NMR Study on the Inclusion Complexes of β-Cyclodextrin with Isoflavones
Abstract
:1. Introduction
2. Results and Discussion
2.1. Stoichiometry of the Complexes
2.2. Structure of the Inclusion Complexes of Daidzein and Daidzin with β-CD
2.2.1. Proton Chemical Shifts
2.2.2. ROESY Experiments
2.3. DOSY of Complexes of Isoflavones 1–3 with β-CD
2.4. Docking of the Complexes of Isoflavones with β-CD
3. Experimental Section
3.1. Materials
3.2. Sample Preparation
3.3. NMR
3.4. Molecular Modeling
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Han, J.; Wang, W.; Wang, L.Y.; Liu, S.; Kang, T.D. Effect of puerarin and daidzein on proliferating vascular smooth muscle cells. Zhongguo Zhong Yao Za Zhi 2004, 29, 437–440. [Google Scholar] [PubMed]
- Keung, W.M.; Vallee, B.L. Kudzu root: An ancient Chinese source of modern antidipsotropic agents. Phytochemistry 1998, 47, 499–506. [Google Scholar] [CrossRef]
- Li, Y.Q.; Yang, Y.L. Clinical treatment by puerarin in patients with senile ischemic cerebrovascular disease. Chin. Pharm. J. 1997, 32, 776–777. [Google Scholar]
- Liu, Q.; Lu, Z.; Wang, L. Restrictive effect of puerarin on myocardial infarct area in dogs and its possible mechanism. J. Tongji Med. Univ. 2000, 20, 43–45. [Google Scholar] [PubMed]
- Chen, G.; Zhang, J.; Jiannong, Y. Determination of puerarin, daidzein and rutin in Pueraria lobata (Wild.) Ohwi by capillary electrophoresis with electrochemical detection. J. Chromatogr. A 2001, 923, 255–262. [Google Scholar] [CrossRef]
- Li, S.; Purdy, W.C. Cyclodextrins and their applications in analytical chemistry. Chem. Rev. 1992, 92, 1457–1470. [Google Scholar] [CrossRef]
- Ribeiro, A.C.F.; Esteso, M.A.; Lobo, V.M.M.; Valente, A.J.M.; Simoes, S.M.N.; Sobral, A.; Ramos, L.; Burrows, H.D.; Amado, A.M.; da Costa, A.M. Interactions of copper(II) chloride with beta-cyclodextrin in aqueous solutions. J. Carbohydr. Chem. 2006, 25, 173–185. [Google Scholar] [CrossRef]
- Saenger, W.; Jacob, J.; Gessler, K.; Steiner, T.; Hoffmann, D.; Sanbe, H.; Koizumi, K.; Smith, S.M.; Takaha, T. Structures of the Common Cyclodextrins and Their Larger AnaloguesBeyond the Doughnut. Chem. Rev. 1998, 98, 1787–1802. [Google Scholar] [CrossRef] [PubMed]
- Uekama, K.; Hirayama, F.; Irie, T. Cyclodextrin Drug Carrier Systems. Chem. Rev. 1998, 98, 2045–2076. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.-J.; Xia, S.; Ma, S.-X.; Zhou, S.-Y.; Zhao, X.-Q.; Wang, S.-H.; Li, M.-Y.; Yang, X.-D. Host-guest system of hesperetin and β-cyclodextrin or its derivatives: Preparation, characterization, inclusion mode, solubilization and stability. Mater. Sci. Eng. C 2016, 59, 1016–1024. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Guo, Q.X. The driving forces in the inclusion complexation of cyclodextrins. J. Incl. Phenom. Macrocycl. Chem. 2002, 42, 1–14. [Google Scholar] [CrossRef]
- Shi, J.-H.; Chen, K.; Xu, Y. Characterization of the inclusion interaction between prednisolone and di-O-methyl-β-cyclodextrin: Spectroscopic methods and molecular modeling. J. Mol. Liq. 2014, 194, 172–178. [Google Scholar] [CrossRef]
- He, X.; Tan, T.; Janson, J.C. Purification of the isoflavonoid puerarin by adsorption chromatography on cross-linked 12% agarose. J. Chromatogr. A 2004, 1057, 95–100. [Google Scholar] [CrossRef] [PubMed]
- He, X.L.; Tan, T.W.; Xu, B.Z.; Janson, J.C. Separation and purification of puerarin using beta-cyclodextrin-coupled agarose gel media. J. Chromatogr. A 2004, 1022, 77–82. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Zhao, R.I.; Zhang, H.Y.; Li, C.; Feng, D.; Qin, P.Y.; Tan, T.W. A Novel Medium Poly(vinyl acetate-triallyl isocyanurate-divinylbenzene) Coupled with Oligo-beta-Cyclodextrin for the Isolation of Puerarin from Pueraria Flavones. Chromatographia 2010, 72, 47–54. [Google Scholar] [CrossRef]
- Yang, L.; Zhang, H.Y.; Tan, T.W.; Rahman, A.U. Thermodynamic and NMR investigations on the adsorption mechanism of puerarin with oligo-beta-cyclodextrin-coupled polystyrene-based matrix. J. Chem. Technol. Biotechnol. 2009, 84, 611–617. [Google Scholar] [CrossRef]
- Zhang, H.Y.; Feng, W.; Li, C.; Tan, T.W. Investigation of the Inclusions of Puerarin and Daidzin with β-Cyclodextrin by Molecular Dynamics Simulation. J. Phys. Chem. B 2010, 114, 4876–4883. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Tan, T.; Hetényi, C.; Lv, Y.; van der Spoel, D. Cooperative Binding of Cyclodextrin Dimers to Isoflavone Analogues Elucidated by Free Energy Calculations. J. Phys. Chem. C 2014, 118, 7163–7173. [Google Scholar] [CrossRef] [PubMed]
- Zhao, R.; Tan, T.; Sandström, C. NMR studies on puerarin and its interaction with β-cyclodextrin. J. Biol. Phys. 2011, 37, 387–400. [Google Scholar] [CrossRef] [PubMed]
- Cameron, K.S.; Fielding, L. NMR diffusion coefficient study of steroid-cyclodextrin inclusion complexes. Magn. Reson. Chem. 2002, 40, S106–S109. [Google Scholar] [CrossRef]
- Simova, S.; Berger, S. Diffusion measurements vs. chemical shift titration for determination of association constants on the example of camphor-cyclodextrin complexes. J. Incl. Phenom. Macrocycl. Chem. 2005, 53, 163–170. [Google Scholar] [CrossRef]
- Ferrazza, R.; Rossi, B.; Guella, G. DOSY-NMR and Raman Investigations on the Self-Aggregation and Cyclodextrin Complexation of Vanillin. J. Phys. Chem. B 2014, 118, 7147–7155. [Google Scholar] [CrossRef] [PubMed]
- Fielding, L. Determination of Association Constants (Ka) from Solution NMR Data. Tetrahedron 2000, 56, 6151–6170. [Google Scholar] [CrossRef]
- Pirnau, A.; Floare, C.G.; Bogdan, M. The complexation of flurbiprofen with β-cyclodextrin: A NMR study in aqueous solution. J. Incl. Phenom. Macrocycl. Chem. 2012, 78, 113–120. [Google Scholar] [CrossRef]
- Bekiroglu, S.; Kenne, L.; Sandstrom, C. H-1 NMR studies of maltose, maltoheptaose, α-, β-, and γ-cyclodextrins, and complexes in aqueous solutions with hydroxy protons as structural probes. J. Org. Chem. 2003, 68, 1671–1678. [Google Scholar] [CrossRef] [PubMed]
- Nishijo, J.; Nagai, M.; Yasuda, M. Interaction of 8-anilino-1-naphthalenesulfonate with 2,6-di-O-methylcyclomaltoheptaose. Carbohydr. Res. 1993, 245, 43–56. [Google Scholar] [CrossRef]
- Bulani, V.D.; Kothavade, P.S.; Kundaikar, H.S.; Gawali, N.B.; Chowdhury, A.A.; Degani, M.S.; Juvekar, A.R. Inclusion complex of ellagic acid with β-cyclodextrin: Characterization and in vitro anti-inflammatory evaluation. J. Mol. Struct. 2016, 1105, 308–315. [Google Scholar] [CrossRef]
- Xu, J.; Tan, T.; Kenne, L.; Sandstrom, C. The use of diffusion-ordered spectroscopy and complexation agents to analyze mixtures of catechins. New J. Chem. 2009, 33, 1057–1063. [Google Scholar] [CrossRef]
- Cameron, K.S.; Fielding, L. NMR Diffusion Spectroscopy as a Measure of Host-Guest Complex Association Constants and as a Probe of Complex Size. J. Org. Chem. 2001, 66, 6891–6895. [Google Scholar] [CrossRef] [PubMed]
- Šmejkalová, D.; Piccolo, A. Host-Guest Interactions between 2,4-Dichlorophenol and Humic Substances As Evaluated by 1H-NMR Relaxation and Diffusion Ordered Spectroscopy. Environ. Sci. Technol. 2008, 42, 8440–8445. [Google Scholar] [CrossRef] [PubMed]
- Johnson, C.S., Jr. Diffusion ordered nuclear magnetic resonance spectroscopy: Principles and applications. Prog. Nucl. Magn. Reson. Spectrosc. 1999, 34, 203–256. [Google Scholar] [CrossRef]
- Lutka, A.G. Bartosz, The effect of pH on cyclodextrin complexation of trifluoperazine. Acta Pol. Pharm. 2006, 63, 3–8. [Google Scholar] [PubMed]
- Morris, G.M.; Goodsell, D.S.; Halliday, R.S.; Huey, R.; Hart, W.E.; Belew, R.K.; Olson, A.J. Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. J. Comput. Chem. 1998, 19, 1639–1662. [Google Scholar] [CrossRef]
- Schuttelkopf, A.W.; van Aalten, D.M.F. PRODRG: A tool for high-throughput crystallography of protein-ligand complexes. Acta Crystallogr. D Biol. Cryst. 2004, 60, 1355–1363. [Google Scholar] [CrossRef] [PubMed]
- Sample Availability: Samples of the compounds are not available from the authors.
β-CD | CH Protons | H-1 | H-2 | H-3 | H-4 | H-5 | H-6 |
δ alone | 5.038 | 3.617 | 3.931 | 3.550 | 3.821 | 3.847 | |
CIS | −0.040 | −0.052 | −0.065 | −0.026 | −0.113 | −0.097 | |
Daidzein | CH protons | H-2 | H-5 | H-6 | H-8 | H-2′6′ | H-3′5′ |
δ alone | 7.992 | 7.859 | 6.73 | 6.524 | 7.217 | 6.704 | |
CIS | −0.123 | 0.009 | −0.022 | −0.047 | −0.049 | −0.007 |
β-CD | CH Protons | H-1 | H-2 | H-3 | H-4 | H-5 | H-6 |
δ alone | 5.038 | 3.617 | 3.931 | 3.550 | 3.821 | 3.847 | |
CIS | −0.019 | −0.021 | −0.047 | −0.012 | −0.063 | −0.050 | |
Daidzin | CH protons | H-2 | H-5 | H-6 | H-8 | H-2′6′ | H-3′5′ |
δ alone | 8.172 | 8.101 | 7.208 | 7.243 | 7.240 | 6.686 | |
CIS | −0.059 | 0.060 | 0.063 | 0.028 | −0.019 | 0.031 |
Isoflavones | Daidzein | Daidzin | Puerarin |
---|---|---|---|
log Dfree | −9.27 ± 0.03 | −9.34 ± 0.03 | −9.35 ± 0.01 |
log D+CD | −9.37 ± 0.04 | −9.38 ± 0.03 | −9.39 ± 0.01 |
K | 2843 ± 187 | 902 ± 66 | 781 ± 42 |
© 2016 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, R.; Sandström, C.; Zhang, H.; Tan, T. NMR Study on the Inclusion Complexes of β-Cyclodextrin with Isoflavones. Molecules 2016, 21, 372. https://doi.org/10.3390/molecules21040372
Zhao R, Sandström C, Zhang H, Tan T. NMR Study on the Inclusion Complexes of β-Cyclodextrin with Isoflavones. Molecules. 2016; 21(4):372. https://doi.org/10.3390/molecules21040372
Chicago/Turabian StyleZhao, Rui, Corine Sandström, Haiyang Zhang, and Tianwei Tan. 2016. "NMR Study on the Inclusion Complexes of β-Cyclodextrin with Isoflavones" Molecules 21, no. 4: 372. https://doi.org/10.3390/molecules21040372
APA StyleZhao, R., Sandström, C., Zhang, H., & Tan, T. (2016). NMR Study on the Inclusion Complexes of β-Cyclodextrin with Isoflavones. Molecules, 21(4), 372. https://doi.org/10.3390/molecules21040372