Photochemically Immobilized 4-Methylbenzoyl Cellulose as a Powerful Chiral Stationary Phase for Enantioselective Chromatography
Abstract
:1. Introduction
2. Results and Discussion
2.1. Preparation of the Immobilized PMBC-Im Stationary Phases (CSP)
2.2. Influence of Irradiation Time on the Chromatographic Properties of the PMBC-Im CSPs
2.3. Influence of Irradiation Solvent on the Chromatographic Properties of the PMBC-Im CSPs
2.4. Modulating Enantioselectivity on Immobilized PMBC-Im CSPs with Mobile Phase Types and Composition
3. Materials and Methods
3.1. Preparation of para-Methylbenzoyl Cellulose (PMBC)
3.2. Preparation Silica Gel Coated PMBC (PMBC-S)
3.3. Preparation of Immobilized PMBC CSP (PMBC-Im)
3.4. Column Packing of Immobilized PMBC CSPs
3.5. Equipment and Chromatographic Conditions
3.6. Racemic Samples
4. Conclusions
Author Contributions
Conflicts of Interest
References
- Okamoto, Y.; Yashima, E. Polysaccharide derivatives for chromatographic separation of enantiomers. Angew. Chem. Int. Ed. 1998, 37, 1020–1043. [Google Scholar] [CrossRef]
- Ikai, T.; Okamoto, Y. Structure Control of Polysaccharide Derivatives for Efficient Separation of Enantiomers by Chromatography. Chem. Rev. 2009, 109, 6077–6101. [Google Scholar] [CrossRef] [PubMed]
- Okamoto, Y.; Kawashima, M.; Hatada, K. Useful chiral packing materials for high-performance liquid chromatographic resolution of enantiomers: Phenylcarbamates of polysaccharides coated on silica gel. J. Am. Chem. Soc. 1984, 106, 5357–5359. [Google Scholar] [CrossRef]
- Okamoto, Y.; Kawashima, M.; Hatada, K. Chromatographic resolution: XI. Controlled chiral recognition of cellulose triphenylcarbamate derivatives supported on silica gel. J. Chromatogr. 1986, 363, 173–186. [Google Scholar] [CrossRef]
- Okamoto, Y.; Kaida, Y. Polysaccharide derivatives as chiral stationary phases in HPLC. J. High Res. Chromatogr. 1990, 13, 708–712. [Google Scholar] [CrossRef]
- Okamoto, Y.; Kaida, Y. Resolution by High-performance Liquid Chromatography Using Polysaccharide Carbamates and Benzoates as Chiral Stationary Phases. J. Chromatogr. A 1994, 666, 403–419. [Google Scholar] [CrossRef]
- Francotte, E.; Wolf, R.M. Benzoyl cellulose beads in the pure polymeric form as a new powerful sorbent for the chromatographic resolution of racemates. Chirality 1991, 3, 43–55. [Google Scholar] [CrossRef]
- Francotte, E.; Wolf, R.M. Chromatographic Resolution on Methylbenzoyl Cellulose Beads. Modulation of the Chiral Recognition by Variation of the Position of Methyl Group on the Aromatic Ring. J. Chromatogr. 1992, 595, 63–75. [Google Scholar] [CrossRef]
- Ikai, T.; Yamamoto, C.; Kamigaito, M.; Okamoto, Y. Immobilized Polysaccharide-Based Chiral Stationary Phases for HPLC. Polym. J. 2006, 38, 91–108. [Google Scholar] [CrossRef]
- Shen, J.; Ikai, T.; Okamoto, Y. Synthesis and application of immobilized polysaccharide-based chiral stationary phases for enantioseparation by high-performance liquid chromatography. J. Chromatogr. A 2014, 1363, 51–61. [Google Scholar] [CrossRef] [PubMed]
- Shen, J.; Okamoto, Y. Efficient Separation of Enantiomers Using Stereoregular Chiral Polymers. Chem. Rev. 2016, 116, 1094–1138. [Google Scholar] [CrossRef] [PubMed]
- Okamoto, Y.; Aburatani, R.; Miura, S.; Hatada, K. Chiral Stationary Phases for HPLC: Cellulose Tris(3,5-dimethylphenylcarbamate) and Tris(3,5-dichlorophenylcarbamate) Chemically Bonded to Silica Gel. J. Liq. Chromatogr. 1987, 10, 1613–1628. [Google Scholar] [CrossRef]
- Oliveros, L.; Lopez, P.; Minguillon, C.; Franco, P. Chiral Chromatographic Discrimination Ability of a Cellulose 3,5-Dimethylphenylcarbamate/10-Undecenoate Mixed Derivative Fixed on Several Chromatographic Matrices. J. Liq. Chromatogr. 1995, 18, 1521–1532. [Google Scholar] [CrossRef]
- Francotte, E.; Huynh, D. Immobilized halogeno-phenylcarbamate derivatives of cellulose as novel chiral stationary phases for enantioselective drug analysis. J. Pharm. Biomed. Anal. 2002, 27, 421–429. [Google Scholar] [CrossRef]
- Wetli, H.; Francotte, E. Automated screening platform with isochronal-parallel analysis and conditioning for rapid method development of preparative chiral separations. J. Sep. Sci. 2007, 30, 1255–1261. [Google Scholar] [CrossRef] [PubMed]
- Francotte, E. Photochemically Cross-Linked Polysaccharide Derivatives as Supports for the Chromatographic Separation of Enantiomers. Patent WO 9627615 A1, 16 September 1996. [Google Scholar]
- Francotte, E.; Zhang, T. Photochemically Cross-Linked Polysaccharide Derivatives Having no Photopolymerisable Functional Groups. Patent WO 9704011 A1, 6 February 1997. [Google Scholar]
- Rabek, J.F. Photodegradation and photo-oxidative degradation of heterochain polymers. In Polymer Photodegradation: Mechanisms and Experimental Methods; Chapman & Hall: London, UK, 1995; p. 342. [Google Scholar]
- Fan, H.; Li, G.; Yang, F.; Yang, L.; Zhang, S. Photodegradation of cellulose under UV light catalysed by TiO2. J. Chem. Technol. Biotechnol. 2011, 86, 1107–1112. [Google Scholar] [CrossRef]
- Yatagai, M.; Zeronian, S.H. Effect of ultraviolet light and heat on the properties of cotton cellulose. Cellulose 1994, 1, 205–214. [Google Scholar] [CrossRef]
- Francotte, E.; Wolf, R.M. Preparation of chiral building blocks and auxiliaries by chromatography on cellulose triacetate (CTA I). Indications for the presence of multiple interaction sites in CTA I. Chirality 1990, 2, 16–31. [Google Scholar] [CrossRef]
- Klán, P.; Šolomek, T.; Bochet, C.G.; Blanc, A.; Givens, R.; Rubina, M.; Popik, V.; Kostikov, A.; Wirz, J. Photoremovable Protecting Groups in Chemistry and Biology: Reaction Mechanisms and Efficacy. Chem. Rev. 2013, 113, 119–191. [Google Scholar] [CrossRef] [PubMed]
- Stewart, G.; Smith, K.; Chornes, A.; Harris, T.; Honeysucker, T.; Dasary, R.S.; Yu, H. Photochemical reaction of nitro-polycyclic aromatic hydrocarbons: Effect by solvent and structure. Environ. Chem. Lett. 2010, 8, 301–306. [Google Scholar] [CrossRef] [PubMed]
- Reusch, W. Photochemistry. Website Michigan State University. Available online: https://www2.chemistry.msu.edu/faculty/reusch/virttxtjml/photchem.htm (accessed on 6 December 2016).
- Ninomiya, I.; Naito, T. Photochemical Synthesis; Academic Press: San Diego, CA, USA, 1989; ISBN 0-12-519490-0. [Google Scholar]
- Francotte, E.; Lang, R.W.; Winkler, T. New chiral fluoroanthryl derivatives: Resolution of the enantiomers by chromatography on cellulose esters and their evaluation as chiral solvating agents in NMR spectroscopy. Chirality 1991, 3, 177–182. [Google Scholar] [CrossRef]
CSP Name | Amount of Coated PMBC (Weight %) | Irradiation Medium (Volume Ratio) | Irradiation Time (h) | Amount of Immobilized PMBC (Weight %) | Immobilization Rate (%) |
---|---|---|---|---|---|
PMBC-S | 28 | na | na | na | na |
PMBC-Im A | 28 | 25% MeOH in water | 15 | 23.8 | 71.2 |
PMBC-Im B | 28 | 25% MeOH in water | 18 | 23.8 | 85.1 |
PMBC-Im C | 28 | 25% MeOH in water | 23 | 24.3 | 86.7 |
PMBC-Im D | 28 | 25% MeOH in water | 24 | 24.3 | 86.9 |
PMBC-Im E | 28 | 25% MeOH in water | 30 | 24.3 | 86.6 |
PMBC-Im F | 28 | 50% MeOH in water | 20 | 22 | 78.6 |
PMBC-Im G | 25 | 100% acetonitrile | 22 | 21.7 | 83.3 |
Compound | PMBC-S | PMBC-Im B | PMBC-Im D | PMBC-Im E | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
α | k1 | k2 | Rs | α | k1 | k2 | Rs | α | k1 | k2 | Rs | α | k1 | k2 | Rs | |
1 | 9.15 | 1.85 | 16.89 | 3.71 | 7.06 | 1.74 | 12.31 | 4.55 | 6.33 | 1.94 | 12.28 | 4.67 | 6.89 | 1.98 | 13.62 | 4.37 |
2 | 1.47 | 5.31 | 7.82 | 1.21 | 1.31 | 4.16 | 5.45 | 1.27 | 1.28 | 5.03 | 6.45 | 1.15 | 1.30 | 4.86 | 6.30 | 1.04 |
4 | 1.00 | 14.06 | 14.06 | 0 | 1.09 | 9.28 | 10.11 | nd | 1.00 | 10.44 | 10.44 | 0 | 1.12 | 9.38 | 10.50 | 0.86 |
5 | 1.30 | 9.98 | 13.01 | 0.65 | 1.25 | 10.12 | 12.63 | 0.89 | 1.24 | 11.4 | 14.13 | 0.75 | 1.22 | 11.29 | 13.80 | 0.66 |
7 | 1.22 | 7.63 | 9.35 | nd | 1.20 | 6.85 | 8.23 | 0.87 | 1.19 | 7.66 | 9.08 | 0.62 | 1.16 | 7.72 | 8.95 | 0.54 |
9 | 2.53 | 3.99 | 10.11 | 2.25 | 2.13 | 4.49 | 9.56 | 2.41 | 2.13 | 4.89 | 10.41 | 2.44 | 2.16 | 4.77 | 10.29 | 2.37 |
13 | 1.81 | 7.85 | 14.23 | 1.60 | 1.72 | 7.15 | 12.31 | 2.31 | 1.70 | 7.78 | 13.2 | 1.82 | 1.70 | 8.03 | 13.67 | 1.82 |
16 | 1.39 | 1.72 | 2.39 | 0.59 | 1.40 | 1.74 | 2.42 | 1.02 | 1.39 | 1.87 | 2.60 | 0.80 | 1.36 | 1.98 | 2.69 | 0.86 |
17 | 1.41 | 2.93 | 4.14 | 0.58 | 1.38 | 2.77 | 3.81 | 1.12 | 1.37 | 3.02 | 4.14 | 0.85 | 1.33 | 3.15 | 4.20 | 0.85 |
19 | 1.64 | 3.91 | 6.41 | 1.61 | 1.61 | 3.36 | 5.39 | 3.81 | 1.59 | 3.72 | 5.91 | 2.25 | 1.57 | 3.69 | 5.80 | 2.10 |
Compound | PMBC-Im G | PMBC-Im F | PMBC-Im C | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
α | k1 | k2 | Rs | α | k1 | k2 | Rs | α | k1 | k2 | Rs | |
1 | 7.22 | 1.59 | 11.50 | 5.04 | 7.52 | 1.40 | 10.51 | 6.32 | 7.05 | 1.85 | 13.09 | 4.53 |
2 | 1.40 | 3.63 | 5.06 | 1.28 | 1.34 | 3.59 | 4.81 | 1.51 | 1.32 | 4.87 | 6.41 | 1.36 |
4 | 1.00 | 8.07 | 8.07 | 0 | 1.08 | 6.93 | 7.50 | 0.51 | 1.05 | 9.85 | 10.40 | nd |
5 | 1.24 | 8.66 | 10.80 | 0.64 | 1.27 | 7.40 | 9.38 | 0.95 | 1.23 | 10.86 | 13.40 | 0.73 |
7 | 1.22 | 5.23 | 6.37 | 0.82 | 1.17 | 5.32 | 6.21 | 0.76 | 1.18 | 7.42 | 8.76 | 0.63 |
9 | 2.21 | 3.53 | 7.80 | 2.76 | 2.13 | 3.25 | 6.93 | 3.45 | 2.17 | 4.80 | 10.40 | 3.07 |
13 | 1.70 | 6.13 | 10.50 | 2.06 | 1.76 | 5.62 | 9.87 | 2.66 | 1.72 | 7.62 | 13.10 | 1.96 |
16 | 1.38 | 1.36 | 1.87 | 0.80 | 1.34 | 1.44 | 1.94 | 1.04 | 1.39 | 1.85 | 2.56 | 1.07 |
17 | 1.36 | 2.18 | 2.98 | 0.86 | 1.32 | 2.26 | 2.98 | 1.11 | 1.37 | 2.91 | 3.98 | 0.84 |
19 | 1.59 | 2.78 | 4.43 | 1.74 | 1.58 | 2.62 | 4.15 | 2.27 | 1.61 | 3.65 | 5.86 | 2.44 |
Compound | PMBC-S | PMBC-Im E | PMBC-Im E | PMBC-Im E | PMBC-Im E | PMBC-Im E | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Hexane/2-propanol 9/1 | Hexane/2-propanol 9/1 | Heptane/Chloroform 90/10 | Heptane/Chloroform 75/25 | Heptane/Chloroform 67.5/32.5 | Heptane/Chloroform 60/40 | |||||||||||||
α | k2 | Rs | α | k2 | Rs | α | k2 | Rs | α | k2 | Rs | α | k2 | Rs | α | k2 | Rs | |
1 | 9.15 | 16.89 | 3.71 | 6.89 | 13.62 | 4.37 | 3.29 | 3.69 | 6.36 | 1.85 | 0.72 | 2.56 | 1.57 | 0.49 | 1.56 | 1.36 | 0.37 | 0.80 |
2 | 1.47 | 7.82 | 1.21 | 1.30 | 6.30 | 1.04 | 1.42 | 4.07 | 2.76 | 1.17 | 0.66 | 0.72 | 1.00 | 0.40 | 0.00 | 1.00 | 0.30 | 0.00 |
3 | 1.37 | 8.40 | 0.60 | 1.30 | 5.46 | 2.44 | 1.31 | 21.22 | 3.08 | 1.23 | 4.85 | 2.14 | 1.21 | 3.17 | 1.80 | 1.19 | 2.24 | 1.46 |
4 | 1.00 | 14.06 | 0.00 | 1.12 | 10.50 | 0.86 | 1.25 | 30.58 | 2.00 | 1.20 | 5.18 | 1.82 | 1.18 | 3.17 | 1.54 | 1.16 | 2.09 | 1.16 |
5 | 1.30 | 13.01 | 0.65 | 1.22 | 13.82 | 0.66 | 1.30 | 13.89 | 1.90 | 1.34 | 2.16 | 2.06 | 1.36 | 1.41 | 1.96 | 1.38 | 1.01 | 1.76 |
6 | not soluble | not soluble | 1.11 | 127.82 | nd | 1.32 | 13.84 | 2.60 | 1.43 | 6.97 | 3.16 | 1.50 | 4.46 | 3.30 | ||||
7 | 1.22 | 9.35 | nd | 1.16 | 8.95 | 0.54 | 2.99 | 49.42 | 3.70 | 1.29 | 20.70 | 2.62 | 1.23 | 11.68 | 2.18 | 1.16 | 7.58 | nd |
8 | 1.19 | 14.46 | nd | 1.17 | 13.00 | 0.98 | 1.00 | 1.00 | 0.00 | 1.26 | 14.72 | 2.26 | 1.25 | 8.05 | 2.08 | 1.23 | 5.27 | 1.86 |
9 | 2.53 | 10.11 | 2.25 | 2.16 | 10.29 | 2.37 | 2.11 | 7.32 | 5.04 | 1.57 | 1.32 | 2.44 | 1.38 | 0.82 | 1.50 | 1.27 | 0.62 | 0.88 |
10 | 1.30 | 8.28 | 0.50 | 1.28 | 8.03 | 1.68 | 1.30 | 10.49 | 2.16 | 1.22 | 1.90 | 1.52 | 1.19 | 1.20 | 1.10 | 1.18 | 0.88 | 0.74 |
11 | not soluble | not soluble | not eluted | 3.09 | 58.45 | 9.62 | 2.45 | 19.90 | 7.52 | 2.10 | 8.77 | 5.62 | ||||||
12 | 1.00 | 13.75 | 0.00 | 1.00 | 8.42 | 0.00 | 1.18 | 5.77 | nd | 1.00 | 0.82 | 0.00 | 1.00 | 0.49 | 0.00 | 1.00 | 0.36 | 0.00 |
13 | 1.81 | 14.23 | 1.60 | 1.70 | 13.67 | 1.82 | 1.89 | 35.00 | 4.96 | 1.68 | 4.99 | 4.64 | 1.60 | 2.62 | 3.72 | 1.48 | 1.69 | 2.62 |
14 | not eluted | not eluted | not eluted | 1.58 | 59.68 | 1.74 | 1.43 | 22.05 | 0.92 | nd | 12.04 | nd | ||||||
15 | not eluted | not eluted | not eluted | 1.23 | 66.00 | 2.30 | 1.24 | 27.53 | 2.12 | 1.25 | 14.27 | nd | ||||||
16 | 1.39 | 2.39 | 0.59 | 1.36 | 2.69 | 0.86 | 1.98 | 29.16 | 5.36 | 1.65 | 6.55 | 4.50 | 1.54 | 4.18 | 3.70 | 1.43 | 2.95 | 2.86 |
17 | 1.41 | 4.14 | 0.58 | 1.33 | 4.20 | 0.85 | 1.83 | 52.23 | 4.92 | 1.59 | 10.83 | 4.62 | 1.47 | 6.34 | 3.70 | 1.37 | 4.31 | 2.78 |
18 | 1.13 | 5.84 | nd | 1.09 | 5.20 | nd | 1.15 | 4.91 | 1.18 | 1.09 | 1.04 | 0.50 | 1.00 | 0.67 | 0.00 | 1.00 | 0.50 | 0.00 |
19 | 1.64 | 6.41 | 1.61 | 1.57 | 5.80 | 2.10 | 2.02 | 20.07 | 7.98 | 1.76 | 5.27 | 5.64 | 1.65 | 3.22 | 4.54 | 1.55 | 2.22 | 3.52 |
© 2016 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Francotte, E.; Huynh, D.; Zhang, T. Photochemically Immobilized 4-Methylbenzoyl Cellulose as a Powerful Chiral Stationary Phase for Enantioselective Chromatography. Molecules 2016, 21, 1740. https://doi.org/10.3390/molecules21121740
Francotte E, Huynh D, Zhang T. Photochemically Immobilized 4-Methylbenzoyl Cellulose as a Powerful Chiral Stationary Phase for Enantioselective Chromatography. Molecules. 2016; 21(12):1740. https://doi.org/10.3390/molecules21121740
Chicago/Turabian StyleFrancotte, Eric, Dan Huynh, and Tong Zhang. 2016. "Photochemically Immobilized 4-Methylbenzoyl Cellulose as a Powerful Chiral Stationary Phase for Enantioselective Chromatography" Molecules 21, no. 12: 1740. https://doi.org/10.3390/molecules21121740
APA StyleFrancotte, E., Huynh, D., & Zhang, T. (2016). Photochemically Immobilized 4-Methylbenzoyl Cellulose as a Powerful Chiral Stationary Phase for Enantioselective Chromatography. Molecules, 21(12), 1740. https://doi.org/10.3390/molecules21121740