Adsorption of Emerging Ionizable Contaminants on Carbon Nanotubes: Advancements and Challenges
Abstract
:1. Introduction
2. Emerging Ionizable Contaminants
3. Mechanisms of Adsorption of Ionizable Contaminants on CNTs
4. Environmental Factors Affecting the Adsorption of Ionizable Compounds
5. Future Research Needs
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Ma, X.; Tsige, M.; Uddin, S.; Talapatra, S. Carbon nanotubes for removal of organic contaminants from water. Mater. Express 2011, 1, 183–200. [Google Scholar] [CrossRef]
- Mauter, M.S.; Elimelech, M. Environmental applications of carbon-based nanomaterials. Environ. Sci. Technol. 2008, 42, 5843–5859. [Google Scholar] [CrossRef] [PubMed]
- Pan, B.; Xing, B. Adsorption Mechanisms of Organic chemicals on Carbon Nanotubes. Environ. Sci. Technol. 2008, 42, 24–30. [Google Scholar] [CrossRef]
- Yang, K.; Xing, B. Adsorption of Organic Compounds by Carbon Nanomaterials in Aqueous Phase: Polanyi Theory and Its Application. Chem. Rev. 2010, 110, 5989–6008. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Duan, L.; Zhu, D. Adsorption of polar and nonpolar organic chemicals to carbon nanotubes. Environ. Sci. Technol. 2004, 38, 8295–8300. [Google Scholar] [CrossRef]
- Yang, K.; Xing, B. Desorption of polycyclic aromatic hydrocarbons from carbon nanomaterials in water. Environ. Pollut. 2007, 145, 529–537. [Google Scholar] [CrossRef] [PubMed]
- Yan, X.M.; Shi, B.Y.; Lu, J.J.; Feng, C.H.; Wang, D.S.; Tang, H.X. Adsorption and desorption of atrazine on carbon nanotubes. J. Colloid Interface Sci. 2008, 321, 30–38. [Google Scholar] [CrossRef] [PubMed]
- Pan, B.; Liu, D.; Mashayekhi, H.; Xing, B. Adsorption and hysteresis of bisphenol A and 17α-ethinyl estradiol on carbon nanotubes. Environ. Sci. Technol. 2008, 42, 5480–5485. [Google Scholar] [CrossRef] [PubMed]
- Gotovac, S.; Song, L.; Kanoh, H.; Kaneko, K. Assembly structure control of single wall carbon nanotubes with liquid phase naphthalene adsorption. Colloids Surf A Physicochem. Eng. Asp. 2007, 300, 117–121. [Google Scholar] [CrossRef]
- Ci, L.; Zhu, H.; Wei, B.; Xu, C.; Wu, D. Annealing amorphous carbon nanotubes for their application in hydrogen storage. Appl. Surf. Sci. 2003, 205, 39–43. [Google Scholar] [CrossRef]
- Hiura, H.; Ebbesen, T.W.; Fujita, J.; Tanigaki, K.; Takada, T. Role of sp3 defect structures in graphite and carbon nanotubes. Nature 1994, 367, 148–151. [Google Scholar] [CrossRef]
- Ma, X.; Anand, D.; Zhang, X.; Talapatra, S. Adsorption and desorption of chlorinated compounds to pristine and thermally treated carbon nanotubes. J. Phys. Chem. C 2011, 115, 4552–4557. [Google Scholar] [CrossRef]
- Zhang, S.; Shao, T.; Bekaroglu, S.S.K.; Karanfeil, T. The impact of aggregation and surface chemistry of carbon nanotubes on the adsorption of synthetic organic compounds. Environ. Sci. Technol. 2009, 43, 5719–5725. [Google Scholar] [CrossRef] [PubMed]
- Ji, L.; Shao, Y.; Xu, Z.; Zheng, S.; Zhu, D. Adsorption of monoaromatic compounds and pharmaceutical antibiotics on carbon nanotubes activated by KOH etching. Environ. Sci. Technol. 2010, 44, 6429–6436. [Google Scholar] [CrossRef] [PubMed]
- Cho, H.; Smith, B.A.; Wnuk, J.D.; Fairbrother, D.H.; Ball, W.P. Influence of Surface Oxides on the Adsorption of Napthalene onto Multiwalled Carbon Nanotubes. Environ. Sci. Technol. 2008, 42, 2899–2905. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Zhu, D.; Duan, L.; Chen, W. Adsorption of single-ringed N- and S-hyterocyclic aromatics on carbon nanotubes. Carbon 2010, 48, 3906–3915. [Google Scholar] [CrossRef]
- Arora, G.; Sandler, S.I. Molecular sieving effect using single walled carbon nanotubes. Nano Lett. 2007, 7, 565–569. [Google Scholar] [CrossRef] [PubMed]
- Yang, K.; Wu, W.; Jing, Q.; Zhu, L. Aqueous adsorption of aniline, phenol and their substitutes by multi-walled carbon nanotubes. Environ. Sci. Technol. 2008, 42, 7931–7936. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Chen, W.; Zhu, D. Adsorption of nonionic aromatic compounds to single-walled carbon nanotubes: Effects of aqueous solution chemistry. Environ. Sci. Technol. 2008, 42, 7225–7230. [Google Scholar] [CrossRef] [PubMed]
- Ji, L.; Chen, W.; Bi, J.; Zhen, S.; Xu, Z.; Zhu, D.; Alvarez, P.J. Adsorption of tetracycline on single-walled and multi-walled carbon nanotubes as affected by aqueous solution chemistry. Environ. Toxicol. Chem. 2010, 29, 2713–2719. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Yu, X.; Pan, B.; Xing, B. Norfloxacin sorption and its thermodynamics on surface-modified carbon nanotubes. Environ. Sci. Technol. 2010, 44, 978–984. [Google Scholar] [CrossRef] [PubMed]
- Hyung, H.; Kim, J.H. Natural organic matter (NOM) adsorption to multi-walled carbon nanotubes: Effect of NOM characteristics and water quality parameters. Environ. Sci. Technol. 2008, 42, 4416–4421. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Shao, T.; Bekaroglu, S.K.; Karanfil, T. Adsorption of synthetic organic chemicals by carbon nanotubes: Effects of background solution chemistry. Water Res. 2010, 44, 2067–2074. [Google Scholar] [CrossRef] [PubMed]
- Cho, H.; Huang, H.; Schwab, K. Effects of solution chemistry on the adsorption of ibuprofen and triclosan onto carbon nanotubes. Langmuir 2011, 27, 12960–12967. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Shao, T.; Karanfil, T. The effects of dissolved natural organic matter on the adsorption of synthetic organic chemicals by activated carbons and carbon nanotubes. Water Res. 2011, 45, 1378–1386. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Pan, B.; Wang, B.; Zhang, H.; Peng, H.; Ning, P. Adsorption of sulfamethaxazole on functionalized carbon nanotubes as affected by cations and anions. Environ. Pollut. 2011, 159, 2612–2621. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Wang, S.; Wei, J.; Zhang, X.; Xu, C.; Luan, Z.; Wu, D.; Wei, B. Lead adsorption on carbon nanotubes. Chem. Phys. Lett. 2002, 357, 263–266. [Google Scholar] [CrossRef]
- Teixido, M.; Pignatello, J.J.; Beltran, J.L.; Grenados, M.; Peccia, J. Speciation of the ionizable antibiotic sulfamethazine on black carbon (biochar). Environ. Sci. Technol. 2011, 45, 10020–10027. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Lu, J.; Xing, B. Sorption of organic contaminants by carbon nanotubes: Influence of adsorbed organic matter. Environ. Sci. Technol. 2008, 42, 3207–3212. [Google Scholar] [CrossRef] [PubMed]
- Yang, K.; Wu, W.; Jing, Q.; Jiang, W.; Xing, B. Competitive adsorption of naphthalene with 2,4-dichlorophenol and 4 chloroaniline on multiwalled carbon nanotubes. Environ. Sci. Technol. 2010, 44, 3021–3027. [Google Scholar] [CrossRef] [PubMed]
- Lu, C.; Su, F. Adsorption of natural organic matter by carbon nanotubes. Sep. Purif. Technol. 2007, 58, 113–121. [Google Scholar] [CrossRef]
- Endo, S.; Grathwohl, P.; Haderlein, S.B.; Schmidt, T.C. Compound specific factors influencing sorption nonlinearity in natural organic matter. Environ. Sci. Technol. 2008, 42, 5897–5903. [Google Scholar] [CrossRef] [PubMed]
- Hyung, H.; Fortner, J.D.; Hughes, J.; Kim, J. Natural organic matter stabilizes carbon nanotubes in the aqueous phase. Environ. Sci. Technol. 2007, 41, 179–184. [Google Scholar] [CrossRef] [PubMed]
- Gavrilescu, M.; Demnerová, K.; Aamand, J.; Agathos, S.; Fava, F. Emerging pollutants in the environment: Present and future challenges in biomonitoring, ecological risks and bioremediation. N. Biotechnol. 2015, 32, 147–156. [Google Scholar] [CrossRef] [PubMed]
- Forth, J.; Henschler, K.; Rummel, D. Allgemeine und Spezielle Pharmakologie und Toxikologie; Elsevier GmbH: Munchen, Germany, 2005. [Google Scholar]
- Richardson, M.L.; Bowron, J.M. The fate of pharmaceutical chemicals in the aquatic environment. J. Pharm. Pharmacol. 1985, 37, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Ternes, T.A. Occurrence of drugs in German sewage treatment plants and rivers. Water Res. 1998, 32, 3245–3260. [Google Scholar] [CrossRef]
- Sui, Q.; Cao, X.; Lu, S.; Zhao, W.; Qiu, Z.; Yu, G. Occurrence, sources and fate of pharmaceuticals and personal care products in the groundwater: A review. Emerg. Contam. 2015, 1, 14–24. [Google Scholar] [CrossRef]
- Yu, F.; Li, Y.; Han, S.; Ma, J. Adsorptive removal of antibiotics from aqueous solution using carbon materials. Chemosphere 2016, 153, 365–385. [Google Scholar] [CrossRef] [PubMed]
- Hu, J.; Shao, D.; Chen, C.; Sheng, G.; Li, J.; Wang, X.; Nagatsu, M. Plasma-induced grafting of cyclodextrin onto multiwall carbon nanotube/iron oxides for adsorbent application. J. Phys. Chem. B 2010, 114, 6779–6785. [Google Scholar] [CrossRef] [PubMed]
- Oleszczuk, P.; Pan, B.; Xing, B. Adsorption and desorption of oxytetracycline and carbamazepine by multiwalled carbon nanotubes. Environ. Sci. Technol. 2009, 43, 9167–9173. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Pan, B.; Zhang, H.; Ning, P.; Xing, B. Contribution of different sulfamethoxazole species to their overall adsorption on functionalized carbon nanotubes. Environ. Sci. Technol. 2010, 44, 3806–3811. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.; Zhang, L.; Liang, M.; Sun, W. pH-dependent sulfonamides adsorption by carbon nanotubes with different surface oxygen contents. Chem. Eng. J. 2015, 279, 363–371. [Google Scholar] [CrossRef]
- Lin, D.; Xing, B. Adsorption of phenolic compounds by carbon nanotubes: Role of aromaticity and substitution of hydroxyl groups. Environ. Sci. Technol. 2008, 42, 7254–7259. [Google Scholar] [CrossRef] [PubMed]
- Yang, Q.; Li, X.; Chen, G.; Zhang, J.; Xing, B. Effect of humic acid on the sulfamethazine adsorption by functionalized multi-walled carbon nanotubes in aqueous solution: Mechanistic study. RSC Adv. 2016, 6, 15184–15191. [Google Scholar] [CrossRef]
- Zhao, H.; Liu, X.; Cao, Z.; Zhan, Y.; Shi, X.; Yang, Y.; Zhou, J.; Xu, J. Adsorption behavior and mechanism of chloramphenicols, sulfonamides and non-antibiotic pharmaceuticals on multi-walled carbon nanotubes. J. Hazard. Mater. 2016, 310, 235–245. [Google Scholar] [CrossRef] [PubMed]
- Jafari, M.; Aghamiri, S. Evaluation of carbon nanotubes as solid-phase extraction sorbent for the removal of cephalexin from aqueous solution. Desalination Water Treat. 2011, 28, 55–58. [Google Scholar] [CrossRef]
- Li, H.; Zhang, D.; Han, X.; Xing, B. Adsorption of antibiotic ciprofloxacin on carbon nanotubes: pH dependence and thermodynamics. Chemosphere 2014, 95, 150–155. [Google Scholar] [CrossRef] [PubMed]
- Carabineiro, S.; Thavorn-Amornsri, T.; Pereira, M.; Serp, P.; Figueiredo, J. Comparison between activated carbon, carbon xerogel and carbon nanotubes for the adsorption of the antibiotic ciprofloxacin. Catal. Today 2012, 186, 29–34. [Google Scholar] [CrossRef]
- Sanghavi, B.J.; Srivastava, A.K. Simultaneous voltammetric determination of acetaminophen, aspirin and caffeine using an in situ surfactant-modified multiwalled carbon nanotube paste electrode. Electrochim Acta 2010, 55, 8638–8648. [Google Scholar] [CrossRef]
- Sotelo, J.L.; Rodríguez, A.R.; Mateos, M.M.; Hernández, S.D.; Torrellas, S.A.; Rodríguez, J.G. Adsorption of pharmaceutical compounds and an endocrine disruptor from aqueous solutions by carbon materials. J. Environ. Sci. Health Part B 2012, 47, 640–652. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Jing, L. Electrochemical behavior of acetaminophen and its detection on the PANI–MWCNTs composite modified electrode. Electrochim. Acta 2007, 52, 3250–3257. [Google Scholar] [CrossRef]
- Alothman, Z.A.; Bukhari, N.; Wabaidur, S.M.; Haider, S. Simultaneous electrochemical determination of dopamine and acetaminophen using multiwall carbon nanotubes modified glassy carbon electrode. Sens. Actuators B 2010, 146, 314–320. [Google Scholar] [CrossRef]
- Cruz-Vera, M.; Lucena, R.; Cárdenas, S.; Valcárcel, M. Combined use of carbon nanotubes and ionic liquid to improve the determination of antidepressants in urine samples by liquid chromatography. Anal. Bioanal. Chem. 2008, 391, 1139–1145. [Google Scholar] [CrossRef] [PubMed]
- Salimi, A.; Izadi, M.; Hallaj, R.; Rashidi, M. Simultaneous determination of ranitidine and metronidazole at glassy carbon electrode modified with single wall carbon nanotubes. Electroanalysis 2007, 19, 1668–1676. [Google Scholar] [CrossRef]
- Li, J.; Wang, Y.-B.; Wu, L.; Li, K.-Y.; Feng, W. Fabrication of multi-walled carbon nanotubes/oxide reinforced hollow fibers by sol-gel technique for rapid determination of metronidazole in milk. Anal. Methods 2014, 6, 1404–1411. [Google Scholar] [CrossRef]
- Liu, F.; Zhao, J.; Wang, S.; Du, P.; Xing, B. Effects of solution chemistry on adsorption of selected pharmaceuticals and personal care products (PPCPs) by graphenes and carbon nanotubes. Environ. Sci. Tecnol. 2014, 48, 13197–13206. [Google Scholar] [CrossRef] [PubMed]
- Garala, K.; Patel, J.; Patel, A.; Dharamsi, A. Enhanced encapsulation of metoprolol tartrate with carbon nanotubes as adsorbent. Appl. Nanosci. 2011, 1, 219–230. [Google Scholar] [CrossRef]
- Farhadian, N.; Sharifi, A.; Lashgari, E. Selective adsorption of metoprolol enantiomers using 2-hydroxypropyl-β-cyclodextrin cross-linked multiwalled carbon nanotube. Biomed. Chrom. 2015, 29, 366–372. [Google Scholar] [CrossRef] [PubMed]
- Ji, L.; Chen, W.; Zheng, S.; Xu, Z.; Zhu, D. Adsorption of sulfonamide antibiotics to multiwalled carbon nanotubes. Langmuir 2009, 25, 11608–11613. [Google Scholar] [CrossRef] [PubMed]
- Xia, M.; Li, A.; Zhu, Z.; Zhou, Q.; Yang, W. Factors influencing antibiotics adsorption onto engineered adsorbents. J. Environ. Sci. 2013, 25, 1291–1299. [Google Scholar] [CrossRef]
- Bohdziewicz, J.; Kamińska, G. Kinetics and equilibrium of the sorption of bisphenol A by carbon nanotubes from wastewater. Water Sci. Technol. 2013, 68, 1306–1314. [Google Scholar] [CrossRef] [PubMed]
- Zaib, Q.; Khan, I.A.; Saleh, N.B.; Flora, J.R.; Park, Y.-G.; Yoon, Y. Removal of bisphenol A and 17β-estradiol by single-walled carbon nanotubes in aqueous solution: Adsorption and molecular modeling. Water Air Soil Pollut. 2012, 223, 3281–3293. [Google Scholar] [CrossRef]
- Zhang, L.; Fang, P.; Yang, L.; Zhang, J.; Wang, X. Rapid method for the separation and recovery of endocrine-disrupting compound bisphenol AP from wastewater. Langmuir 2013, 29, 3968–3975. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Pignatello, J.J.; Wang, Y.; Xing, B. New insight into adsorption mechanism of ionizable compounds on carbon nanotubes. Environ. Sci. Technol. 2013, 47, 8334–8341. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Gamiz, B.; Wang, Y.; Pignatello, J.J.; Xing, B. Competitive sorption used to probe strong hydrogen bonding sites for weak organic acids on carbon nanotubes. Environ. Sci. Technol. 2015, 49, 1409–1417. [Google Scholar] [CrossRef] [PubMed]
- Sheng, G.D.; Shao, D.D.; Ren, X.M.; Wang, X.Q.; Li, J.X.; Chen, Y.X.; Wang, X.K. Kinetics and thermodynamics of adsorption of ionizable aromatic compounds from aqueous solutions by as-prepared and oxidized multiwalled carbon nanotubes. J. Hazard. Mater. 2010, 178, 505–516. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Chen, C.; Shao, D.; Li, J.; Tan, X.; Zhao, G.; Yang, S.; Wang, X. Enhanced adsorption of ionizable aromatic compounds on humic acid-coated carbonaceous adsorbents. RSC Adv. 2012, 2, 10359–10364. [Google Scholar] [CrossRef]
- Pan, B.; Zhang, D.; Li, H.; Wu, M.; Wang, Z.; Xing, B. Increased adsorption of sulfamethoxazole on suspended carbon nanotubes by dissolved humic acid. Environ. Sci. Technol. 2013, 47, 7722–7728. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Chen, S.; Quan, X.; Zhang, Y. Enhanced adsorption of PFOA and PFOS on multiwalled carbon nanotubes under electrochemical assistance. Environ. Sci. Technol. 2011, 45, 8498–8505. [Google Scholar] [CrossRef] [PubMed]
- Patino, Y.; Diaz, E.; Ordonez, S.; Vallegos-Suarez, E.; Guerrero-Ruiz, A.; Rodriguez-Ramos, I. Adsorption of emerging pollutants on functionalized multiwall carbon nanotubes. Chemosphere 2015, 136, 174–180. [Google Scholar] [CrossRef] [PubMed]
- Calvaresi, M.; Zerbetto, F. Atomistic molecular dynamics simulations reveal insights into adsorption, packing, and fluxes of molecules with carbon nanotubes. J. Mater. Chem. A 2014, 2, 12123–12135. [Google Scholar] [CrossRef]
- Ma, X.; Anand, D.; Zhang, X.; Tsige, M.; Talapatra, S. Carbon nanotube-textured sand for controlling bioavailability of contaminated sediments. Nano Res. 2010, 3, 412–422. [Google Scholar] [CrossRef]
Compound | Functional Groups | Multi/Single-Walled Carbon Nanotubes (MWCNTs/SWCNTs) | Mechanisms | Ref. |
---|---|---|---|---|
Sulfamethazine | Amine, Methyl pyrimidine | Pristine, C-MWCNTs a H-MWCNT b | π–π interactions, hydrogen bonding interactions, hydrophobic interaction, Lewis acid-base interaction | [45,46] |
Cephalexin | Amino, Phenylacetamido | MWCNTs | not specified | [47] |
Triclosan | Phenol, Chlorine | SWCNTs MWCNTs O-MWCNTs c | electrostatic interactions, hydrophobic interactions | [24] |
Ciprofloxacin | Carboxylic acid, Cycloamine | SWCNTs H-MWCNTs G-MWCNTs d C-MWCNT | hydrophobic, π-π electron-donor-acceptor (EDA) interactions electrostatic interactions | [48,49] |
Aspirin | Carboxylic acid, Ester | MWCNTs | not specified | [50] |
Isoproturon | Isopropyl, Carbonyl, Amine | MWCNTs | electrostatic interactions | [51] |
Paracetamol | Hydroxyl, Amide | Polyaniline-MWCNTs e C-MWCNTs | not specified | [52,53] |
Amitriptyline | Amine | MWCNTs | π–π selective interactions | [54] |
Metronidazole | Nitro | SWCNTs MWCNTs | π–π stacking, hydrophobic and electrostatic interactions | [55,56] |
Tetracycline | Phenol, Amino, Alcohol | SWCNTs MWCNTs | Van der Waals forces, π–π electron-donor-acceptor (EDA) interactions, cation-π bonding | [20] |
Carbamazepine | Amide | SWCNTs MWCNTs | π–π electron-donor-acceptor (EDA) interactions, hydrogen bonding hydrophobic interaction, Lewis acid-base interaction | [41,46,57] |
Metoprolol | Phenol, Amine, Ether | MWCNTs | electrostatic interactions | [58,59] |
Sulfamethoxazole | Sulfamoyl, Amine | MWCNTs | π–π electron coupling | [46,60] |
Diclofenac | Phenylacetic acid, Chlorine, Amine | MWCNTs | electrostatic interactions, hydrophobic interaction, hydrogen bonding, Lewis acid-base interaction | [46,51] |
Sulfadimethoxine | Amine | MWCNTs | hydrophobic effect, hydrogen bonding | [61] |
Bisphenol A | Phenol | SWCNTs MWCNTs C-MWCNTs | electrostatic interactions, π–π interactions, hydrophobic effect | [62,63] |
Bisphenol AP | Phenol | MWCNTs | hydrogen bond, hydrophobic effect, π−π stacking interactions | [64] |
Chloramphenicol | Chlorine, Nitro, Amide | MWCNTs | π–π EDA interactions, hydrophobic interaction, hydrogen bonding, Lewis acid-base interaction | [46] |
Thiamphenicol | Chlorine, Sulfonyl, Amide | MWCNTs | π–π EDA interactions, hydrophobic interaction, hydrogen bonding, Lewis acid-base interaction | [46] |
Florfenicol | Chlorine, Flourine, Amide | MWCNTs | π-π EDA interactions, hydrophobic interaction, hydrogen bonding, Lewis acid-base interaction | [46] |
© 2016 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, X.; Agarwal, S. Adsorption of Emerging Ionizable Contaminants on Carbon Nanotubes: Advancements and Challenges. Molecules 2016, 21, 628. https://doi.org/10.3390/molecules21050628
Ma X, Agarwal S. Adsorption of Emerging Ionizable Contaminants on Carbon Nanotubes: Advancements and Challenges. Molecules. 2016; 21(5):628. https://doi.org/10.3390/molecules21050628
Chicago/Turabian StyleMa, Xingmao, and Sarang Agarwal. 2016. "Adsorption of Emerging Ionizable Contaminants on Carbon Nanotubes: Advancements and Challenges" Molecules 21, no. 5: 628. https://doi.org/10.3390/molecules21050628
APA StyleMa, X., & Agarwal, S. (2016). Adsorption of Emerging Ionizable Contaminants on Carbon Nanotubes: Advancements and Challenges. Molecules, 21(5), 628. https://doi.org/10.3390/molecules21050628