Molecular Mechanisms of Inhibition of Streptococcus Species by Phytochemicals
Abstract
:1. Introduction
1.1. Streptococci
1.2. Streptococcal Infections and Major Virulence Factors
Organism | Diseases | Adherence Site | Estimated Cases/Costs |
---|---|---|---|
S. mutans | Dental caries | Tooth surface, other bacteria present in the biofilm on the surface of the tooth [5] | 500 million visits to dentists and an estimated $108 billion spent on dental services in united states in 2010 [27] |
Dental plaque | |||
Endocarditis | |||
S. pyogenes | Pharyngitis | Mucosal surfaces of pharynx, skin [25] | 1–2.6 million cases of strep throat, erythromycin-resistant, invasive S. pyogenes causes 1300 illnesses and 160 deaths in united states each year. The total cost (medical and non-medical ) of group A streptococcal pharyngitis among school aged children in united states ranges from $224 to $539 million per year [27] |
Cellulitis | |||
Streptococcal toxic-shock syndrome | |||
Necrotizing fasciitis | |||
Rheumatic fever | |||
Sequela | |||
Erysipelas glomerulonephritis | |||
S. agalactiae | Neonatal sepsis | Mucosal surfaces of vaginas and recta of pregnant women, skin [32] | Clindamycin-resistant S. agalactiae causes an estimated 7600 illnesses and 440 deaths yearly in U.S. 27,000 cases of severe S. agalactiae disease, such as blood infections or meningitis, occurred in 2011, causing 1575 deaths in U.S. [27] |
Meningitis | |||
Systemic infection in immuno-compromised individuals | |||
S. pneumoniae | Otitis media | Mucous membranes of the nasopharynx [33] | Cases of resistant pneumococcal pneumonia result in about 32,000 additional doctor visits and about 19,000 additional hospitalizations and costs associated are approximately $96 million in U.S. [27] |
Bacteraemia | |||
Pneumonia | |||
Meningitis | |||
Bronchitis | |||
Sinusitis | |||
Laryngitis | |||
Epiglottitis |
1.3. Mechanism of Pathogenicity of Streptococcal Diseases
1.3.1. Adhesion, Plaque, and Biofilm Formation of Streptococcal Species
1.3.2. Proton-Extrusion and Glycolysis of Streptococcal Species
1.3.3. Glucan Synthesis, Aggregation and Quorum Sensing of Streptococcal Species
1.4. Treatment of Streptococcal Infection
1.5. Antibiotic Resistance and Emerging Threats
1.6. Possible Alternatives for Classical Antibiotics
2. Anti-Streptococcal Attributes of Phytochemicals
2.1. Phytochemicals with Inhibitory Activities against Adhesion, Plaque, and Biofilm Formation
Folklore Medicinal Plant | Targeted Disease Condition |
---|---|
Agrimonia eupatoria L. | Acute sore throat and chronic nasopharyngeal catarrh [118,119] |
Arnica montana L. | Inflammation of oral, throat region [99,120,121] |
Lonicera japonica Thunb. | Erysipelas, pharyngitis, upper respiratory infection [100] |
Morella cerifera (L.) Small | Cold and sore throat [101,122] |
Parmentiera aculeate (Kunth) Seem | Otitis media [123] |
Adansonia digitata L. | Otitis media [102,124] |
Anacardium occidentale L. | Sore throat [103,125] |
Uvaria chamae P. Beauv. | Sore throat [64,126,127] |
Adansonia digitata L. | Inflamed gums and infected teeth [128] |
Carica papaya L. | Toothache [129] |
Hyoscyamus niger L. | Toothache [130,131] |
Eucalypthus camaldulensis Dehn. | |
Anacardium occidentale L. | Toothache, sore gums [132] |
Annona reticulata | Toothache [133,134] |
Annona squamosa Linn | |
Uvaria chamae P. Beauv | Inflamed gums [135] |
Abutilon indicum (L.) Sweet, Baliospermum axillare Blume, Blumea lacera (Burm. f.) DC., Canna indica L., Ocimum tenuiflorum L., Oroxylum indicum (L.) Vent., Polygonum aviculare L., Solanum indicum Linn., Vernonia patula (Aiton) Merrill [136] | For the relief of symptoms of bronchitis, pneumonia, influenza [136] |
Vigna radiata (L.) R. Wilczek Andrographis paniculata (Burm. f.) Wall. ex Nees [137,138] | Treatment of sepsis [137,138] |
Species | Strain | Plant | EM | MIC, IZD | Ref. |
---|---|---|---|---|---|
S. pyogenes | Passiflora foetida L. | EE, ACE | 100–400 µg/mL, 10–20 mm | [139] | |
ATCC 19615 | Ageratum conyzoides L. | AE, EE, ME | 1–2 mg/mL | [140] | |
Laggera tomentosa Sch-Bip | |||||
Syzygeum guineense DC. | |||||
Cordia africana Lam. | |||||
Ferula communis L. | |||||
Discopodium peninervum Hochst | |||||
Olea europea subsp. cuspidate | |||||
Crescentia cujete L. | CEE | 5 mg/mL | [141] | ||
Cl | Uvaria chamae P. Beauv | CAE, HAE | 9–12 mm, 100 µg/mL | [127] | |
Vernonia amygdalina Del. | |||||
Garcinia kola Heckel | |||||
CI | Uvaria chamae P. Beauv | CDEE, HEE | 6–21 mm, 100 µg/mL | [127] | |
Vernonia amygdalina Del. | |||||
Garcinia kola Heckel | |||||
Aframomum melegueta Schum. | |||||
CI | Zingiber officinale Roscoe | EE | 2–6 mm, 0.0005–0.389 µg/mL | [142] | |
CI | Garcinia kola Heckel | EE | 0.0005–0.44 µg/mL | [142] | |
CI | Coccinia grandis (L.) Voigt | HE | 5.5–7 mm | [143] | |
CI | Eucalyptus globulus Labill. | ME | 32–64 mg/L | [144] | |
HITM 100 | Quercus ilex L. | BE, EAE | 10 mm, 512 μg/mL | [106] | |
CI | Prunus armeniaca L. | CEE, BE | 250 μg/mL | [145] | |
ATCC 19615 | Capsicum chinense Jacq. | AE | 15–34 mm | [146] | |
ATCC 19615 | Allium sativum L. | AE | 29 mm | [146] | |
CI | Spilanthes acmella Murr. | CHE | 256 μg/mL | [147] | |
CI | Cinnamomum zeylanicum Garcin ex Blume | EO | 6.25 µL/mL | [107] | |
CI | Thymus vulgaris L. Syzygium aromaticum (L.) Merr. & L.M. Perr | EO | 12.5 µL/mL | [107] | |
CI | Sechium edule (Jacq.) Sw. | EE | 10–15 mm | [108] | |
S. mutans | ATCC 25175 | Coffea canephora Pierre ex Froehner | AE | 5 mg/mL | [148,149] |
ATCC 25175 | Baeckea frutescens L. | 75% ME | 14–22 mm, 20, 50 mg/mL | [150,151] | |
Glycyrrhiza glabra L. | |||||
Kaempferia pandurata Roxb. | |||||
Physalis angulata L. | |||||
Quercus infectoria Oliv. | |||||
MTCC-890 | Nut gall (Quercus infectoria) | Petro, ether Water, metahnol | 12–23 mm | [150] | |
UA159 | Rheedia brasiliensis Planch. & Triana | HE | 1.25–2.5 μg/mL | [152] | |
UA159 | Camellia sinensis (L.) Kuntze | Epigallocatechin gallate by HPLC | 31.25 μg/mL | [153] | |
ATCC 700610 | Prosopis spicigera Linn. | ACE, CHE DEE, EAE, EE, ME, PEE | 9.76–1250 μg/mL | [154] | |
ATCC 700610 | Zingiber officinale Roscoe | ACE, CHE DEE, EAE, EE, ME, PEE | 625–2500 μg/mL | [154] | |
Trachyspermum ammi (L.) Sprague ex Turrill | CE, PEE | 40–320 μg/mL | [155] | ||
ATCC 25175 | Siraitia grosvenorii (Swingle) A. M. Lu & Zhi Y. Zhang | commercial extract | 6 μg/mL | [156,157] | |
S. puenomonia | CI | Zingiber officinale Roscoe | EE | 0.001–0.7 µg/mL | [142] |
serotype 6B | Agaricus blazei Murill | AE | [158] | ||
serotype 6B | Plantago major L. | AE | 0.48 mg/kg | [159] | |
ATCC 49619, penicillin resistant and sensitive clinical strains | Garcinia afzelii Engl. | 90% EE | 6– >1500 µg/mL | [160] | |
Andira inermis (W. Wright) Kunth ex DC. | |||||
Keetia hispida (Benth.) Bridson | |||||
Uapaca togoensis Pax Combretum molle (R. Br. x. G. Don) | |||||
Erythrina senegalensis DC. | |||||
Piliostigma thonningii (Schum.) | |||||
CI | Garcinia kola Heckel | EE | 0.00008–1.7 µg/mL | [142] | |
CI | Eucalyptus globulus Labill. | ME | 16–32 mg/L | [144] | |
ATCC 49619 | Salvia tom entosa Mill. | EO | 2.25 mg/mL | [161] | |
CI | Thymus vulgaris L. Cinnamomum zeylanicum Garcin ex Blume | EO | 6.25 µL/mL | [107] | |
Antibiotic resistant strains | Eucalyptus globulus Labill. | CAE | 0.7 mg/mL | [162] | |
CI | Syzygium aromaticum (L.) Merr. & L.M. Perr | EO | 12.5 µL/mL | [107] | |
ATCC 49619 | Euphorbia hirta L. | AE, EE, ME | 6–11 mm, 60–80 mg/mL | [163] | |
Laggera tomentosa Sch-Bip | ME, AE | 1–2 mg/mL | [140] | ||
Syzygeum guineense (Wild.) DC. | |||||
Cordia africana Lam. | |||||
Ferula communis L. | |||||
Olea europea subsp. cuspidate | |||||
S. agalactiae | NCIM 2401 | Ficus tsiela Roxb. | EE | 9.5 mm | [109] |
NCIM 2401 | Hibiscus sabdariffa L. | AE | 9 mm | [109] | |
HITM 80 | Quercus ilex L. | BE, EAE | 8–11 mm, 512 μg/mL | [106] | |
CI | Syzygium aromaticum (L.) Merr. & L.M. Perr Cinnamomum zeylanicum Garcin ex Blume | EO | 12.5 µL/mL | [107] | |
CI | Thymus vulgaris L. | EO | 6.25 µL/mL | [107] | |
CI | Spathodea campanulata P. Beauv. | CAE, CME | 2–7 mm | [110] | |
Tridax Procumbens L. | |||||
Sechium edule (Jacq.) Sw. | EE | 15 mm | [108] |
Plant/Fruit Name | Bioactive Compounds and EM | Bacterial Strain | Concentration and Assay Type | Results | Ref. |
---|---|---|---|---|---|
Maidenhair tree (Ginkgo biloba L.) South African geranium (Pelargonium sidoides DC.) Cranberry (Vaccinium macrocarpon Aiton) | Purified PAC, AE, AEE, ME | S. pyogenes DSM 2071 | P. sidoides 40% G. biloba 100% Adhesion reduction at 3 h incubation time | P. sidoides 40% G. biloba 25% | [164] |
Cranberry (Vaccinium macrocarpon Aiton) | High MW non-dialyzable materials Juice powder 25% concentration, dissolved in water | S. mutans MT 8148R, JC2, Ingbritt, ATCC 10449 S. criceti E49 S. oralis ATCC 10557 S. mitis ATCC 9811 S. gordonii Challis | 100–500 μg/mL Inhibition of biofilm formation | Significant inhibition | [117] |
S. mutans MT 8148R, JC2, Ingbritt S. sobrinus 6715 | Effect on hydrophobicity | 40%–60% reduction | |||
Cocoa (Theobroma cacao L.) | PP fractions Oligomers: Monomer MW 290 Dimer MW 578 Tetramer MW 1154 Pentamer MW 1442 HE | S. mutans NCTC 10449 CI of S. sanguinis LDI1 | 35 μM Biofilm biomass reduction after 4 h | In absence of sucrose S. sanguinis 48% S. mutans 68% | [165] |
In presence of sucrose S. sanguinis 79% S. mutans 44% | |||||
Cranberry (Vaccinium macrocarpon Aiton) | High MW non-dialysable material, CJ | S. sobrinus 6715 | 1.33 mg/mL Adhesion to glucan or fructan coated hydroxyapatite reduction | 95% | [115] |
Red grape (Vitis vinifera L.) Pine bark | Red grape marc extract (GME): 20% PP, 3% A, Red wine extract (RWE): 95% PP Pine bark extract (PBE) Commercial preparation | S. mutans ATCC 25175 | 2 mg/mL Adhesion to glass surface Inhibition | GME significant inhibition, RWE, PBE effective at >4 mg/mL | [166] |
Blueberry (Vaccinium myrtillus L.) Small cranberry (Vaccinium oxycoccos L.) Lingonberry (Vaccinium vitis-idaea L.) Cloudberry (Rubus chamaemorus L.) Crowberry (Empetrum nigrum L.) Blackcurrant (Ribes nigrum L.) Sour cherry (Prunus cerasus L.) | Molecular size of fractions; F1 <10 kDa, F2 10–100 kDa, F3 >100 kDa F2 and F3: polyphenol macromolecular complexes: PACs, polyhydroxy flavonoids AE, CJ | CI of S. pneumoniae SB 53845 S. agalactiae B133 III R | Binding activity of bacterial cells | S. pneumonia bound to fraction FI of cranberry and bilberry juices S. agalactiae bound to bilberry juice and cranberry fractions FII and FIII and to all fractions of cranberry juice and lingonberry | [112] |
Clove (Syzygium aromaticum (L.) Merr. & L.M. Perr) | CAE | S. mutans ATCC 25175 | 20 mg/mL Precent cell-surface hydrophobicity | 0.3% ± 0.1% | [167] |
CAE | S. mutans ATCC 25175 | 20 mg/mL Adherence inhibition | 100% | ||
CME | S. mutans ATCC 25175 | 20 mg/mL Percent cell-surface hydrophobicity reduction | 25.2% ± 4.7% | ||
CME | S. mutans ATCC 25175 | 15 mg/mL Adherence inhibition | 100% | ||
Cocoa (Theobroma cacao L.) | Bean husk extract 12.6% PP compounds 30% EE | S. mutans MT8148 | 1 mg/mL Adherence to saliva-coated hydroxyapatite inhibition | 31% | [168] |
S. mutans MT8148 | 1 mg/mL Plaque formation inhibition | Significantly inhibited | |||
Guava (Psidium guajava L.) | Quercetin-3-O-alpha-l-arabinopyranoside (guaijaverin) ME | S. mutans MTCC1943 | 2 mg/mL Percent cell hydrophobicity | 20% | [169] |
Cranberry (Vaccinium macrocarpon Aiton) | PP fraction | S. sobrinus 6715 S. sobrinus B13 S. mutans MT8148R S. mutans JC2 | 500 μg/mL Hydrophobicity reduction | S. sobrinus 6715 90% S. sobrinus B13 85% S. mutans MT 8148R 90% S. mutans JC2 65% | [170] |
Devil’s horsewhip (Achyranthes aspera L.) | AE, BE, ME, PEE | CI of S. mutans | 125 µg/mL Biofilm inhibition | Complete to partial biofilm inhibition | [171] |
Meswak (Salvadora persica L.) | ACE, AE, CHE, EE, ME | CI of S. mutans | 2.6 mg/mL Biofilm inhibition | significant inhibition | [172] |
Indian gooseberry (Emblica Officinalis L.) | CE, EF | S. mutans MTCC 497 | 39.04 µg/mL CE, 78.08 µg/mL ethanolic fraction Biofilm inhibition | 50% inhibition | [173] |
156 µg/mL CE and 312.5 µg/mL ethanolic fraction Adherence inhibition | 50% inhibition | ||||
Hydrophobicity reduction | Partial reduction | ||||
Papaya (Carica papaya L.) | Fermented papaya preparation (FPP) Alkaloids Flavonoids Glucosides Anthraquinones | S. mutans 25175 S. mitis 6249 | 50 mg/mL Percent hydrophobicity | S. mutans: 1.01% S. mitis: 7.66% | [174] |
Curry (Helichrysum Italicum G. Don) | Apigenin Luteolin Gnaphaliin Naringenin Pinocembrin Tiliroside EE | S. mutans ATCC 35668 S. salivarius ATCC 13419 S. sanguis ATCC 10556 | 16–31 μg/mL Adherence to glass surface inhibition | 90%–93% | [116] |
sub-MIC 8–31 μg/mL Cell-surface hydrophobicity reduction | 90% |
Bioactive Compounds | Bacterial Strain | Concentration and Assay Type | Results | Ref. |
---|---|---|---|---|
(−)-Epicatechin (−)-epicatechin-3-O-gallate (−)-epigallocatechin (−)-epigallocatechin-3-O-gallate | S. pyogenes DSM 2071 | 30 μg/mL Adhesion reduction to HEp-2 cells | (−)-epigallocatechin 15% (−)-epigallocatechin-3-O-gallate 40% | [164] |
Morin | S. pyogenes MGAS 6180 | 225 μM Biofilm biomass reduction | 50%–60% | [175] |
Ursolic acid (UA) Oleanolic acid (OA) | S. mutans UA159 Actinomyces viscosus ATCC 15987 | 1024 μg/mL Adherence inhibition to tooth surface | Complete inhibition | [176] |
EGCG | ComC-deficient S. mutans | 0.25 mg/mL Biofilm inhibition | 81% Biofilm inhibition | [177] |
QS inhibition | Partial inhibition |
2.2. Phytochemicals with Inhibitory Activities against F-ATPase and Glycolytic pH-drop
2.3. Phytochemicals with Inhibitory Activities against Glucosyltransferases, Aggregation, and Quorum Sensing
Plant | Bioactive Compounds and EM | Bacterial Strain | Concentration and Assay Type | Results | Ref. |
---|---|---|---|---|---|
Cranberry (Vaccinium macrocarpon Aiton) | FLAV A PAC | S. mutans UA159 | PAC 500 µg/mL FLAV 125 µg/mL A 200 µg/mL F-ATPase activity inhibition | PAC alone or in combinations >85% FLAV 20% | [84] |
500 µg/mL Glycolytic pH-drop | PAC alone or in combinations pH 4.7–4.9 | ||||
Cranberry (Vaccinium macrocarpon Aiton) | Low MW PP | S. mutans UA159 | 500 µg/mL F-ATPase activity inhibition | Myricetin 32% procyanidin A2 29% Myricetin + procyanidin A2 43% | [191] |
Glycolytic pH-drop | Significant disruption | ||||
Cocoa (Theobroma cacao L.) | Oligomers: Monomer MW 290 Dimer MW 578 Tetramer MW 1154 Pentamer MW 1442 HE of PP fractions | S. mutans NCTC 10449 S. sanguinis LDI 1, CI | 500 µM pentamer Glycolytic pH-drop | 30% | [165] |
Red wine grape (Vitis vinifera L.) | Gallic acid Catechin Epicatechin Procyanidin B1 Procyanidin B2 Resveratrol Fermented | S. mutans UA159 | 125 µg/mL F-ATPase activity inhibition | 30%–65% | [195] |
500 μg/mL Glycolytic pH-drop | Significant inhibition | ||||
Green tea Camellia sinensis (L.) Kuntze | EGCG EE | S. mutans UA159 | 15.6 μg/mL Glycolytic pH-drop | Significant inhibition | [153] |
Methuselah’s beard (Usnea longissima Ach.) | Herbo-metallic preparations | S. mutans | 5%–15% Glycolytic enzymes inhibition (GEI) | Decreased ATPase, enolase, lactate dehydrogenase, protease, glucosidase, EPS and acid production activity | [196] |
Purple mangosteen (Garcinia mangostana L.) | α-mangostin EE | S. mutans UA159 S. rattus FA-1 S. salivarius ATCC 13419 | GEI | IC50 31 µM Lactic dehydrogenase, 45 µM Aldolase, 95 µM Glyceraldehyde-3-phosphate dehydrogenase inhibition | [190] |
Plant/Fruit Name | Bioactive Compounds and EM | Bacterial Strain | Concentration and Assay Type | Results | Ref. |
---|---|---|---|---|---|
Whortleberry or Bilberry (Vaccinium myrtillus L.) | Molecular size of fractions; F1 <10 kDa, F2 10–100 kDa, F3 >100 kDa CJ | CI of S. mutans IH 113728 A. naeslundii AHP 28639, AHP 28651 F. nucleatum AHN 23952, AHN 23937 | 48 mg/g of SS Inhibition of aggregation and reversal activity | F2 of bilberry juice 100% | [194] |
Neem (Azadirachta indica A. Juss.) | AE | S. sobrinus ATCC 27607 S. mutans ATCC 25175 S. cricetus ATCC 19642 S. sanguis H7PR3 | 250 µg/mL Bacterial aggregation | Microscopically observable bacterial aggregation | [197] |
Red Wine Grape (Vitis Vinifera L.), and its pomace | Gallic acid Catechin Epicatechin Procyanidin B1 Procyanidin B2 Resveratrol | S. mutans UA159 | 62.5 µg/mL Inhibition of GTF B and C activities | 70%–85% | [195] |
Green tea and black tea (Camellia sinensis (L.) Kuntze), and polyphenol mixtures | Theaflavin: its mono- and digallates (+)-catechin (−)-epicatechin and their enantiomers Epigallocatechin (−)-gallocatechin HAE | S. mutans OMZ 176 | Theaflavin 1–10 mM Inhibition of GTF activities | significant inhibition | [193] |
Leaves of Oolong tea (Camellia sinensis (L.) Kuntze) | Oolong tea polyphenol OTF6 (polymeric polyphenol) EE | S. mutans MT8148R | 60–850 µg/mL rGTFs (rGTFB, rGTFD, rGTFC) synthesis inhibition | 50% | [197] |
Rock cinquefoil (Drymocallis rupestris (L.) Sojak) | PRU2 PRU TAC 155 mg/g TPC 4.6 mg/g TFC 10.2 mg/g | S. mutans CAPM 6067 S. sobrinus CAPM 6070, DSM 20381, downei CCUG 21020 S. sanguis ATCC 10556 | 0.75–1.5 mg/mL PRU and PRU2 Inhibition of GTF activities | 60% | [198] |
Apple (Malus domestica Borkh.) | Apple condensed tannins (ACT) Apple PP and apple juice | S. mutans MT 8148 (serotype C) S. sobrinus 6715 (serotype G) | 1.5–5 μg/mL ACT Inhibition of GTF activities | 50% | [80] |
Hop (Humulus lupulus L.) | High MW PP 36,000–40,000 AEE | S. mutans MT 8148 (serotype C) S. sobrinus ATCC 33478 (serotype G) | 0.1% Inhibition of GTF activities | significant effect | [199] |
Cranberry (Vaccinium macrocarpon Aiton) | FLAV A PAC | S. mutans UA159 | PAC; 500 µg/mL FLAV; 125 µg/mL A; 200 µg/mL Inhibition of GTF B and C activities | FLAV, PAC or in combination 30%–60% | [84] |
Cranberry (Vaccinium macrocarpon Aiton) | High MW non-dialysable material (NDM) CJ | S. sobrinus 6715 | 2 mg/mL Inhibition of GTF, FTF activities, 1 h incubation | GTF 20% FTF 40% | [115] |
Cranberry (Vaccinium macrocarpon Aiton) | Low MW PP | S. mutans UA 159 | 500 µM/L Reduction of glucan synthesis by GTFB, GTFC | Quercetin-3-arabinofuranoside + procyanidin A2 45% | [191] |
Beard lichen (Usnea longissima Ach.) | Herbo-metallic preparations | S. mutans | 5%–15% Inhibition of violacein production | Partial QS inhibition | [196] |
Indian gooseberry (Emblica Officinalis L.) | Crude and EF | S. mutans MTCC 497 | QS inhibition (suppression of comDE), glucan synthesis reduction | [173] | |
Marupá (Eleutherine americana Merr.) Rose myrtle (Rhodomyrtus tomentosa (Aiton) Hassk. | CE of different extractive solvents | CI of S. pyogenes and NPRC109 | 250 mg/mL QS inhibition | Partial to strong inhibition; R. tomentosa | [90] |
3. Conclusions and Prospects
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Toit, M.D.; Huch, M.; Cho, G.S.; Franz, C.M. The family streptococcaceae. In Lactic Acid Bacteria: Biodiversity and Taxonomy, 1st ed.; Holzapfel, W.H., Wood, B.J.B., Eds.; John Wiley & Sons, Ltd.: New York, NY, USA, 2014; pp. 445–446. [Google Scholar]
- Shi, E. Flesh-Eating Bacteria: Various Strains and Virulence. Personal communication, University of California: Davis, CA, USA, 2009. [Google Scholar]
- Hayes, C.S.; Williamson, H., Jr. Management of group a beta-hemolytic streptococcal pharyngitis. Am. Fam. Phys. 2001, 63, 1557–1565. [Google Scholar]
- Baron, S.; Davis, C.P. Normal flora. In Medical Microbiology, 4th ed.; Baron, S., Ed.; University of Texas Medical Branch: Galveston, TX, USA, 1996. [Google Scholar]
- Mitchell, T.J. The pathogenesis of streptococcal infections: From tooth decay to meningitis. Nat. Rev. Microbiol. 2003, 1, 219–230. [Google Scholar] [CrossRef] [PubMed]
- Nobbs, A.H.; Lamont, R.J.; Jenkinson, H.F. Streptococcus adherence and colonization. Microbiol. Mol. Biol. Rev. 2009, 73, 407–450. [Google Scholar] [CrossRef] [PubMed]
- Patterson, M.J. Streptococcus. In Medical Microbiology, 4th ed.; Baron, S., Ed.; University of Texas Medical Branch: Galveston, TX, USA, 1996. [Google Scholar]
- Facklam, R.F.; Martin, D.R.; Marguerite, L.; Dwight, R.J.; Efstratiou, A.; Thompson, T.A.; Gowan, S.; Kriz, P.; Tyrrell, G.J.; Kaplan, E. Extension of the lancefield classification for group a streptococci by addition of 22 new m protein gene sequence types from clinical isolates: Emm103 to emm124. Clin. Infect. Dis. 2002, 34, 28–38. [Google Scholar] [CrossRef] [PubMed]
- Public Health Agency of Canada. Available online: http://www.Phac-aspc.Gc.Ca/lab-bio/res/psds-ftss/streptococcus-agalactiae-eng.Php#footnote2 (accessed on 29 January 2015).
- Zapun, A.; Vernet, T.; Pinho, M.G. The different shapes of cocci. FEMS Microbiol. Rev. 2008, 32, 345–360. [Google Scholar] [CrossRef] [PubMed]
- Petersen, P.E.; Bourgeois, D.; Ogawa, H.; Estupinan-Day, S.; Ndiaye, C. The global burden of oral diseases and risks to oral health. Bull. World Health Organ. 2005, 83, 661–669. [Google Scholar] [PubMed]
- Matsui, R.; Cvitkovitch, D. Acid tolerance mechanisms utilized by Streptococcus mutans. Future Microbiol. 2010, 5, 403–417. [Google Scholar] [CrossRef] [PubMed]
- Stevens, D.L. Streptococcal toxic-shock syndrome: Spectrum of disease, pathogenesis, and new concepts in treatment. Emerg. Infect. Dis. 1995, 1, 69–78. [Google Scholar] [CrossRef] [PubMed]
- Carapetis, J.R.; Steer, A.C.; Mulholland, E.K.; Weber, M. The global burden of group a streptococcal diseases. Lancet Infect. Dis. 2005, 5, 685–694. [Google Scholar] [CrossRef]
- Torralba, K.D.; Quismorio, F.P. Soft tissue infections. Rheum. Dis. Clin. N. Am. 2009, 35, 45–62. [Google Scholar] [CrossRef] [PubMed]
- Guarner, J.; Sumner, J.; Paddock, C.D.; Shieh, W.-J.; Greer, P.W.; Reagan, S.; Fischer, M.; van Beneden, C.A.; Zaki, S.R. Diagnosis of invasive group a streptococcal infections by using immunohistochemical and molecular assays. Am. J. Clin. Pathol. 2006, 126, 148–155. [Google Scholar] [CrossRef] [PubMed]
- Sherris, J.C.; Ray, C.G. An Introduction to Infectious Diseases. In Medical Microbiology, 2nd ed.; Sherris, J.C., Ed.; Elsevier Science Publishing Co.: New York, NY, USA, 1990; pp. 149–169. [Google Scholar]
- Public Health Agency of Canada. Available online: http://www.Phac-aspc.Gc.Ca/lab-bio/res/psds-ftss/streptococcus-agalactiae-eng.Php (accessed on 29 January 2015).
- Kothari, N.J.; Morin, C.A.; Glennen, A.; Jackson, D.; Harper, J.; Schrag, S.J.; Lynfield, R. Invasive group b streptococcal disease in the elderly, Minnesota, USA, 2003–2007. Emerg. Infect. Dis. 2009, 15, 1279–1281. [Google Scholar] [CrossRef] [PubMed]
- WHO. Pneumococcal conjugate vaccine for childhood immunization. Wkly. Epidemiol. Rec. 2007, 82, 93–104. [Google Scholar]
- O’Brien, K.L.; Wolfson, L.J.; Watt, J.P.; Henkle, E.; Deloria-Knoll, M.; McCall, N.; Lee, E.; Mulholland, K.; Levine, O.S.; Cherian, T. Burden of disease caused by Streptococcus pneumoniae in children younger than 5 years: Global estimates. Lancet 2009, 374, 893–902. [Google Scholar] [CrossRef]
- Martens, P.; Worm, S.W.; Lundgren, B.; Konradsen, H.B.; Benfield, T. Serotype-specific mortality from invasive Streptococcus pneumoniae disease revisited. BMC Infect. Dis. 2004, 4, 21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, S.S.; Johnson, K.M.; Ray, G.T.; Wroe, P.; Lieu, T.A.; Moore, M.R.; Zell, E.R.; Linder, J.A.; Grijalva, C.G.; Metlay, J.P. Healthcare utilization and cost of pneumococcal disease in the united states. Vaccine 2011, 29, 3398–3412. [Google Scholar] [CrossRef] [PubMed]
- Bisno, A.; Brito, M.; Collins, C. Molecular basis of group a streptococcal virulence. Lancet Infect. Dis. 2003, 3, 191–200. [Google Scholar] [CrossRef]
- Cunningham, M.W. Pathogenesis of group a streptococcal infections. Clin. Microbiol. Rev. 2000, 13, 470–511. [Google Scholar] [CrossRef] [PubMed]
- Ferretti, J.J.; McShan, W.M.; Ajdic, D.; Savic, D.J.; Savic, G.; Lyon, K.; Primeaux, C.; Sezate, S.; Suvorov, A.N.; Kenton, S. Complete genome sequence of an M1 strain of Streptococcus pyogenes. Proc. Natl. Acad. Sci. USA 2001, 98, 4658–4663. [Google Scholar] [CrossRef] [PubMed]
- Frieden, T. Antibiotic Resistance Threats in the United States; Centers for Disease Control and Prevention: Atlanta, GA, USA, 2013; pp. 11–93. [Google Scholar]
- Dajani, A.; Taubert, K.; Ferrieri, P.; Peter, G.; Shulman, S. Treatment of acute streptococcal pharyngitis and prevention of rheumatic fever: A statement for health professionals. Pediatrics 1995, 96, 758–764. [Google Scholar] [PubMed]
- Kreikemeyer, B.; McIver, K.S.; Podbielski, A. Virulence factor regulation and regulatory networks in Streptococcus pyogenes and their impact on pathogen–host interactions. Trends Microbiol. 2003, 11, 224–232. [Google Scholar] [CrossRef]
- Nizet, V.; Rubens, C.E. Pathogenic mechanisms and virulence factors of group b streptococci. In Gram-Positive Pathogens; ASM Press: Washington, DC, USA, 2000; pp. 125–136. [Google Scholar]
- Jedrzejas, M.J. Pneumococcal virulence factors: Structure and function. Microbiol. Mol. Biol. Rev. 2001, 65, 187–207. [Google Scholar] [CrossRef] [PubMed]
- Schrag, S.J.; Zywicki, S.; Farley, M.M.; Reingold, A.L.; Harrison, L.H.; Lefkowitz, L.B.; Hadler, J.L.; Danila, R.; Cieslak, P.R.; Schuchat, A. Group b streptococcal disease in the era of intrapartum antibiotic prophylaxis. N. Engl. J. Med. 2000, 342, 15–20. [Google Scholar] [CrossRef] [PubMed]
- Aljicevic, M.; Karcic, E.; Bektas, S.; Karcic, B. Representation of Streptococcus pneumoniae in outpatient population of sarajevo canton. Med. Arch. 2015, 69, 177–180. [Google Scholar] [CrossRef] [PubMed]
- Moscoso, M.; García, E.; López, R. Biofilm formation by Streptococcus pneumoniae: Role of choline, extracellular DNA, and capsular polysaccharide in microbial accretion. J. Bacteriol. 2006, 188, 7785–7795. [Google Scholar] [CrossRef] [PubMed]
- Hasty, D.; Ofek, I.; Courtney, H.; Doyle, R. Multiple adhesins of streptococci. Infect. Immun. 1992, 60, 2147–2152. [Google Scholar] [PubMed]
- Hall-Stoodley, L.; Costerton, J.W.; Stoodley, P. Bacterial biofilms: From the natural environment to infectious diseases. Nat. Rev. Microbiol. 2004, 2, 95–108. [Google Scholar] [CrossRef] [PubMed]
- Akiyama, H.; Morizane, S.; Yamasaki, O.; Oono, T.; Iwatsuki, K. Assessment of Streptococcus pyogenes microcolony formation in infected skin by confocal laser scanning microscopy. J. Dermatol. Sci. 2003, 32, 193–199. [Google Scholar] [CrossRef]
- Davey, M.E.; O’toole, G.A. Microbial biofilms: From ecology to molecular genetics. Microbiol. Mol. Biol. Rev. 2000, 64, 847–867. [Google Scholar] [CrossRef] [PubMed]
- Lemon, K.; Earl, A.; Vlamakis, H.; Aguilar, C.; Kolter, R. Biofilm development with an emphasis on bacillus subtilis. In Bacterial Biofilms; Springer: New York, NY, USA, 2008; pp. 1–16. [Google Scholar]
- O’Toole, G.A.; Kolter, R. Initiation of biofilm formation in pseudomonas fluorescens wcs365 proceeds via multiple, convergent signalling pathways: A genetic analysis. Mol. Microbiol. 1998, 28, 449–461. [Google Scholar] [CrossRef] [PubMed]
- Cvitkovitch, D.G.; Li, Y.H.; Ellen, R.P. Quorum sensing and biofilm formation in streptococcal infections. J. Clin. Investig. 2003, 112, 1626–1632. [Google Scholar] [CrossRef] [PubMed]
- Fux, C.; Costerton, J.; Stewart, P.; Stoodley, P. Survival strategies of infectious biofilms. Trends Microbiol. 2005, 13, 34–40. [Google Scholar] [CrossRef] [PubMed]
- Götz, F. Staphylococcus and biofilms. Mol. Microbiol. 2002, 43, 1367–1378. [Google Scholar] [CrossRef] [PubMed]
- Navarre, W.W.; Schneewind, O. Surface proteins of gram-positive bacteria and mechanisms of their targeting to the cell wall envelope. Microbiol. Mol. Biol. Rev. 1999, 63, 174–229. [Google Scholar] [PubMed]
- Lewis, K. Persister cells, dormancy and infectious disease. Nat. Rev. Microbiol. 2007, 5, 48–56. [Google Scholar] [CrossRef] [PubMed]
- Domenech, M.; García, E.; Moscoso, M. Biofilm formation in Streptococcus pneumoniae. Microb. Biotechnol. 2012, 5, 455–465. [Google Scholar] [CrossRef] [PubMed]
- Lewis, K. Multidrug tolerance of biofilms and persister cells. In Bacterial Biofilms, 1st ed.; Romeo, T., Ed.; Springer Berlin Heidelberg: Heidelberg, Germany, 2008; pp. 107–131. [Google Scholar]
- Chen, L.; Wen, Y.-M. The role of bacterial biofilm in persistent infections and control strategies. Int. J. Oral Sci. 2011, 3, 66–73. [Google Scholar] [CrossRef] [PubMed]
- Gibbons, R.J. Bacterial adhesion to oral tissues: A model for infectious diseases. J. Dent. Res. 1989, 68, 750–760. [Google Scholar] [CrossRef] [PubMed]
- Whittaker, C.J.; Klier, C.M.; Kolenbrander, P.E. Mechanisms of adhesion by oral bacteria. Ann. Rev. Microbiol. 1996, 50, 513–552. [Google Scholar] [CrossRef] [PubMed]
- Starr, C.R.; Engleberg, N.C. Role of hyaluronidase in subcutaneous spread and growth of group a streptococcus. Infect. Immun. 2006, 74, 40–48. [Google Scholar] [CrossRef] [PubMed]
- Fischetti, V.A. Streptococcal M protein: Molecular design and biological behavior. Clin. Microbiol. Rev. 1989, 2, 285–314. [Google Scholar] [CrossRef] [PubMed]
- Manetti, A.G.; Zingaretti, C.; Falugi, F.; Capo, S.; Bombaci, M.; Bagnoli, F.; Gambellini, G.; Bensi, G.; Mora, M.; Edwards, A.M. Streptococcus pyogenes pili promote pharyngeal cell adhesion and biofilm formation. Mol. Microbiol. 2007, 64, 968–983. [Google Scholar] [CrossRef] [PubMed]
- Lachica, R.; Zink, D. Plasmid-associated cell surface charge and hydrophobicity of yersinia enterocolitica. Infect. Immun. 1984, 44, 540–543. [Google Scholar] [PubMed]
- Tylewska, S.; Hjerten, S.; Wadström, T. Effect of subinhibitory concentrations of antibiotics on the adhesion of Streptococcus pyogenes to pharyngeal epithelial cells. Antimicrob. Agents Chemother. 1981, 20, 563–566. [Google Scholar] [CrossRef] [PubMed]
- Miörner, H.; Johansson, G.; Kronvall, G. Lipoteichoic acid is the major cell wall component responsible for surface hydrophobicity of group a streptococci. Infect. Immun. 1983, 39, 336–343. [Google Scholar] [PubMed]
- Westergren, G.; Olsson, J. Hydrophobicity and adherence of oral streptococci after repeated subculture in vitro. Infect. Immun. 1983, 40, 432–435. [Google Scholar] [PubMed]
- Wibawan, I.W.T.; Lämmler, C.; Pasaribu, F.H. Role of hydrophobic surface proteins in mediating adherence of group b streptococci to epithelial cells. J. Gen. Microbiol. 1992, 138, 1237–1242. [Google Scholar] [CrossRef] [PubMed]
- Wadström, T.; Schmidt, K.H.; Kühnemund, O.; Havlícek, J.; Köhler, W. Comparative studies on surface hydrophobicity of streptococcal strains of groups a, b, c, d and g. J. Gen. Microbiol. 1984, 130, 657–664. [Google Scholar] [CrossRef] [PubMed]
- Doyle, R.J. Contribution of the hydrophobic effect to microbial infection. Microbes Infect. 2000, 2, 391–400. [Google Scholar] [CrossRef]
- Cotter, P.D.; Hill, C. Surviving the acid test: Responses of gram-positive bacteria to low ph. Microbiol. Mol. Biol. Rev. 2003, 67, 429–453. [Google Scholar] [CrossRef] [PubMed]
- Kuhnert, W.L.; Quivey, R.G., Jr. Genetic and biochemical characterization of the F-ATPase operon from Streptococcus sanguis 10904. J. Bacteriol. 2003, 185, 1525–1533. [Google Scholar] [CrossRef] [PubMed]
- Martinez, A.R.; Abranches, J.; Kajfasz, J.K.; Lemos, J.A. Characterization of the Streptococcus sobrinus acid-stress response by interspecies microarrays and proteomics. Mol. Oral Microbiol. 2010, 25, 331–342. [Google Scholar] [CrossRef] [PubMed]
- Ofek, I.; Doyle, R.J. Bacterial Adhesion to Cells and Tissues, 1st ed.; Chapman and Hall Inc.: New York, NY, USA, 1994; Volume 735, pp. 136–170. [Google Scholar]
- Manson, M.D.; Tedesco, P.; Berg, H.C.; Harold, F.M.; van der Drift, C. A protonmotive force drives bacterial flagella. Proc. Natl. Acad. Sci. USA 1977, 74, 3060–3064. [Google Scholar] [CrossRef] [PubMed]
- Kakinuma, Y. Inorganic cation transport and energy transduction in enterococcus hirae and other streptococci. Microbiol. Mol. Biol. Rev. 1998, 62, 1021–1045. [Google Scholar] [PubMed]
- Futai, M.; Noumi, T.; Maeda, M. Atp synthase (H+-ATPase): Results by combined biochemical and molecular biological approaches. Ann. Rev. Biochem. 1989, 58, 111–136. [Google Scholar] [CrossRef] [PubMed]
- Bender, G.R.; Sutton, S.V.; Marquis, R.E. Acid tolerance, proton permeabilities, and membrane atpases of oral streptococci. Infect. Immun. 1986, 53, 331–338. [Google Scholar] [PubMed]
- Vadeboncoeur, C.; Pelletier, M. The phosphoenolpyruvate: Sugar phosphotransferase system of oral streptococci and its role in the control of sugar metabolism. FEMS Microbiol. Rev. 1997, 19, 187–207. [Google Scholar] [CrossRef] [PubMed]
- Denda, K.; Konishi, J.; Hajiro, K.; Oshima, T.; Date, T.; Yoshida, M. Structure of an atpase operon of an acidothermophilic archaebacterium, sulfolobus acidocaldarius. J. Biol. Chem. 1990, 265, 21509–21513. [Google Scholar] [PubMed]
- Quivey, R.G.; Kuhnert, W.L.; Hahn, K. Genetics of acid adaptation in oral streptococci. Crit. Rev. Oral Biol. Med. 2001, 12, 301–314. [Google Scholar] [CrossRef] [PubMed]
- Kuramitsu, H.K. Virulence factors of mutans streptococci: Role of molecular genetics. Crit. Rev. Oral Biol. Med. 1993, 4, 159–176. [Google Scholar] [PubMed]
- Yamashita, Y.; Bowen, W.H.; Burne, R.A.; Kuramitsu, H.K. Role of the Streptococcus mutans gtf genes in caries induction in the specific-pathogen-free rat model. Infect. Immun. 1993, 61, 3811–3817. [Google Scholar] [PubMed]
- Bowen, W.H. Do we need to be concerned about dental caries in the coming millennium? Crit. Rev. Oral Biol. Med. 2002, 13, 126–131. [Google Scholar] [CrossRef] [PubMed]
- Schilling, K.M.; Bowen, W.H. Glucans synthesized in situ in experimental salivary pellicle function as specific binding sites for Streptococcus mutans. Infect. Immun. 1992, 60, 284–295. [Google Scholar] [PubMed]
- Sturr, M.G.; Marquis, R.E. Comparative acid tolerances and inhibitor sensitivities of isolated f-atpases of oral lactic acid bacteria. Appl. Environ. Microbiol. 1992, 58, 2287–2291. [Google Scholar] [PubMed]
- Quivey, R.G.; Faustoferri, R.; Monahan, K.; Marquis, R. Shifts in membrane fatty acid profiles associated with acid adaptation of Streptococcus mutans. FEMS Microbiol. Lett. 2000, 189, 89–92. [Google Scholar] [CrossRef] [PubMed]
- Pedersen, P.L.; Amzel, L.M. Atp synthases. Structure, reaction center, mechanism, and regulation of one of nature’s most unique machines. J. Biol. Chem. 1993, 268, 9937–9940. [Google Scholar] [PubMed]
- Higuchi, M.; Yamamoto, Y.; Poole, L.B.; Shimada, M.; Sato, Y.; Takahashi, N.; Kamio, Y. Functions of two types of nadh oxidases in energy metabolism and oxidative stress of Streptococcus mutans. J. Bacteriol. 1999, 181, 5940–5947. [Google Scholar] [PubMed]
- Yanagida, A.; Kanda, T.; Tanabe, M.; Matsudaira, F.; Oliveira Cordeiro, J.G. Inhibitory effects of apple polyphenols and related compounds on cariogenic factors of mutans streptococci. J. Agric. Food Chem. 2000, 48, 5666–5671. [Google Scholar] [CrossRef] [PubMed]
- Matsumoto, M.; Hamada, S.; Ooshima, T. Molecular analysis of the inhibitory effects of oolong tea polyphenols on glucan-binding domain of recombinant glucosyltransferases from Streptococcus mutans mt8148. FEMS Microbiol. Lett. 2003, 228, 73–80. [Google Scholar] [CrossRef]
- Hanada, N.; Kuramitsu, H.K. Isolation and characterization of the Streptococcus mutans gtfd gene, coding for primer-dependent soluble glucan synthesis. Infect. Immun. 1989, 57, 2079–2085. [Google Scholar] [PubMed]
- Bowen, W.; Koo, H. Biology of Streptococcus mutans-derived glucosyltransferases: Role in extracellular matrix formation of cariogenic biofilms. Caries Res. 2011, 45, 69–86. [Google Scholar] [CrossRef] [PubMed]
- Duarte, S.; Gregoire, S.; Singh, A.P.; Vorsa, N.; Schaich, K.; Bowen, W.H.; Koo, H. Inhibitory effects of cranberry polyphenols on formation and acidogenicity of Streptococcus mutans biofilms. FEMS Microbiol. Lett. 2006, 257, 50–56. [Google Scholar] [CrossRef] [PubMed]
- Suntharalingam, P.; Cvitkovitchemail, D.G. Quorum sensing in streptococcal biofilm formation. Trends Microbiol. 2005, 13, 3–6. [Google Scholar] [CrossRef] [PubMed]
- Jiang, S.M.; Cieslewicz, M.J.; Kasper, D.L.; Wessels, M.R. Regulation of virulence by a two-component system in group b streptococcus. J. Bacteriol. 2005, 187, 1105–1113. [Google Scholar] [CrossRef] [PubMed]
- Jimenez, J.C.; Federle, M.J. Quorum sensing in group a streptococcus. Front. Cell. Infect. Microbiol. 2014, 4. [Google Scholar] [CrossRef] [PubMed]
- Cook, L.C.; LaSarre, B.; Federle, M.J. Interspecies communication among commensal and pathogenic streptococci. MBio 2013, 4, e00382–e00313. [Google Scholar] [CrossRef] [PubMed]
- Donlan, R.M. Biofilms: Microbial life on surfaces. Emerg. Infect. Dis. 2002, 8, 881–890. [Google Scholar] [CrossRef] [PubMed]
- Limsuwan, S.; Voravuthikunchai, S.P. Boesenbergia pandurata (ROXB.) schltr., eleutherine americana merr. And rhodomyrtus tomentosa (aiton) hassk. As antibiofilm producing and antiquorum sensing in Streptococcus pyogenes. FEMS Immunol. Med. Microbiol. 2008, 53, 429–436. [Google Scholar] [CrossRef] [PubMed]
- Nazzaro, F.; Fratianni, F.; Coppola, R. Quorum sensing and phytochemicals. Int. J. Mol. Sci. 2013, 14, 12607–12619. [Google Scholar] [CrossRef] [PubMed]
- Kaur, G.; Rajesh, S.; Princy, S.A. Plausible drug targets in the Streptococcus mutans quorum sensing pathways to combat dental biofilms and associated risks. Indian J. Microbiol. 2015, 55, 349–356. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.H.; Tian, X. Quorum sensing and bacterial social interactions in biofilms. Sensors 2012, 12, 2519–2538. [Google Scholar] [CrossRef] [PubMed]
- Marcy, S.M. Treatment options for streptococcal pharyngitis. Clin. Pediatr. 2007, 46, 36S–45S. [Google Scholar] [CrossRef]
- Stevens, D.L.; Bisno, A.L.; Chambers, H.F.; Dellinger, E.P.; Goldstein, E.J.; Gorbach, S.L.; Hirschmann, J.V.; Kaplan, S.L.; Montoya, J.G.; Wade, J.C. Practice guidelines for the diagnosis and management of skin and soft tissue infections: 2014 update by the infectious diseases society of america. Clin. Infect. Dis. 2014, 59, e10–e52. [Google Scholar] [CrossRef] [PubMed]
- Ciofu, O.; Giwercman, B.; HØIBY, N.; Pedersen, S.S. Development of antibiotic resistance in pseudomonas aeruginosa during two decades of antipseudomonal treatment at the danish cf center. Apmis 1994, 102, 674–680. [Google Scholar] [CrossRef] [PubMed]
- Benzie, I.F.F.; Wachtel-Galor, S. Herbal Medicine: Biomolecular and Clinical Aspects, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2011; pp. 1–500. [Google Scholar]
- Savoia, D. Plant-derived antimicrobial compounds: Alternatives to antibiotics. Future Microbiol. 2012, 7, 979–990. [Google Scholar] [CrossRef] [PubMed]
- Clair, S. Arnica: A proven first aid remedy for injuries and accidents. J. N. Zeal. Assoc. Med. Herbal. 2010, 12–13. [Google Scholar]
- Shang, X.; Pan, H.; Li, M.; Miao, X.; Ding, H. Lonicera japonica thunb.: Ethnopharmacology, phytochemistry and pharmacology of an important traditional chinese medicine. J. Ethnopharmacol. 2011, 138, 1–21. [Google Scholar] [CrossRef] [PubMed]
- Yarnell, E.; Abascal, K.; Hooper, C.G. Chronic sinusitis. Altern. Complement. Ther. 2003, 9, 39–41. [Google Scholar] [CrossRef] [PubMed]
- Mathieu, G.; Meissa, D. Traditional leafy vegetables in senegal: Diversity and medicinal uses. Afr. J. Tradit. Complement. Altern. Med. 2008, 4, 469–475. [Google Scholar]
- Konan, N.A.; Bacchi, E.M.; Lincopan, N.; Varela, S.D.; Varanda, E.A. Acute, subacute toxicity and genotoxic effect of a hydroethanolic extract of the cashew (Anacardium occidentale L.). J. Ethnopharmacol. 2007, 110, 30–38. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Ooi, L.S.; Wang, H.; But, P.P.; Ooi, V.E. Antiviral activities of medicinal herbs traditionally used in southern mainland china. Phytother. Res. 2004, 18, 718–722. [Google Scholar] [CrossRef] [PubMed]
- Smullen, J.; Koutsou, G.; Foster, H.; Zumbé, A.; Storey, D. The antibacterial activity of plant extracts containing polyphenols against Streptococcus mutans. Caries Res. 2007, 41, 342–349. [Google Scholar] [CrossRef] [PubMed]
- Berahou, A.; Auhmani, A.; Fdil, N.; Benharref, A.; Jana, M.; Gadhi, C. Antibacterial activity of quercus ilex bark’s extracts. J. Ethnopharmacol. 2007, 112, 426–429. [Google Scholar] [CrossRef] [PubMed]
- Fabio, A.; Cermelli, C.; Fabio, G.; Nicoletti, P.; Quaglio, P. Screening of the antibacterial effects of a variety of essential oils on microorganisms responsible for respiratory infections. PTR Phytother. Res. 2007, 21, 374–377. [Google Scholar] [CrossRef] [PubMed]
- Ordoñez, A.; Gomez, J.; Cudmani, N.; Vattuone, M.; Isla, M. Antimicrobial activity of nine extracts of sechium edule (jacq.) swartz. Microb. Ecol. Health Dis. 2003, 15, 33–39. [Google Scholar] [CrossRef]
- Nair, R.; Chanda, S. Activity of some medicinal plants against certain pathogenic bacterial strains. Indian J. Pharmacol. 2006, 38, 142–144. [Google Scholar]
- Das, M.; Dhanabalan, R.; Doss, A. In vitro antibacterial activity of two medicinal plants against bovine udder isolated bacterial pathogens from dairy herds. Ethnobot. Leafl. 2009, 2009, 152–158. [Google Scholar]
- Kamble, M.T.; Gallardo, W.; Yakuitiyage, A.; Chavan, B.R.; Rusydi, R.; Rahma, A. Antimicrobial activity of bioactive herbal extracts against Streptococcus agalactiae biotype 2. Int. J. Basis Appl. Biol. 2014, 2, 152–155. [Google Scholar]
- Toivanen, M.; Huttunen, S.; Duricová, J.; Soininen, P.; Laatikainen, R.; Loimaranta, V.; Haataja, S.; Finne, J.; Lapinjoki, S.; Tikkanen-Kaukanen, C. Screening of binding activity of Streptococcus pneumoniae, Streptococcus agalactiae and Streptococcus suis to berries and juices. PTR Phytother. Res. 2010, 24, S95–S101. [Google Scholar] [CrossRef] [PubMed]
- Nguelefack, E.M.; Ngu, K.B.; Atchade, A.; Dimo, T.; Tsabang, N.; Mbafor, J.T. Phytochemical composition and in vitro effects of the ethyl acetate bark extract of distemonanthus benthamianus baillon (caesalpiniaceae) on Staphylococcus aureus and Streptococcus agalactiae. Cameroon J. Exp. Biol. 2006, 1, 50–53. [Google Scholar] [CrossRef]
- Karmakar, U.K.; Biswas, S.K.; Chowdhury, A.; Raihan, S.Z.; Akbar, M.A.; Muhit, M.A.; Mowla, R. Phytochemical investigation and evaluation of antibacterial and antioxidant potentials of asparagus racemosus. Int. J. Pharmacol. 2012, 8, 53–57. [Google Scholar]
- Steinberg, D.; Feldman, M.; Ofek, I.; Weiss, E.I. Effect of a high-molecular-weight component of cranberry on constituents of dental biofilm. J. Antimicrob. Chemother. 2004, 54, 86–89. [Google Scholar] [CrossRef] [PubMed]
- Nostro, A.; Cannatelli, M.A.; Crisafi, G.; Musolino, A.D.; Procopio, F.; Alonzo, V. Modifications of hydrophobicity, in vitro adherence and cellular aggregation of Streptococcus mutans by Helichrysum italicum extract. LAM Lett. Appl. Microbiol. 2004, 38, 423–427. [Google Scholar] [CrossRef] [PubMed]
- Yamanaka, A.; Kimizuka, R.; Kato, T.; Okuda, K. Inhibitory effects of cranberry juice on attachment of oral streptococci and biofilm formation. Oral Microbiol. Immunol. 2004, 19, 150–154. [Google Scholar] [CrossRef] [PubMed]
- Khare, C.P. Indian Medicinal Plants: An Illustrated Dictionary, 1st ed.; Khare, C.P., Ed.; Springer Science & Business Media: New York, NY, USA, 2008; pp. 25–27. [Google Scholar]
- Cavero, R.; Calvo, M. Medicinal plants used for respiratory affections in navarra and their pharmacological validation. J. Ethnopharmacol. 2014, 158, 216–220. [Google Scholar] [CrossRef] [PubMed]
- Cornu, C.; Joseph, P.; Gaillard, S.; Bauer, C.; Vedrinne, C.; Bissery, A.; Melot, G.; Bossard, N.; Belon, P.; Lehot, J.J. No effect of a homoeopathic combination of Arnica montana and Bryonia alba on bleeding, inflammation, and ischaemia after aortic valve surgery. Br. J. Clin. Pharmacol. 2010, 69, 136–142. [Google Scholar] [CrossRef] [PubMed]
- Ashu Agbor, M.; Naidoo, S. Ethnomedicinal plants used by traditional healers to treat oral health problems in cameroon. Evid. Based Complement. Altern. Med. 2015, 2015, 649832. [Google Scholar] [CrossRef] [PubMed]
- Monte, A.; Kabir, M.; Cook, J.; Rott, M.; Schwan, W.; Defoe, L. Anti-Infective Agents and Methods of Use. U.S. Patents US20060089415 A1, 27 April 2006. [Google Scholar]
- Lim, T.K. Parmentiera cereifera. In Edible Medicinal and Non-Medicinal Plants, 1st ed.; Fruits. Springer: Dordrecht, The Netherlands, 2012; pp. 510–514. [Google Scholar]
- Locher, C.; Burch, M.; Mower, H.; Berestecky, J.; Davis, H.; van Poel, B.; Lasure, A.; Berghe, D.V.; Vlietinck, A. Anti-microbial activity and anti-complement activity of extracts obtained from selected hawaiian medicinal plants. J. Ethnopharmacol. 1995, 49, 23–32. [Google Scholar] [CrossRef]
- Omojasola, P.; Awe, S. The antibacterial activity of the leaf extracts of anacardium occidentale and gossypium hirsutum against some selected microorganisms. Biosci. Res. Commun. 2004, 60, 25–58. [Google Scholar]
- James, O.; Godwin, E.U.; Otini, I.G. In vivo neutralization of naja nigricollis venom by uvaria chamae. Am. J. Biochem. Biotechnol. 2013, 9, 224–234. [Google Scholar] [CrossRef]
- Ogbulie, J.; Ogueke, C.; Nwanebu, F. Antibacterial properties of uvaria chamae, congronema latifolium, garcinia kola, vemonia amygdalina and aframomium melegueta. Afr. J. Biotechnol. 2007, 6, 1549–1553. [Google Scholar]
- Wickens, G.E. The uses of the baobab (Adansonia digitata L.) in Africa. In Taxonomic Aspects of African Economic Botany, 1st ed.; Kunkel, G., Ed.; AETFAT: Las Palmas de Gran Canaria, Spain, 1979; pp. 27–34. [Google Scholar]
- Hebbar, S.; Harsha, V.; Shripathi, V.; Hegde, G. Ethnomedicine of dharwad district in karnataka, india—plants used in oral health care. J. Ethnopharmacol. 2004, 94, 261–266. [Google Scholar] [CrossRef] [PubMed]
- Sezik, E.; Yeşilada, E.; Honda, G.; Takaishi, Y.; Takeda, Y.; Tanaka, T. Traditional medicine in turkey x. Folk medicine in central anatolia. J. Ethnopharmacol. 2001, 75, 95–115. [Google Scholar] [CrossRef]
- Sezik, E.; Yeşİlada, E.; Tabata, M.; Honda, G.; Takaishi, Y.; Fujita, T.; Tanaka, T.; Takeda, Y. Traditional medicine in turkey viii. Folk medicine in east anatolia; erzurum, erzíncan, ağri, kars, iğdir provinces. Econ. Bot. 1997, 51, 195–211. [Google Scholar] [CrossRef]
- Akinpelu, D.A. Antimicrobial activity of anacardium occidentale bark. Fitoterapia 2001, 72, 286–287. [Google Scholar] [CrossRef]
- Morton, J.F.; Dowling, C.F. In Fruits of Warm Climates, 1st ed.; Morton, J., Ed.; Creative Resource Systems Inc.: Winterville, FL, USA, 1987. [Google Scholar]
- Ganesan, S. Traditional oral care medicinal plants survey of tamil nadu. Nat. Prod. Rad. 2008, 7, 166–172. [Google Scholar]
- Okwu, D.E.; Iroabuchi, F. Phytochemical composition and biological activities of uvaria chamae and clerodendoron splendens. J. Chem. 2009, 6, 553–560. [Google Scholar] [CrossRef]
- Mollik, M.A.H.; Hossan, M.S.; Paul, A.K.; Taufiq-Ur-Rahman, M.; Jahan, R.; Rahmatullah, M. A comparative analysis of medicinal plants used by folk medicinal healers in three districts of bangladesh and inquiry as to mode of selection of medicinal plants. Ethnobot. Res. Appl. 2010, 8, 195–218. [Google Scholar]
- Zhu, S.; Li, W.; Li, J.; Jundoria, A.; Sama, A.E.; Wang, H. It is not just folklore: The aqueous extract of mung bean coat is protective against sepsis. Evid. Based Complement. Altern. Med. 2012, 2012, 498467. [Google Scholar] [CrossRef] [PubMed]
- Chao, W.W.; Kuo, Y.H.; Hsieh, S.L.; Lin, B.F. Inhibitory effects of ethyl acetate extract of andrographis paniculata on nf-κb trans-activation activity and lps-induced acute inflammation in mice. Evid. Based Complement. Altern. Med. 2011, 2011, 254531. [Google Scholar]
- Mohanasundari, C.; Natarajan, D.; Srinivasan, K.; Umamaheswari, S.; Ramachandran, A. Antibacterial properties of Passiflora foetida L.—A common exotic medicinal plant. Afr. J. Biotechnol. 2007, 6, 2650–2653. [Google Scholar]
- Geyid, A.; Abebe, D.; Debella, A.; Makonnen, Z.; Aberra, F.; Teka, F.; Kebede, T.; Urga, K.; Yersaw, K.; Biza, T. Screening of some medicinal plants of ethiopia for their anti-microbial properties and chemical profiles. J. Ethnopharmacol. 2005, 97, 421–427. [Google Scholar] [CrossRef] [PubMed]
- Lim, T.K. Crescentia cujete. In Edible Medicinal and Non-Medicinal Plants, 1st ed.; Fruits. Springer: Dordrecht, The Netherlands, 2012; pp. 480–485. [Google Scholar]
- Akoachere, J.T.; Ndip, R.; Chenwi, E.; Ndip, L.; Njock, T.; Anong, D. Antibacterial effects of zingiber officinale and garcinia kola on respiratory tract pathogens. East Afr. Med. J. 2002, 79, 588–592. [Google Scholar] [CrossRef] [PubMed]
- Farrukh, U.; Shareef, H.; Mahmud, S.; Ali, S.A.; Rizwani, G.H. Antibacterial activities of coccinia grandis l. Pak. J. Bot. 2008, 40, 1259–1262. [Google Scholar]
- Salari, M.; Amine, G.; Shirazi, M.; Hafezi, R.; Mohammadypour, M. Antibacterial effects of eucalyptus globulus leaf extract on pathogenic bacteria isolated from specimens of patients with respiratory tract disorders. Clin. Microbiol. Infect. 2006, 12, 194–196. [Google Scholar] [CrossRef] [PubMed]
- Rashid, F.; Ahmed, R.; Mahmood, A.; Ahmad, Z.; Bibi, N.; Kazmi, S.U. Flavonoid glycosides fromprunus armeniaca and the antibacterial activity of a crude extract. Arch. Pharmacal Res. 2007, 30, 932–937. [Google Scholar] [CrossRef]
- Cichewicz, R.H.; Thorpe, P.A. The antimicrobial properties of chile peppers (capsicum species) and their uses in mayan medicine. J. Ethnopharmacol. 1996, 52, 61–70. [Google Scholar] [CrossRef]
- Prachayasittikul, S.; Suphapong, S.; Worachartcheewan, A.; Lawung, R.; Ruchirawat, S.; Prachayasittikul, V. Bioactive metabolites from spilanthes acmella murr. Molecules 2009, 14, 850–867. [Google Scholar] [CrossRef] [PubMed]
- Antonio, A.G.; Moraes, R.S.; Perrone, D.; Maia, L.C.; Santos, K.R.N.; Iório, N.L.; Farah, A. Species, roasting degree and decaffeination influence the antibacterial activity of coffee against Streptococcus mutans. Food Chem. 2010, 118, 782–788. [Google Scholar] [CrossRef]
- Antonio, A.; Iorio, N.; Pierro, V.; Candreva, M.; Farah, A.; Dos-Santos, K.; Maia, L. Inhibitory properties of coffea canephora extract against oral bacteria and its effect on demineralisation of deciduous teeth. Arch. Oral Biol. 2011, 56, 556–564. [Google Scholar] [CrossRef] [PubMed]
- Vermani, A. Screening of quercus infectoria gall extracts as anti-bacterial agents against dental pathogens. Indian J. Dent. Res. 2009, 20, 337–339. [Google Scholar] [CrossRef] [PubMed]
- Hwang, J.K.; Shim, J.S.; Chung, J.Y. Anticariogenic activity of some tropical medicinal plants against Streptococcus mutans. Fitoterapia 2004, 75, 596–598. [Google Scholar] [CrossRef] [PubMed]
- Almeida, L.S.B.D.; Murata, R.M.; Yatsuda, R.; Dos Santos, M.H.; Nagem, T.J.; Alencar, S.M.D.; Koo, H.; Rosalen, P.L. Antimicrobial activity of rheedia brasiliensis and 7-epiclusianone against Streptococcus mutans. Phytomedicine 2008, 15, 886–891. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Zhou, X.D.; Wu, C.D. The tea catechin epigallocatechin gallate suppresses cariogenic virulence factors of Streptococcus mutans. Antimicrob. Agents Chemother. 2011, 55, 1229–1236. [Google Scholar] [CrossRef] [PubMed]
- Khan, R.; Zakir, M.; Afaq, S.H.; Latif, A.; Khan, A.U. Activity of solvent extracts of prosopis spicigera, zingiber officinale and trachyspermum ammi against multidrug resistant bacterial and fungal strains. J. Infect. Dev. Ctries. 2010, 4, 292–300. [Google Scholar] [CrossRef] [PubMed]
- Khan, R.; Adil, M.; Danishuddin, M.; Verma, P.K.; Khan, A.U. In vitro and in vivo inhibition of Streptococcus mutans biofilm by trachyspermum ammi seeds: An approach of alternative medicine. Phytomedicine 2012, 19, 747–755. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.; Liu, Z.; Ebersole, J.; Huang, C.B. A new antibacterial compound from luo han kuo fruit extract (siraitia grosvenori). J. Asian Natl. Prod. Res. 2009, 11, 761–765. [Google Scholar] [CrossRef] [PubMed]
- Mu, J. Anti-cariogenicity of maceration extract of momordica grosvenori: Laboratory study. Chin. J. Stomatol. 1998, 33, 183–185. [Google Scholar]
- Bernardshaw, S.; Johnson, E.; Hetland, G. An extract of the mushroom agaricus blazei murill administered orally protects against systemic Streptococcus pneumoniae infection in mice. Scand. J. Immunol. 2005, 62, 393–398. [Google Scholar] [CrossRef] [PubMed]
- Hetland, G.; Samuelsen, A.; Loslash, V.; Paulsen, B.; Aaberge, I.; Groeng, E.C.; Michaelsen, T. Protective effect of plantago major l. Pectin polysaccharide against systemic Streptococcus pneumoniae infection in mice. Scand. J. Immunol. 2000, 52, 348–355. [Google Scholar] [CrossRef] [PubMed]
- Koné, W.M.; Atindehou, K.K.; Kacou-N, A.; Dosso, M. Evaluation of 17 medicinal plants from northern cote d’ivoire for their in vitro activity against Streptococcus pneumoniae. Afr. J. Tradit. Complement. Altern. Med. 2007, 4, 17–22. [Google Scholar]
- Tepe, B.; Daferera, D.; Sokmen, A.; Sokmen, M.; Polissiou, M. Antimicrobial and antioxidant activities of the essential oil and various extracts of salvia tomentosa miller (lamiaceae). Food Chem. 2005, 90, 333–340. [Google Scholar] [CrossRef]
- Kuta, F.A.; Ndamitso, M.M.; Ibrahim, H. Antibacterial effect of eucalyptus globulus leaves extract on antibiotic resistant strains of Streptococcus pneumoniae. Appl. Med. Inform. 2008, 22, 52–54. [Google Scholar]
- Kuta, F.; Damisa, D.; Adamu, A.; Nwoha, E.; Bello, I. Antibacterial activity of euphorbia hirta against Streptococcus pneumoniae, klebsiella pneumoniae and proteus vulgaris. Bayero J. Pure Appl. Sci. 2014, 6, 65–68. [Google Scholar] [CrossRef]
- Janecki, A.; Kolodziej, H. Anti-adhesive activities of flavan-3-ols and proanthocyanidins in the interaction of group a-streptococci and human epithelial cells. Molecules 2010, 15, 7139–7152. [Google Scholar] [CrossRef] [PubMed]
- Percival, R.S.; Devine, D.A.; Duggal, M.S.; Chartron, S.; Marsh, P.D. The effect of cocoa polyphenols on the growth, metabolism, and biofilm formation by Streptococcus mutans and Streptococcus sanguinis. EOS Eur. J. Oral Sci. 2006, 114, 343–348. [Google Scholar] [CrossRef] [PubMed]
- Furiga, A.; Lonvaud Funel, A.; Dorignac, G.; Badet, C. In vitro anti-bacterial and anti-adherence effects of natural polyphenolic compounds on oral bacteria. JAM J. Appl. Microbiol. 2008, 105, 1470–1476. [Google Scholar] [CrossRef] [PubMed]
- Rahim, Z.H.A.; Khan, H.B.S.G. Comparative studies on the effect of crude aqueous (ca) and solvent (cm) extracts of clove on the cariogenic properties of Streptococcus mutans. J. Oral Sci. 2006, 48, 117–123. [Google Scholar] [CrossRef] [PubMed]
- Matsumoto, M.; Tsuji, M.; Okuda, J.; Sasaki, H.; Nakano, K.; Osawa, K.; Shimura, S.; Ooshima, T. Inhibitory effects of cacao bean husk extract on plaque formation in vitro and in vivo. Eur. J. Oral Sci. 2004, 112, 249–252. [Google Scholar] [CrossRef] [PubMed]
- Prabu, G.R.; Gnanamani, A.; Sadulla, S. Guaijaverin—A plant flavonoid as potential antiplaque agent against Streptococcus mutans. J. Appl. Microbiol. 2006, 101, 487–495. [Google Scholar] [CrossRef] [PubMed]
- Yamanaka-Okada, A.; Sato, E.; Kouchi, T.; Kimizuka, R.; Kato, T.; Okuda, K. Inhibitory effect of cranberry polyphenol on cariogenic bacteria. Bull. Tokyo Dent. Coll. 2008, 49, 107–112. [Google Scholar] [CrossRef] [PubMed]
- Murugan, K.; Sekar, K.; Sangeetha, S.; Ranjitha, S.; Sohaibani, S. Antibiofilm and quorum sensing inhibitory activity of achyranthes aspera on cariogenic Streptococcus mutans: An in vitro and in silico study. Pharm. Biol. 2013, 51, 728–736. [Google Scholar] [CrossRef] [PubMed]
- Al-Sohaibani, S.; Murugan, K. Anti-biofilm activity of salvadora persica on cariogenic isolates of Streptococcus mutans: In vitro and molecular docking studies. Biofouling 2012, 28, 29–38. [Google Scholar] [CrossRef] [PubMed]
- Hasan, S.; Danishuddin, M.; Adil, M.; Singh, K.; Verma, P.K.; Khan, A.U. Efficacy of e. Officinalis on the cariogenic properties of Streptococcus mutans: A novel and alternative approach to suppress quorum-sensing mechanism. PLoS ONE 2012, 7, e40319. [Google Scholar] [CrossRef] [PubMed]
- Somanah, J.; Bourdon, E.; Bahorun, T.; Aruoma, O.I. The inhibitory effect of a fermented papaya preparation on growth, hydrophobicity, and acid production of Streptococcus mutans, Streptococcus mitis, and Lactobacillus acidophilus: Its implications in oral health improvement of diabetics. FSN3 Food Sci. Nutr. 2013, 1, 416–421. [Google Scholar] [CrossRef] [PubMed]
- Green, A.E.; Rowlands, R.S.; Cooper, R.A.; Maddocks, S.E. The effect of the flavonol morin on adhesion and aggregation of Streptococcus pyogenes. FEMS Microbiol. Lett. 2012, 333, 54–58. [Google Scholar] [CrossRef] [PubMed]
- Zhou, L.; Ding, Y.; Chen, W.; Zhang, P.; Chen, Y.; Lv, X. The in vitro study of ursolic acid and oleanolic acid inhibiting cariogenic microorganisms as well as biofilm. ODI Oral Dis. 2013, 19, 494–500. [Google Scholar] [CrossRef] [PubMed]
- Evans, J.; Gregory, R.L.; Huang, R. Polyphenol effect on Streptococcus mutans comc-biofilm. Indiana Univ. Sch. Dent. 2015. [Google Scholar] [CrossRef]
- Kang, M.S.; Oh, J.S.; Kang, I.C.; Hong, S.J.; Choi, C.H. Inhibitory effect of methyl gallate and gallic acid on oral bacteria. J. Microbiol. 2008, 46, 744–750. [Google Scholar] [CrossRef] [PubMed]
- Sendamangalam, V.; Choi, O.K.; Kim, D.; Seo, Y. The anti-biofouling effect of polyphenols against Streptococcus mutans. Biofouling 2011, 27, 13–19. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Chung, F.F.; Lee, S.M.; Dykes, G.A. Inhibition of attachment of oral bacteria to immortalized human gingival fibroblasts (HGF-1) by tea extracts and tea components. BMC Res. Notes 2013, 6, 143. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Y.; Liu, T.; Zhan, L.; Zhou, X. The effects of tea polyphenols on the adherence of cariogenic bacterium to the collagen in vitro. West China J. Stomatol. 2000, 18, 340–342. [Google Scholar]
- Feng, G.; Klein, M.I.; Gregoire, S.; Singh, A.P.; Vorsa, N.; Koo, H. The specific degree-of-polymerization of a-type proanthocyanidin oligomers impacts Streptococcus mutans glucan-mediated adhesion and transcriptome responses within biofilms. Biofouling 2013, 29, 629–640. [Google Scholar] [CrossRef] [PubMed]
- Janecki, A.; Conrad, A.; Engels, I.; Frank, U.; Kolodziej, H. Evaluation of an aqueous-ethanolic extract from pelargonium sidoides (EPs® 7630) for its activity against group A-streptococci adhesion to human HEp-2 epithelial cells. J. Ethnopharmacol. 2011, 133, 147–152. [Google Scholar] [CrossRef] [PubMed]
- Stauder, M.; Papetti, A.; Mascherpa, D.; Schito, A.M.; Gazzani, G.; Pruzzo, C.; Daglia, M. Antiadhesion and antibiofilm activities of high molecular weight coffee components against Streptococcus mutans. J. Agric. Food Chem. 2010, 58, 11662–11666. [Google Scholar] [CrossRef] [PubMed]
- Koo, H.; Nino de Guzman, P.; Schobel, B.D.; Vacca Smith, A.V.; Bowen, W.H. Influence of cranberry juice on glucan-mediated processes involved in Streptococcus mutans biofilm development. Caries Res. 2006, 40, 20–27. [Google Scholar] [CrossRef] [PubMed]
- Zheng, J.; Ramirez, V.D. Inhibition of mitochondrial proton F0F1-ATPase/ATP synthase by polyphenolic phytochemicals. Br. J. Pharmacol. 2000, 130, 1115–1123. [Google Scholar] [CrossRef] [PubMed]
- McKenna, E.; Smith, J.S.; Coll, K.E.; Mazack, E.K.; Mayer, E.J.; Antanavage, J.; Wiedmann, R.T.; Johnson, R.G., Jr. Dissociation of phospholamban regulation of cardiac sarcoplasmic reticulum Ca2+ ATPase by quercetin. J. Biol. Chem. 1996, 271, 24517–24525. [Google Scholar] [CrossRef] [PubMed]
- Hirano, T.; Oka, K.; Akiba, M. Effects of synthetic and naturally occurring flavonoids on Na+, K+-atpase: Aspects of the structure-activity relationship and action mechanism. Life Sci. 1989, 45, 1111–1117. [Google Scholar] [CrossRef]
- Lang, D.R.; Racker, E. Effects of quercetin and F1 inhibitor on mitochondrial atpase and energy-linked reactions in submitochondrial particles. Biochim. Biophys. Acta 1974, 333, 180–186. [Google Scholar] [CrossRef]
- Nguyen, P.T.M.; Marquis, R.E. Antimicrobial actions of α-mangostin against oral streptococci. Can. J. Microbiol. 2011, 57, 217–225. [Google Scholar] [CrossRef] [PubMed]
- Gregoire, S.; Singh, A.; Vorsa, N.; Koo, H. Influence of cranberry phenolics on glucan synthesis by glucosyltransferases and Streptococcus mutans acidogenicity. J. Appl. Microbiol. 2007, 103, 1960–1968. [Google Scholar] [CrossRef] [PubMed]
- Adamson, G.E.; Lazarus, S.A.; Mitchell, A.E.; Prior, R.L.; Cao, G.; Jacobs, P.H.; Kremers, B.G.; Hammerstone, J.F.; Rucker, R.B.; Ritter, K.A.; et al. HPLC method for the quantification of procyanidins in cocoa and chocolate samples and correlation to total antioxidant capacity. J. Agric. Food Chem. 1999, 47, 4184–4188. [Google Scholar] [CrossRef] [PubMed]
- Hattori, M.; Kusumoto, I.T.; Namba, T.; Ishigami, T.; Hara, Y. Effect of tea polyphenols on glucan synthesis by glucosyltransferase from Streptococcus mutans. Chem. Pharm. Bull. 1990, 38, 717–720. [Google Scholar] [CrossRef] [PubMed]
- Riihinen, K.; Ryynanen, A.; Toivanen, M.; Kononen, E.; Torronen, R.; Tikkanen-Kaukanen, C. Antiaggregation potential of berry fractions against pairs of Streptococcus mutans with fusobacterium nucleatum or actinomyces naeslundii. Phytother. Res. PTR 2011, 25, 81–87. [Google Scholar] [CrossRef] [PubMed]
- Thimothe, J.; Bonsi, I.A.; Padilla-Zakour, O.I.; Koo, H. Chemical characterization of red wine grape (vitis vinifera and vitis interspecific hybrids) and pomace phenolic extracts and their biological activity against Streptococcus mutans. J. Agric. Food Chem. 2007, 55, 10200–10207. [Google Scholar] [CrossRef] [PubMed]
- Singh, B.N.; Pandey, G.; Jadaun, V.; Singh, S.; Bajpai, R.; Nayaka, S.; Naqvi, A.H.; Rawat, A.K.S.; Upreti, D.K.; Singh, B.R. Development and characterization of a novel swarna-based herbo-metallic colloidal nano-formulation–inhibitor of Streptococcus mutans quorum sensing. RSC Adv. 2015, 5, 5809–5822. [Google Scholar] [CrossRef]
- Wolinsky, L.E.; Mania, S.; Nachnani, S.; Ling, S. The inhibiting effect of aqueous azadirachta indica (neem) extract upon bacterial properties influencing in vitro plaque formation. J. Dent. Res. 1996, 75, 816–822. [Google Scholar] [CrossRef] [PubMed]
- Tomczyk, M.; Pleszczyńska, M.; Wiater, A. In vitro anticariogenic effects of aerial parts of drymocallis rupestris and its phytochemical profile. Planta Med. 2012, 78, PI343. [Google Scholar] [CrossRef]
- Tagashira, M.; Uchiyama, K.; Yoshimura, T.; Shirota, M.; Uemitsu, N. Inhibition by hop bract polyphenols of cellular adherence and water-insoluble glucan synthesis of mutans streptococci. Biosci. Biotechnol. Biochem. 1997, 61, 332–335. [Google Scholar] [CrossRef] [PubMed]
© 2016 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abachi, S.; Lee, S.; Rupasinghe, H.P.V. Molecular Mechanisms of Inhibition of Streptococcus Species by Phytochemicals. Molecules 2016, 21, 215. https://doi.org/10.3390/molecules21020215
Abachi S, Lee S, Rupasinghe HPV. Molecular Mechanisms of Inhibition of Streptococcus Species by Phytochemicals. Molecules. 2016; 21(2):215. https://doi.org/10.3390/molecules21020215
Chicago/Turabian StyleAbachi, Soheila, Song Lee, and H. P. Vasantha Rupasinghe. 2016. "Molecular Mechanisms of Inhibition of Streptococcus Species by Phytochemicals" Molecules 21, no. 2: 215. https://doi.org/10.3390/molecules21020215
APA StyleAbachi, S., Lee, S., & Rupasinghe, H. P. V. (2016). Molecular Mechanisms of Inhibition of Streptococcus Species by Phytochemicals. Molecules, 21(2), 215. https://doi.org/10.3390/molecules21020215