103.6 | 6.2 | 106.4 | 2.5 | 105.4 | |
5315 | 2.8 | 96.4 | 2.3 | 104.0 | 3.9 | 105.0 | 1.3 | 103.2 | |
Tetrahydro-palmatine | 0.95 | 8.9 | 102.7 | 8.4 | 103.6 | 9.2 | 89.9 | 4.6 | 105.2 |
15.2 | 6.4 | 101.1 | 3.7 | 102.7 | 8.5 | 107.4 | 7.2 | 98.4 | |
243 | 6.5 | 102.5 | 1.5 | 103.1 | 6.0 | 108.1 | 3.1 | 101.1 | |
Benzoylmes-aconine | 1.11 | 7.1 | 94.4 | 2.3 | 93.2 | 4.6 | 93.3 | 5.2 | 110 |
17.8 | 4.8 | 107.1 | 4.9 | 105.4 | 5.3 | 104.8 | 6.7 | 96.3 | |
284 | 3.2 | 104.2 | 3.6 | 102.6 | 4.1 | 104.2 | 4.2 | 104.2 | |
Calycosin-7-glucoside | 1.13 | 8.5 | 105.9 | 6.8 | 108.4 | 9.9 | 108.1 | 4.8 | 103.7 |
18.1 | 7.6 | 96.0 | 4.3 | 94.3 | 6.4 | 107.3 | 1.7 | 103.9 | |
290 | 6.3 | 103.2 | 2.8 | 102.2 | 7.1 | 107.4 | 2.7 | 102.8 | |
Benzoylhyp-aconine | 0.61 | 9.8 | 108.3 | 7.4 | 107.8 | 8.5 | 109.6 | 8.9 | 106.7 |
9.83 | 7.6 | 107.6 | 8.6 | 104.3 | 6.7 | 92.7 | 5.4 | 104.3 | |
157 | 6.2 | 105.1 | 2.3 | 105.2 | 7.0 | 106.9 | 2.6 | 103.8 | |
Isoliquiritigenin | 1.95 | 5.2 | 102.4 | 5.6 | 103.1 | 5.6 | 106.3 | 2.8 | 94.6 |
31.2 | 3.4 | 103.0 | 7.1 | 96.2 | 5.9 | 107.0 | 1.7 | 102.5 | |
499 | 4.1 | 102.6 | 4.6 | 101.6 | 3.2 | 105.2 | 3.9 | 102.1 | |
Formononetin | 0.99 | 5.8 | 96.9 | 6.9 | 103.5 | 6.7 | 104.8 | 6.4 | 93.3 |
15.8 | 2.3 | 104.6 | 3.1 | 104.8 | 8.3 | 93.3 | 6.3 | 105.9 | |
254 | 3.7 | 103.4 | 4.8 | 104.3 | 5.6 | 105.0 | 5.4 | 106.2 |
Parameters | T1/2z (min) | Cmax (ng/mL) | Tmax (min) | AUC0–t (ng∙min/mL) | AUC0–∞ (ng∙min/mL) | MRT0–t (min) |
---|---|---|---|---|---|---|
Paeoniflorin | 210 ± 38 | 905 ± 226 | 30 (15, 30) | 73,270 ± 22,823 | 73,749 ± 25,492 | 199 ± 31 |
Tetrahydropalmatine | 310 ± 54 | 42.0 ± 13.4 | 180 (180, 180) | 10,193 ± 2945 | 11,028 ± 3125 | 492 ± 63 |
Benzoylmesaconitine | 687 ± 96 | 71.6 ± 21.5 | 30 (30, 45) | 7998 ± 2159 | 9030 ± 2356 | 515 ± 48 |
Calycosin-7-glucoside | 266 ± 44 | 52.2 ± 14.8 | 45 (45, 60) | 4643 ± 1485 | 4759 ± 1793 | 130 ± 24 |
Benzoylhypaconine | 382 ± 65 | 35.6 ± 10.2 | 30 (30, 45) | 4327 ± 1341 | 4603 ± 1583 | 375 ± 43 |
Isoliquiritigenin | 293 ± 48 | 337 ± 103 | 180 (180, 240) | 159,115 ± 44,552 | 165,128 ± 46,094 | 465 ± 52 |
Formononetin | 951 ± 97 | 6.79 ± 2.18 | 45 (30, 45) | 912 ± 264 | 1123 ± 324 | 777 ± 64 |
© 2016 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, J.; Xie, Y.; Xiang, Z.; Wang, C.; Zhou, H.; Liu, L. Simultaneous Determination of Multiple Components in Guanjiekang in Rat Plasma via the UPLC–MS/MS Method and Its Application in Pharmacokinetic Study. Molecules 2016, 21, 1732. https://doi.org/10.3390/molecules21121732
Wu J, Xie Y, Xiang Z, Wang C, Zhou H, Liu L. Simultaneous Determination of Multiple Components in Guanjiekang in Rat Plasma via the UPLC–MS/MS Method and Its Application in Pharmacokinetic Study. Molecules. 2016; 21(12):1732. https://doi.org/10.3390/molecules21121732
Chicago/Turabian StyleWu, Jian, Ying Xie, Zheng Xiang, Canjian Wang, Hua Zhou, and Liang Liu. 2016. "Simultaneous Determination of Multiple Components in Guanjiekang in Rat Plasma via the UPLC–MS/MS Method and Its Application in Pharmacokinetic Study" Molecules 21, no. 12: 1732. https://doi.org/10.3390/molecules21121732
APA StyleWu, J., Xie, Y., Xiang, Z., Wang, C., Zhou, H., & Liu, L. (2016). Simultaneous Determination of Multiple Components in Guanjiekang in Rat Plasma via the UPLC–MS/MS Method and Its Application in Pharmacokinetic Study. Molecules, 21(12), 1732. https://doi.org/10.3390/molecules21121732