Chemical Evidence for Potent Xanthine Oxidase Inhibitory Activity of Ethyl Acetate Extract of Citrus aurantium L. Dried Immature Fruits
Abstract
:1. Introduction
2. Results and Discussion
2.1. XO Inhibitory Activity of the Extracts
2.2. Identification of the Constituents of the Most Active Extract
2.3. Contribution of the Identified Compounds to XO Inhibitory Activity
3. Materials and Methods
3.1. Chemicals
3.2. General Experimental Procedures
3.3. Plant Materials
3.4. Extraction and HPLC Analysis of the Extracts
3.5. XO Inhibitory Activity Assay
3.6. XO Inhibitory Modes of Action Assay
3.7. Isolation and Identification of Compounds
3.8. Statistical Analysis
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Richette, P.; Bardin, T. Gout. Lancet 2010, 375, 318–328. [Google Scholar] [CrossRef]
- Hsieh, J.F.; Wu, S.H.; Yang, Y.L.; Choog, K.F.; Chen, S.T. The screen and characterization of 6-aminopurine-based xanthine oxidase inhibitors. Bioorg. Med. Chem. 2007, 15, 3450–3456. [Google Scholar] [CrossRef] [PubMed]
- Terkeltaub, R.A. Clinical practice. Gout. N. Engl. J. Med. 2003, 334, 1647–1655. [Google Scholar] [CrossRef] [PubMed]
- Becker, M.A.; Kisicki, J.; Khosravan, R.; Wu, J.; Mulford, D.; Hunt, B.; MacDonald, P.; Joseph-Ridge, N. Febuxostat (TMX-67), a novel, non-purine, selective inhibitor of xanthine oxidase, is safe and decreases serum urate in healthy volunteers. Nucleos. Nucleot. Nucl. 2004, 23, 1111–1116. [Google Scholar] [CrossRef] [PubMed]
- Fukunari, A.; Okamato, K.; Nishino, T.; Eger, B.T.; Pai, E.F.; Kamezawa, M.; Yamada, I.; Kato, N. Y-700 [1-[3-cyano-4-(2,2-dimethylpropoxy)phenyl]-1H-pyrazole-4-carboxylic acid]: A potent xanthine oxidoreductase inhibitor with hepatic excretion. J. Pharmacol. Exp. Ther. 2004, 311, 519–528. [Google Scholar] [CrossRef] [PubMed]
- Pacher, P.; Nivorozhkin, A.; Szabo, C. Therapeutic effects of xanthine oxidase inhibitor: Renaissance half a century after the discovery of allopurinol. Pharmacol. Rev. 2006, 58, 87–114. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, M.T.T.; Awale, S.; Tezuka, Y.; Ueda, J.Y.; Tran, Q.L.; Kadota, S. Xanthine oxidase inhibitors from the flowers of Chrysanthemum sinense. Planta Med. 2006, 72, 46–51. [Google Scholar] [CrossRef] [PubMed]
- Spanou, C.; Veskoukis, A.S.; Kerasioti, T.; Kontou, M.; Angelis, A.; Aligiannis, N.; Skaltsounis, A.L.; Kouretas, D. Flavonoid glycosides isolated from unique legume plant extracts as novel inhibitors of xanthine oxidase. PLoS ONE 2012, 7, e32214. [Google Scholar] [CrossRef] [PubMed]
- Nile, S.H.; Park, S.W. Antioxidant, α-glucosidase and xanthine oxidase inhibitory activity of bioactive compounds from maize (Zea mays L.). Chem. Biol. Drug Des. 2014, 83, 119–125. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.X.; He, M.T.; Tan, H.B.; Gu, W.; Yang, S.X.; Wang, Y.H.; Li, L.; Long, C.L. Xanthine oxidase inhibitors isolated from Piper nudibaccatum. Phytochem. Lett. 2015, 12, 133–137. [Google Scholar] [CrossRef]
- Luo, Y.L.; Qu, W.; Liang, J.Y. Progress on chemical constituents and biological activities of the genus Citrus. Strait Pharm. J. 2013, 25. [Google Scholar] [CrossRef]
- Mencherini, T.; Campone, L.; Piccinelli, A.L.; Mesa, M.G.; Sánchez, D.M.; Aquino, R.P.; Rastrelli, L. HPLC-PDA-MS and NMR characterization of a hydroalcoholic extract of Citrus aurantium L. var. amara Peel with antiedematogenic activity. J. Agric. Food Chem. 2013, 61, 1686–1693. [Google Scholar] [PubMed]
- Huo, L.N.; Wang, W.; Zhang, C.Y.; Shi, H.B.; Liu, Y.; Liu, X.H.; Guo, B.H.; Zhao, D.M.; Gao, H. Bioassy-guided isolation and identification of xanthine oxidase inhibitory constituents from the leaves of Perilla frutescens. Molecules 2015, 20, 17848–17859. [Google Scholar] [CrossRef] [PubMed]
- Li, X.C.; Liu, X.H.; Gao, H.; Fan, M.L.; Liu, K.; Wang, W. Study on inhibition and enzyme kinetics of different solvent extractions from Polygonum cuspidatum on xanthine oxidase. China Pharm. 2015, 26, 494–496. [Google Scholar]
- Lin, J.K.; Chen, P.C.; Ho, C.T.; Lin-Shiau, S.Y. Inhibition of xanthine oxidase and suppression of intracellular reactive oxygen species in HL-60 cells by theaflavin-3,3′-digallate, (−)-epigallocatechin-3-gallate, and propyl gallate. J. Agric. Food Chem. 2010, 48, 2736–3743. [Google Scholar] [CrossRef]
- Casquete, R.; Castro, S.M.; Martín, A.; Ruiz-Moyano, S.; Saraiva, J.A.; Córdoba, M.G.; Teixeira, P. Evaluation of the effect of high pressure on total phenolic content, antioxidant and antimicrobial activity of citrus peels. Innov. Food Sci. Emerg. 2015, 31, 37–44. [Google Scholar] [CrossRef]
- Mehmood, B.; Dar, K.K.; Ali, S.; Awan, U.A.; Nayyer, A.Q.; Ghous, T.; Andleeb, S. In vitro assessment of antioxidant, antibacterial and phytochemical analysis of Citrus sinensis. Pak. J. Pharm. Sci. 2015, 28, 231–239. [Google Scholar] [PubMed]
- Sharma, S.; Kori, S.; Parmar, A. Surfactant mediated extraction of total phenolic content (TPC) and antioxidants from fruits juices. Food Chem. 2015, 185, 284–288. [Google Scholar] [CrossRef] [PubMed]
- Maltese, F.; Erkelens, C.; Kooy, F.; Choi, Y.H.; Verpoorte, R. Identification of natural epimeric flavanone glycosides by NMR spectroscopy. Food Chem. 2009, 116, 575–579. [Google Scholar] [CrossRef]
- Lei, H.M.; Sun, W.J.; Lin, W.H. Studies on chemical constituents of Citrus grandis Osbecks. Var. tomentosa Hort. Northwest Pharm. J. 2000, 15, 203–204. [Google Scholar]
- Guo, X.L.; Wang, T.J.; Guo, M.J.; Chen, Y. Studies on chemical constituents of processed green tangerine peel. Chin. J. Chin. Mater. Med. 2000, 25, 146–148. [Google Scholar]
- Feng, F.; Wang, X.N.; Yan, C.M. Studies on chemical constituents of Citrus aurantium L. Asia-Pac. Tradit. Med. 2012, 8, 22–24. [Google Scholar]
- Chen, X.X.; Shimayi, R.H.M.; Long, S.J. Studies on chemical constituents of Toddalia asiatica stems. Northwest Pharm. J. 2013, 28, 337–339. [Google Scholar]
- Han, S.; Kim, H.M.; Lee, J.M.; Mok, S.Y.; Lee, S. Isolation and identification of polymethoxyflavones from the hybrid Citrus, Hallabong. J. Agric. Food Chem. 2010, 58, 9488–9491. [Google Scholar] [CrossRef] [PubMed]
- Dew, T.P.; Day, A.J.; Morgan, M.R.A. Xanthine oxidase activity in vitro: Effects of food extracts and components. J. Agric. Food Chem. 2005, 53, 6510–6515. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.H.; Jung, E.A.; Sohng, I.S.; Han, J.A.; Kim, T.H.; Han, M.J. Intestinal bacterial metabolism of flavonoids and its relation to some biological activities. Arch. Pharm. Res. 1998, 21, 17–23. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Jiang, S.; Qian, D.W.; Shang, E.X.; Duan, J.A. Determination of metabolism of neohesperidin by human intestinal bacteria by UPLC-Q-TOF/MS. Chromatographia 2014, 77, 439–445. [Google Scholar] [CrossRef]
- Masuda, A.; Takahashi, C.; Inai, M.; Miura, Y.; Masuda, T. Chemical evidence for potent xanthine oxidase inhibitory activity of Glechoma hederacea var. grandis leaves (Kakidoushi-Cha). J. Nutr. Sci. Vitaminol. 2013, 59, 570–575. [Google Scholar] [CrossRef] [PubMed]
- Sample Availability: Samples of the compounds are available from the authors.
Species | Parts | Solvent | Yield (w/w %) | XO Inhibition (Mean ± S.D.%) |
---|---|---|---|---|
200 μg/mL | ||||
Citrus aurantium L. | Immature fruits | A | 0.08 | 31.64 ± 0.25 |
B | 2.55 | 60.70 ± 0.74 | ||
C | 11.45 | 46.25 ± 0.27 | ||
D | 21.01 | 37.26 ± 0.35 | ||
Citrus medica L. | Mature fruit pericarp | A | 0.28 | 27.63 ± 0.75 |
B | 4.52 | 19.08 ± 0.07 | ||
C | 13.87 | - | ||
D | 16.69 | - | ||
Citrus medica L. var. sarcodactylis Swingle | Mature fruit | A | 0.33 | 21.38 ± 0.99 |
B | 2.05 | 23.36 ± 0.53 | ||
C | 5.33 | 17.60 ± 0.05 | ||
D | 20.08 | 12.85 ± 0.48 | ||
Citrus reticulata Blanco | Immature fruits pericarp | A | 0.27 | 39.76 ± 0.31 |
B | 2.47 | 50.15 ± 0.44 | ||
C | 8.00 | 38.73 ± 0.24 | ||
D | 12.95 | 29.01 ± 1.11 | ||
Citrus reticulata Blanco | Mature fruit pericarp | A | 0.22 | 41.46 ± 0.25 |
B | 1.78 | 33.11 ± 0.70 | ||
C | 17.68 | 12.32 ± 1.29 | ||
D | 23.89 | - | ||
Citrus reticulata Blanco | Mature fruit exocarp | A | 0.45 | 26.44 ± 0.56 |
B | 3.80 | 23.41 ± 0.88 | ||
C | 15.97 | 10.90 ± 0.44 | ||
D | 18.34 | - |
Compounds | XO Inhibition (Mean ± S.D.%, 200 μM) | IC50 (μM) | Inhibition Mode | Ki (μM) | |
---|---|---|---|---|---|
1 | Naringin | 15.29 ± 0.64 | |||
2 | Hesperidin | 7.28 ± 0.21 | |||
3 | Neohesperidin | 5.36 ± 0.01 | |||
4 | Naringenin | 49.82 ± 1.17 | |||
5 | Hesperetin | 81.31 ± 0.36 | 16.48 | mixed | 1.40 |
6 | Nobiletin | 59.44 ± 0.83 | 107.53 | noncompetitive | 77.24 |
7 | Tangeretin | 28.82 ± 0.02 | |||
Allopurinol | 2.07 | competitive | 1.92 |
© 2016 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, K.; Wang, W.; Guo, B.-H.; Gao, H.; Liu, Y.; Liu, X.-H.; Yao, H.-L.; Cheng, K. Chemical Evidence for Potent Xanthine Oxidase Inhibitory Activity of Ethyl Acetate Extract of Citrus aurantium L. Dried Immature Fruits. Molecules 2016, 21, 302. https://doi.org/10.3390/molecules21030302
Liu K, Wang W, Guo B-H, Gao H, Liu Y, Liu X-H, Yao H-L, Cheng K. Chemical Evidence for Potent Xanthine Oxidase Inhibitory Activity of Ethyl Acetate Extract of Citrus aurantium L. Dried Immature Fruits. Molecules. 2016; 21(3):302. https://doi.org/10.3390/molecules21030302
Chicago/Turabian StyleLiu, Kun, Wei Wang, Bing-Hua Guo, Hua Gao, Yang Liu, Xiao-Hong Liu, Hui-Li Yao, and Kun Cheng. 2016. "Chemical Evidence for Potent Xanthine Oxidase Inhibitory Activity of Ethyl Acetate Extract of Citrus aurantium L. Dried Immature Fruits" Molecules 21, no. 3: 302. https://doi.org/10.3390/molecules21030302
APA StyleLiu, K., Wang, W., Guo, B. -H., Gao, H., Liu, Y., Liu, X. -H., Yao, H. -L., & Cheng, K. (2016). Chemical Evidence for Potent Xanthine Oxidase Inhibitory Activity of Ethyl Acetate Extract of Citrus aurantium L. Dried Immature Fruits. Molecules, 21(3), 302. https://doi.org/10.3390/molecules21030302