Synthesis and Characterization of Some New Coumarins with in Vitro Antitumor and Antioxidant Activity and High Protective Effects against DNA Damage
Abstract
:1. Introduction
2. Results and Discussion
2.1. Chemistry
2.2. Pharmacological Activity
2.2.1. Cytotoxic Activity Using an In Vitro Ehrlich Ascites Assay
2.2.2. Antioxidant Activity Using ABTS Inhibition
2.2.3. Bleomycin-Dependent DNA Damage
2.2.4. Structure Activity Relationships
- The cytotoxic activity of compounds 3, 4 is due to the presence of the coumarin moiety and also the formation of intermolecular hydrogen bonds between the OH [53] and DNA bases.
- The cytotoxic activity of compounds 5a,b is due to the presence of the coumarin and the pyrazole carboxylic acid moieties [42] and also the formation of intermolecular hydrogen bonds between the OH and DNA bases. Compounds 7a,b demonstrated better activity compared to compounds 5a,b, probably due to the presence of the carbothioamide (S=CNH2) moiety.
- Compounds 9a,b showed strong activity due to the presence of the coumarin and the pyridazinone rings.
- Compounds 15a,b and 16a showed strong and very strong activity due to the presence of the coumarin and the pyran rings.
- Compounds 18a showed strong activity due to the presence of the coumarin and the pyridazine rings, and also the presence of two cyano groups.
3. Experimental Section
3.1. General Information
3.2. Synthesis
3.2.1. General Procedure for the Synthesis of Compounds 3 and 4
3.2.2. General Procedure for the Synthesis of Compounds 5a and 5b
3.2.3. S General Procedure for the Synthesis of Compounds 6a and 6b
3.2.4. General Procedure for the Synthesis of Compounds 7a and 7b
3.2.5. General Procedure for the Synthesis of Compounds 8a and 8b
3.2.6. General Procedure for the Synthesis of Compounds (9–12)a,b
3.2.7. General Procedure for the Synthesis of Compounds 13a,b
3.2.8. General Procedure for the Synthesis of Compounds 14a,b
3.2.9. General Procedure for the Synthesis of Compounds (15–17)a,b
3.2.10. General Procedure for the Synthesis of Compounds 18a and 18b
3.2.11. Synthesis of 2-(6-Oxo-3-(2-oxo-2H-chromen-3-yl)-5,6-dihydro-4H-1,2-oxazin-5-yl)malon-onitrile 19
3.3. Pharmacological Activity
3.3.1. Cytotoxicity Assay
MTT Assay
3.3.2. Antioxidant Assay
ABTS Method
Bleomycin—Dependent DNA Damage Assay
4. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Musa, M.A.; Badisa, V.L.; Latinwo, L.M.; Cooperwood, J.; Sinclair, A.; Abdullah, A. Cytotoxic activity of new acetoxycoumarin derivatives in cancer cell lines. Anticancer Res. 2011, 31, 2017–2022. [Google Scholar] [PubMed]
- Borah, P.; Naidu, P.S.; Bhuyan, P.J. Synthesis of some tetrazole fused pyrido[2,3-c]coumarin derivatives from a one-pot three-component reaction via intramolecular 1,3-dipolar cycloaddition reaction of azide to nitriles. Tetrahedron Lett. 2012, 53, 5034–5037. [Google Scholar] [CrossRef]
- El-Ansary, S.L.; Abbas, S.E.; Mikhael, A.N.; El-Banna, H.A. Synthesis and biological activity of some new coumarins. Egypt. J. Pharm. Sci. 1992, 33, 639–650. [Google Scholar]
- Manfredini, S.; Daniele, S.; Ferroni, R.; Bazzanini, R.; Vertuani, S.; Hatse, S.; Balzarini, J.; de Clercq, E. retinoic acid conjugates as potential antitumor agents: synthesis and biological activity of conjugates with Ara-A, Ara-C, 3(2H)-furanone, and aniline mustard moieties. J. Med. Chem. 1997, 40, 3851–3857. [Google Scholar] [CrossRef] [PubMed]
- Wattenberg, L.W.; Lam, K.T.; Fladmoe, A.V. Inhibition of chemical carcinogen-induced neoplasia by coumarins and α-angelicalactone. Cancer Res. 1979, 39, 1651–1654. [Google Scholar] [PubMed]
- Kashman, Y.; Gustafson, K.R.; fuller, R.W.; Cardellina, J.H.; McMahon, J.B.; Currens, M.J.; Buckheit, R.W.; Hughes, S.H.; Craqq, G.M.; Boyd, M.R. The calanolides, a novel HIV-inhibitory class of coumarin derivatives from the tropical rainforest tree, Calophyllum lanigerum. J. Med. Chem. 1992, 35, 2735–2743. [Google Scholar] [CrossRef] [PubMed]
- Mckee, T.C.; Fuller, R.W.; Covington, C.D.; Cardellina, J.H.; Gulakowski, R.J.; Krepps, B.L.; McMahon, J.B.; Boyd, M.R. New pyranocoumarins isolated from Calophyllum lanigerum and Calophyllum teysmannii. J. Nat. Prod. 1996, 59, 754–758. [Google Scholar]
- Anjum, N.F.; Aleem, A.; Nayeem, N.; Asdaq, S.M. Synthesis and antibacterial activity of substituted 2-phenyl-4-chromones. Der Pharma Chem. 2011, 3, 56–62. [Google Scholar]
- De Souza, S.M.; Delle Monache, F.; Smânia, A., Jr. Antibacterial activity of coumarins. Z. Naturforsch. C 2005, 60, 693–700. [Google Scholar] [CrossRef] [PubMed]
- Behrami, A. Antibacterial activity of coumarine derivatives synthesized from 4-chloro-chromen-2-one. The comparison with standard drug. Orient. J. Chem. 2014, 30, 1747–1752. [Google Scholar] [CrossRef]
- Jung, J.; Kim, J.; Park, O. Simple and cost effective syntheses of 4-hydroxycoumarin. Synth. Commun. 1999, 29, 3587–3595. [Google Scholar] [CrossRef]
- Barker, W.M.; Hermodson, M.A.; Link, K.P. 4-Hydroxycoumarins. Synthesis of the metabolites and some other derivatives of warfarin. J. Med. Chem. 1971, 14, 167–169. [Google Scholar] [CrossRef]
- Greaves, M. Pharmacogenetics in the management of coumarin anticoagulant therapy: The way forward or an expensive diversion? PLoS Med. 2005, 2, e342. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Montagner, C.; de Souzaa, S.M.; Groposo, C.; Delle Monacheb, F.; Smaˆnia, E.F.A.; Smaˆnia, A., Jr. Antifungal activity of coumarins. Z. Naturforsch. C 2008, 63, 21–28. [Google Scholar] [CrossRef] [PubMed]
- De Araújo, R.S.A.; Guerra, F.Q.S.; Lima, E.; De Simone, C.A.; Tavares, J.F.; Scotti, L.; Scotti, M.T.; De Aquino, T.M.; De Moura, R.O.; Mendonça, F.J.B.; et al. Synthesis, structure-activity relationships (SAR) and in silico studies of coumarin derivatives with antifungal activity. Int. J. Mol. Sci. 2013, 14, 1293–1309. [Google Scholar] [CrossRef] [PubMed]
- Mazzone, G.; Malaj, N.; Galano, A.; Russo, N.; Toscano, M. Antioxidant properties of several coumarin–chalcone hybrids from theoretical insights. RSC Adv. 2015, 5, 565–575. [Google Scholar] [CrossRef]
- Raboin, J.; Beley, M.; Kirsch, G. Pyridine-fused coumarins: A new class of ligands for ruthenium complexes with enhanced spectral absorption. Tetrahedron Lett. 2000, 4, 1175–1177. [Google Scholar] [CrossRef]
- Karatzas, N.B. Coumarins, a class of drugs with a unique contribution to medicine: The tale of their discovery. Hellenic J. Cardiol. 2014, 55, 89–91. [Google Scholar] [PubMed]
- Agarwal, R. Synthesis and biological screening of some novel coumarin derivatives. Biochem. Pharmacol. 2000, 6, 1042–1051. [Google Scholar]
- Marshall, M.E.; Butler, K.; Hermansen, D. Treatment of hormone-refractory stage D carcinoma of prostate with coumarin (1,2-benzopyrone) and cimetidine: A pilot study. Prostate 1990, 17, 95–99. [Google Scholar] [CrossRef] [PubMed]
- Benci, K.; Mandić, L.; Suhina, T.; Sedić, M.; Klobučar, M.; Pavelić, S.K.; Pavelić, K.; Wittine, K.; Mintas, M. Novel coumarin derivatives containing 1,2,4-triazole, 4,5-dicyanoimidazole and purine moieties: Synthesis and evaluation of their cytostatic activity. Molecules 2012, 17, 11010–11025. [Google Scholar] [CrossRef] [PubMed]
- Marshall, M.E.; Kervin, K.; Benefield, C.; Umerani, A.; Albainy-Jenei, S.; Zhao, Q.; Khazaeli, M.B. Growth-inhibitory effects of coumarin (1,2-benzopyrone) and 7-hydroxycoumarin on human malignant cell lines in vitro. J. Cancer Res. Clin. Oncol. 1994, 120, S3–S10. [Google Scholar] [CrossRef] [PubMed]
- Mohler, J.L.; Gomella, L.G.; Crawford, E.D.; Glode, L.M.; Zippe, C.D.; Fair, W.R.; Marshall, M.E. Phase II evaluation of coumarin (1,2-benzopyrone) in metastatic prostatic carcinoma. Prostate 1992, 20, 123–131. [Google Scholar] [CrossRef] [PubMed]
- Thornes, R.D.; Daly, L.; Lynch, G.; Breslin, B.; Browne, H.; Browne, H.Y.; Corrigan, T.; Daly, P.; Edwards, G.; Gaffney, E.; et al. Treatment with coumarin to prevent or delay recurrence of malignant melanoma. J. Cancer Res. Clin. Oncol. 1994, 120, S32–S34. [Google Scholar] [CrossRef] [PubMed]
- Marshall, M.E.; Butler, K.; Fried, A. Phase I evaluation of coumarin (1,2-benzopyrone) and cimetidine in patients with advanced malignancies. Mol. Biother. 1991, 3, 170–178. [Google Scholar] [PubMed]
- Mirunalini, S.; Deepalakshmi, K.; Manimozhi, J. Antiproliferative effect of coumarin by modulating oxidant/antioxidant status and inducing apoptosis in Hep2 cells. Biomed. Aging Pathol. 2014, 4, 131–135. [Google Scholar] [CrossRef]
- Sashidhara, K.V.; Avula, S.R.; Sharma, K.; Palnati, G.R.; Bathula, S.R. Discovery of coumarin monastrol hybrid as potential antibreast tumor-specific agent. Eur. J. Med. Chem. 2013, 60, 120–127. [Google Scholar] [CrossRef] [PubMed]
- Jamier, V.; Marut, W.; Valente, S.; Chereau, C.; Chouzenoux, S.; Nicco, C.; Lemarechal, H.; Weill, B.; Kirsch, G.; Jacob, C.; et al. Chalcone-coumarin derivatives as potential anticancer drugs: An in vitro and in vivo investigation. Anticancer Agents Med. Chem. 2014, 14, 963–974. [Google Scholar] [CrossRef] [PubMed]
- Seidel, C.; Schnekenburger, M.; Zwergel, C.; Gaascht, F.; Mai, A.; Dicato, M.; Kirsch, G.; Valente, S.; Diederich, M. Novel inhibitors of human histone deacetylases: Design, synthesis and bioactivity of 3-alkenoylcoumarines. Bioorg. Med. Chem. Lett. 2014, 24, 3797–3801. [Google Scholar] [CrossRef] [PubMed]
- Kim, W.J.; Lee, S.J.; Choi, Y.D.; Moon, S.K. Decursin inhibits growth of human bladder and colon cancer cells via apoptosis, G1-phase cell cycle arrest and extracellular signal-regulated kinase activation. Int. J. Mol. Med. 2010, 25, 635–641. [Google Scholar] [PubMed]
- Amin, K.M.; Abou-Seri, S.M.; Awadallah, F.M.; Eissa, A.A.M.; Hassan, G.S.; Abdulla, M.M. Synthesis and anticancer activity of some 8-substituted-7-methoxy-2H chromen-2-one derivatives toward hepatocellular carcinoma HepG2 cells. Eur. J. Med. Chem. 2015, 90, 221–231. [Google Scholar] [CrossRef] [PubMed]
- Migawa, M.T.; Drach, J.C.; Townsend, L.B. Design, synthesis and antiviral activity of novel 4,5-disubstituted 7-(β-d-Ribofuranosyl)pyrrolo[2,3-d][1,2,3]triazines and the novel 3-amino-5-methyl-1-(β-d-ribofuranosyl)- and 3-amino-5-methyl-1-(2-deoxy-β-d-ribofuranosyl)-1,5-dihydro-1,4,5,6,7,8-hexaazaace-naphthylene as an-alogues of triciribine. J. Med. Chem. 2005, 48, 3840–3851. [Google Scholar] [PubMed]
- El-Kasaby, M.A.; Salem, M.A.I. Synthesis and reactions of 6,7(4′-alkyl-α-pyrano)-4-alkyl coumarin. Rev. Roum. Chem. 1981, 26, 717–723. [Google Scholar]
- Salem, M.A.I.; El-Kasaby, M.A. Reaction of 3-carbethoxy-5,6-benzocoumarin with anthranilic acid, synthesis and some reactions. J. Chem. Soc. Pak. 1987, 19, 177–189. [Google Scholar]
- Abdou, W.M.; Salem, M.A.I.; Sediek, A.A. The reactivity of 2-acetyl(3H)naphtha[2,1-b]pyran-3-one, synthesis of coummarinyl[2,1-b]fused cyclic compounds. Heterocycl. Commun. 1998, 4, 145–150. [Google Scholar] [CrossRef]
- Marzouk, M.I. Study on 2-Cyanobenzo[f]chromen-3-one as Michael acceptors. Int. J. Chem. 2002, 12, 1–7. [Google Scholar]
- Nofal, Z.M.; EL-Zahar, M.I.; Salem, M.A.I.; Madkour, H.M.F.; Abd EL-Karim, S.S. Synthesis and chemophylatic effect of novel coumarin derivatives. Egypt. J. Chem. 2005, 48, 587–704. [Google Scholar]
- Tolstoluzhsky, N.V.; Gorobets, N.Y.; Kolos, N.N.; Desenko, S.M. Efficient ytterbium triflate catalyzed microwave-assisted synthesis of 3-acylacrylic acid building blocks. J. Comb. Chem. 2008, 10, 893–896. [Google Scholar] [CrossRef] [PubMed]
- El-Hashash, M.A.; Rizk, S.A.; Atta-Allah, S.R. Synthesis and regioselective reaction of some unsymmetrical heterocyclic chalcone derivatives and spiro heterocyclic compounds as antibacterial agents. Molecules 2015, 20, 22069–22083. [Google Scholar] [CrossRef] [PubMed]
- Sharshira, E.M.; Hamada, N.M.M. Synthesis, antibacterial and antifungal activities of some pyrazole-1-carbothioamides and pyrimidine-2(1H)-thiones. Am. J. Org. Chem. 2012, 2, 26–31. [Google Scholar] [CrossRef]
- Salem, M.S.; Marzouk, M.I.; Ali, S.N.; Madkour, H.M.F. Synthesis, structure characterization and biological evaluation of new 6,8-dichloro-2-methyl-4H-chromen-4-one derivatives. Eur. J. Chem. 2012, 3, 220–227. [Google Scholar] [CrossRef]
- Dotsenko, V.V.; Krivokolysko, S.G.; Litvinov, B.P. Reaction of diketene with cyanothioacetamide: A convenient and regioselective method for the preparation of new 4(1H)-pyridone derivatives. Chem. Heterocycl. Compd. 2007, 43, 599–607. [Google Scholar] [CrossRef]
- Minetto, G.; Raveglia, L.F.; Sega, A.; Taddei, M. Microwave-assisted Paal-Knorr reaction-three-step Regio controlled synthesis of polysubstituted furans, pyrroles and thiophenes. Eur. J. Org. Chem. 2005, 2005, 5277–5288. [Google Scholar] [CrossRef]
- Dere, R.T.; Pal, R.R.; Patil, P.S.; Salunkhe, M.M. Influence of ionic liquids on the phase transfer-catalysed enantioselective Michael reaction. Tetrahedron Lett. 2003, 44, 5351–5353. [Google Scholar] [CrossRef]
- Zhang, Z.; Dong, Y.-W.; Wang, G.-W.; Komatsu, K. Highly efficient mechanochemical reactions of 1,3-dicarbonyl compounds with chalcones and azachalcones catalyzed by potassium carbonate. Synlett 2004, 1, 61–64. [Google Scholar] [CrossRef]
- Salem, M.S.; Guirguis, D.B.; El-Helw, E.A.E.; Ghareeb, M.A.; Derbala, H.A.Y. Antioxidant activity of heterocyclic compounds derived from 4-(4-acetamidophenyl)-4-oxobut-2-enoic acid. Int. J. Sci. Res. 2014, 3, 1274–1282. [Google Scholar]
- Gutteridge, J.M.; Rowley, D.A.; Halliwell, B. Superoxide-dependent formation of hydroxyl radicals in the presence of iron salts. Detection of “free” iron in biological systems by using bleomycin-dependent degradation of DNA. Biochem. J. 1981, 199, 263–265. [Google Scholar] [CrossRef] [PubMed]
- Singh, K.R.; Lange, S.T.; Kim, K.K.; Brard, L. A coumarin derivative (RKS262) inhibits cell-cycle progression, causes pro-apoptotic signaling and cytotoxicity in ovarian cancer cells. Investig. New Drugs 2011, 29, 63–72. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Lu, M.L.; Dai, H.L.; Zhang, S.P.; Wang, H.X.; Wei, N. Esculetin, a coumarin derivative, exerts in vitro and in vivo antiproliferative activity against hepatocellular carcinoma by initiating a mitochondrial-dependent apoptosis pathway. Braz. J. Med. Biol. Res. 2015, 48, 245–253. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Li, Z.; Zhou, M.; Wu, F.; Hou, X.; Luo, H.; Liu, H.; Han, X.; Yan, G.; Ding, Z.; et al. Synthesis and biological evaluation of 4-(1,2,3-triazol-1-yl)coumarin derivatives as potential antitumor agents. Bioorg. Med. Chem. Lett. 2014, 24, 799–807. [Google Scholar] [CrossRef] [PubMed]
- Amin, K.M.; Eissa, A.M.; Abou-Seri, S.M.; Awadallah, F.M.; Hassan, G.S. Synthesis and biological evaluation of novel coumarin–pyrazoline hybrids endowed with phenylsulfonyl moiety as antitumor agents. Eur. J. Med. Chem. 2013, 60, 187–198. [Google Scholar] [CrossRef] [PubMed]
- Nasr, T.; Bondock, S.; Youns, M. Anticancer activity of new coumarin substituted hydrazide–hydrazone derivatives. Eur. J. Med. Chem. 2014, 76, 539–548. [Google Scholar] [CrossRef] [PubMed]
- Bohon, J.; Santos, C.R. Structural effect of the anticancer agent 6-thioguanine on duplex DNA. Nucleic Acids Res. 2003, 31, 1331–1338. [Google Scholar] [CrossRef] [PubMed]
- Mosmann, T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Methods 1983, 65, 55–63. [Google Scholar] [CrossRef]
- Denizot, F.; Lang, R. Rapid colorimetric assay for cell growth and survival. Modifications to the tetrazolium dye procedure giving improved sensitivity and reliability. J. Immunol. Methods 1986, 89, 271–277. [Google Scholar] [CrossRef]
- Mauceri, H.J.; Hanna, N.N.; Beckett, M.A.; Gorski, D.H.; Staba, M.; Stellato, K.A.; Bigelow, K.; Heimann, R.; Gately, S.; Dhanabal, M.; et al. Combined effects of angiostatin and ionizing radiation in antitumour therapy. Nature 1998, 394, 287–291. [Google Scholar] [PubMed]
- Lissi, E.A.; Modak, B.; Torres, R.; Escobar, J.; Urzua, A. Total antioxidant potential of resinous exudates from Heliotropium Species and a comparison of ABTS and DPPH methods. Free Radic. Res. 1999, 30, 471–477. [Google Scholar] [CrossRef] [PubMed]
- El-Gazar, A.B.A.; Youssef, M.M.; Youssef, A.M.S.; Abu-Hashem, A.A.; Badria, F.A. Design and synthesis of azolopyrimidoquinolines, pyrimidoquinazolines as antioxidant, anti-inflammatory and analgesic activities. Eur. J. Med. Chem. 2009, 44, 609–624. [Google Scholar] [CrossRef] [PubMed]
- Aeschbach, R.; Löliger, J.; Scott, B.C.; Murcia, A.; Butler, J.; Halliwell, B.; Aruoma, O.I. Antioxidant actions of thymol, carvacrol, 6-gingerol, zingerone and hydroxytyrosol. Food Chem. Toxicol. 1994, 32, 31–36. [Google Scholar] [CrossRef]
- Abdel-Wahab, B.F.; EL-Ahl, A.S.; Badria, F.A. synthesis of new 2-naphthyl ethers and their protective activities against DNA damage induced by bleomycin–iron. Chem. Pharm Bull. 2009, 57, 1348–1351. [Google Scholar] [CrossRef] [PubMed]
- Badria, F.A.; Ameen, M.; Akl, M.R. Evaluation of cytotoxic compounds from Calligonum comosum L. growing in Egypt. Z. Naturforsch. C 2007, 62, 656–660. [Google Scholar] [CrossRef] [PubMed]
- Sample Availability: Samples of the compounds are not available from the authors.
Comp. No. | IC50 (μg/mL) a | |||
---|---|---|---|---|
HePG2 | HCT-116 | PC3 | MCF-7 | |
3 | 41.2 ± 3.06 | 36.5 ± 02.54 | 42.0 ± 3.24 | 45.8 ± 3.40 |
4 | 51.2 ± 3.62 | 33.6 ± 2.64 | 48.9 ± 2.91 | 39.7 ± 2.35 |
5a | 12.5 ± 0.69 | 12.8 ± 1.03 | 16.2 ± 1.56 | 15.7 ± 1.24 |
5b | 27.6 ± 1.87 | 21.8 ± 2.10 | 34.0 ± 2.65 | 15.8 ± 1.08 |
7a | 10.8 ± 0.88 | 10.4 ± 0.94 | 9.6 ± 0.382 | 10.6 ± 0.92 |
7b | 9.3 ± 0.58 | 4.8 ± 0.18 | 11.1 ± 1.13 | 7.8 ± 0.67 |
9a | 13.1 ± 0.95 | 9.4 ± 0.97 | 14.5 ± 1.30 | 12.0 ± 1.14 |
9b | 11.0 ± 0.98 | 11.4 ± 0.87 | 18.0 ± 1.96 | 20.4 ± 1.56 |
10a | 35.7 ± 2.54 | 46.3 ± 2.35 | 51.6 ± 3.61 | 29.9 ± 1.97 |
10b | 63.5 ± 3.94 | 56.4 ± 3.35 | 83.8 ± 3.58 | 64.4 ± 3.84 |
11a | 73.0 ± 4.35 | 78.2 ± 3.98 | 96.8 ± 4.87 | 81.5 ± 4.21 |
11b | 22.6 ± 1.36 | 19.8 ± 1.63 | 25.5 ± 1.74 | 5.6 ± 0.43 |
13a | 52.9 ± 3.62 | 65.1 ± 4.11 | 76.9 ± 4.65 | 58.3 ± 3.63 |
13b | 17.4 ± 1.25 | 14.4 ± 1.01 | 10.8 ± 0.79 | 29.6 ± 1.87 |
15a | 17.6 ± 1.05 | 20.0 ± 1.44 | 13.7 ± 0.94 | 17.6 ± 1.37 |
15b | 8.2 ± 0.45 | 9.7 ± 0.84 | 8.7 ± 0.45 | 14.1 ± 1.21 |
16a | 25.6 ± 1.67 | 15.3 ± 1.13 | 13.4 ± 0.96 | 19.9 ± 2.14 |
16b | 26.2 ± 1.13 | 29.6 ± 2.25 | 35.4 ± 2.13 | 40.2 ± 2.64 |
17a | 90.6 ± 6.57 | 71.1 ± 4.82 | 87.4 ± 5.14 | 86.7 ± 6.15 |
17b | 52.7 ± 3.41 | 44.7 ± 3.12 | 59.8 ± 2.35 | 45.9 ± 2.89 |
18a | 19.7 ± 1.20 | 13.8 ± 0.89 | 16.1 ± 1.08 | 13.2 ± 0.76 |
18b | 60.1 ± 3.24 | 72.6 ± 3.86 | 82.2 ± 4.32 | 62.5 ± 4.35 |
19 | 25.2 ± 2.10 | 22.4 ± 1.37 | 28.8 ± 2.67 | 25.8 ± 1.72 |
5-FU | 7.9 ± 0.12 | 5.3 ± 0.14 | 8.3 ± 0.25 | 5.4 ± 0.21 |
Comp. No. | Antioxidant Activity (ABTS Method) | Bleomycin Dependent DNA Damage | |
---|---|---|---|
Absorbance | Inhibition (%) | ||
3 | 0.233 | 51.6 | 0.095 |
4 | 0.134 | 72.9 | 0.114 |
5a | 0.145 | 69.9 | 0.107 |
5b | 0.078 | 84.4 | 0.089 |
7a | 0.119 | 75.3 | 0.089 |
7b | 0.076 | 84.6 | 0.083 |
9a | 0.150 | 68.9 | 0.099 |
9b | 0.076 | 84.6 | 0.096 |
10a | 0.236 | 51.0 | 0.126 |
10b | 0.217 | 56.2 | 0.131 |
11a | 0.248 | 49.9 | 0.142 |
11b | 0.077 | 84.4 | 0.072 |
13a | 0.244 | 49.4 | 0.145 |
13b | 0.076 | 84.6 | 0.105 |
15a | 0.201 | 58.3 | 0.094 |
15b | 0.118 | 75.5 | 0.076 |
16a | 0.195 | 59.5 | 0.089 |
16b | 0.232 | 51.9 | 0.106 |
17a | 0.290 | 39.8 | 0.18 |
17b | 0.152 | 69.3 | 0.127 |
18a | 0.164 | 66.0 | 0.081 |
18b | 0.274 | 43.1 | 0.125 |
19 | 0.213 | 55.8 | 0.124 |
Ascorbic acid | 0.053 | 89.0 | 0.073 |
© 2016 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Salem, M.A.I.; Marzouk, M.I.; El-Kazak, A.M. Synthesis and Characterization of Some New Coumarins with in Vitro Antitumor and Antioxidant Activity and High Protective Effects against DNA Damage. Molecules 2016, 21, 249. https://doi.org/10.3390/molecules21020249
Salem MAI, Marzouk MI, El-Kazak AM. Synthesis and Characterization of Some New Coumarins with in Vitro Antitumor and Antioxidant Activity and High Protective Effects against DNA Damage. Molecules. 2016; 21(2):249. https://doi.org/10.3390/molecules21020249
Chicago/Turabian StyleSalem, Mounir A. I., Magda I. Marzouk, and Azza M. El-Kazak. 2016. "Synthesis and Characterization of Some New Coumarins with in Vitro Antitumor and Antioxidant Activity and High Protective Effects against DNA Damage" Molecules 21, no. 2: 249. https://doi.org/10.3390/molecules21020249
APA StyleSalem, M. A. I., Marzouk, M. I., & El-Kazak, A. M. (2016). Synthesis and Characterization of Some New Coumarins with in Vitro Antitumor and Antioxidant Activity and High Protective Effects against DNA Damage. Molecules, 21(2), 249. https://doi.org/10.3390/molecules21020249