Dendrimer Prodrugs
Abstract
:1. Introduction
2. General Applications of Dendrimer Prodrugs
2.1. Drug Delivery
2.2. Improvement of Pharmacokinetics
2.3. Drug Release Control
2.4. Molecular Modeling as a Tool to Predict the Drug/Bioactive Compound Release
2.5. Toxicity Decrease and Drug Selectivity Increase
2.6. Solving Problems Related to the Physicochemical Properties and Pharmaceutical Formulations
3. Concluding Remarks
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Chung, M.C.; Silva, A.T.A.; Castro, L.F.; Guido, R.V.C.; Nassute, J.C.; Ferreira, E.I. Latenciação e formas avançadas no transporte de fármacos. Rev. Bras. Cienc. Farm. 2005, 41, 155–179. [Google Scholar] [CrossRef]
- Silva, A.T.A.; Castro, L.F.; Guido, R.V.C.; Chung, M.C.; Ferreira, E.I. Advances in prodrug design. Mini Rev. Med. Chem. 2005, 5, 893–914. [Google Scholar] [CrossRef] [PubMed]
- Gardikis, K.; Micha-Screttas, M.; Steele, B.R.; Demetzos, C. An overview of dendrimers and their biomedical applications. Pharmakeftiki 2006, 19, 89–92. [Google Scholar]
- Huttunen, K.M.; Raunio, H.; Rautio, J. Prodrugs—From serendipity to rational design. Pharmacol. Rev. 2011, 63, 750–771. [Google Scholar] [CrossRef] [PubMed]
- Zawilska, J.B.; Wojcieszak, J.; Olejniczak, A.B. Prodrugs: A challenge for the drug development. Pharmacol. Rep. 2013, 65, 1–14. [Google Scholar] [CrossRef]
- Tomalia, D.A.; Baker, H.; Dewald, J.; Hall, M.; Kallos, G.; Martin, S.; Roeck, J.; Ryder, J.; Smith, P. A new class of polymers: Starburst dendritic macromolecules. Polym. J. 1985, 17, 117–132. [Google Scholar] [CrossRef]
- Newkome, G.R.; Yao, Z.Q.; Baker, G.R.; Gupta, V.K. Micelles. Part 1. Cascade molecules. A new approach to micelles. J. Org. Chem. 1985, 50, 2003–2004. [Google Scholar] [CrossRef]
- Kesharwani, P.; Jain, K.; Jain, N.K. Dendrimer as nanocarrier for drug delivery. Prog. Polym. Sci. 2014, 39, 268–307. [Google Scholar] [CrossRef]
- Tomalia, D.A. Birth of a new macromolecular architecture: Dendrimers as quantized building blocks for nanoscale synthetic polymer chemistry. Prog. Polym. Sci. 2005, 30, 294–324. [Google Scholar] [CrossRef]
- Ina, M. Dendrimer: A novel drug delivery system. JDDT 2011, 1, 70–74. [Google Scholar]
- Twibanire, J.A.K.; Grindley, T.B. Polyester dendrimers: Smart carriers for drug delivery. Polymers 2014, 6, 179–213. [Google Scholar] [CrossRef]
- Cheng, Y.; Gao, Y.; Rao, T.; Li, Y.; Xu, T. Dendrimer-based prodrugs: Design, synthesis, screening and biological evaluation. Comb. Chem. High Troughput Screen. 2007, 10, 336–349. [Google Scholar] [CrossRef]
- Svenson, S. Dendrimers as versatile platform in drug delivery applications. Eur. J. Pharm. Biopharm. 2009, 71, 445–462. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, E.I.; Giarolla, J. Pró-Fármaco Dendrimérico, Processo para sua Preparação e Composições Contendo os Mesmos. Available online: http://www.patentesonline.com.br/pr-f-rmaco-dendrim-rico-processo-para-sua-prepara-o-e-composi-es-contendo-os-mesmos-199965.html (accessed on 20 May 2016).
- Tang, S.; Martinez, L.J.; Sharma, A.; Chai, M. Synthesis and characterization of water-soluble and photostable L-dopa dendrimers. Org. Lett. 2006, 8, 4421–4424. [Google Scholar] [CrossRef] [PubMed]
- Jevprasesphant, R.; Cowley, J.; Day, N.; Penny, J.; Attwood, D.; D’Emanuele, A. Development of dendrimer carriers for oral drug delivery. Pharmakeftiki 2006, 19, 93–100. [Google Scholar]
- Kitchens, K.M.; Foraker, A.B.; Kolhatkar, R.B.; Swaan, P.W.; Ghandehari, H. Endocytosis and interaction of poly(amidoamine) dendrimers with Caco-2 cells. Pharm. Res. 2007, 24, 2138–2145. [Google Scholar] [CrossRef] [PubMed]
- Ke, W.; Zhao, Y.; Huang, R.; Jiang, C.; Pei, Y. Enhanced oral bioavailability of doxorubicin in a dendrimer drug delivery system. J. Pharm. Sci. 2008, 97, 2208–2216. [Google Scholar] [CrossRef] [PubMed]
- Mei, L.; Zhang, Z.; Zhao, L.; Huang, L.; Yang, X.L.; Tang, J.; Feng, S.S. Pharmaceutical nanotechnology for oral delivery of anticancer drugs. Adv. Drug Deliv. Rev. 2013, 65, 880–890. [Google Scholar] [CrossRef] [PubMed]
- Jevprasesphant, R.; Penny, J.; Atwood, D.; D’Emanuele, A. Transport of dendrimer nanocarriers through epithelial cells via the transcellular route. J. Control. Release 2004, 97, 259–267. [Google Scholar] [CrossRef] [PubMed]
- Jevprasesphant, R.; Penny, J.; Jala, R.; Atwood, D.; McKeown, N.B.; D’Emanuele, A. The influence of surface modification on the cytotoxicity of PAMAM dendrimers. Int. J. Pharm. 2003, 252, 263–266. [Google Scholar] [CrossRef]
- Jevprasesphant, R.; Penny, J.; Atwood, D.; McKeown, N.B.; D’Emanuele, A. Engineering of dendrimer surfaces to enhance transepithelial transport and reduce cytotoxicity. Pharm. Res. 2003, 20, 1543–1550. [Google Scholar] [CrossRef] [PubMed]
- El-Sayed, M.; Ginski, M.; Rhodes, H.; Ghandehari, H. Transepithelial transport of poly(amidoamine) dendrimers across Caco-2 cell monolayers. J. Control. Release 2002, 81, 355–365. [Google Scholar] [CrossRef]
- El-Sayed, M.; Rhodes, C.A.; Ginski, M.; Ghandehari, H. Transport mechanism(s) of poly(amidoamine) dendrimers across Caco-2 cell monolayers. Int. J. Pharm. 2003, 265, 151–157. [Google Scholar] [CrossRef]
- Bhadra, D.; Bhadra, S.; Jain, N.K. A PEGylated dendritic nanoparticulate carrier of fluorouracil. Int. J. Pharm. 2003, 257, 111–124. [Google Scholar] [CrossRef]
- Prieto, M.J.; Schilrreff, P.; Tesoriero, M.V.; Morilla, M.J.; Romero, E.L. Brain and muscle of Wistar rats are the main targets of intravenous dendrimeric sulfadiazine. Int. J. Pharm. 2008, 360, 204–212. [Google Scholar] [CrossRef] [PubMed]
- Lo, S.T.; Stern, S.; Clogston, J.D.; Zheng, J.; Adiseshaiah, P.P.; Dobrovolskaia, M.; Lim, J.; Patri, A.; Sun, X.; Simanek, E.E. Biological assessment of triazine dendrimers as candidate platforms for nanomedicine: Toxicological profiles, solution behavior, biodistribution, and drug release and efficacy in a PEGylated, paclitaxel construct. Mol. Pharm. 2010, 7, 993–1006. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.B.; Shah, B.; Subramaniam, P.; Kim, C. Cyclodextrin-Modified Polyamines for Delivery of Therapeutic Molecules. U.S. Patent 8,697,667, 15 April 2014. [Google Scholar]
- Choksi, A.; Sarojini, K.V.L.; Vadnal, P.; Dias, C.; Suresh, P.K.; Khandare, J. Comparative anti-inflamatory activity of poly(amidoamine) (PAMAM) dendrimer-dexamethasone conjugates with dexamethasone-liposomes. Int. J. Pharm. 2013, 449, 28–36. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Xiao, C.; Li, M.; Chen, J.; Ding, J.; He, C.; Zhuang, X.; Chen, X. Co-delivery of 10-hydroxycamptothecin with doxorubicin conjugated prodrugs for enhanced anticancer efficacy. Macromol. Biosci. 2013, 13, 584–594. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Han, Y.; Chen, Q.; Shi, H.; Rehman, S.; Siddiq, M.; Ge, Z.; Liu, S. Dual endogenous stimuli-responsive polyplex micelles as smart two-step delivery nanocarriers for deep tumor tissue penetration and combating drug resistance of cisplatin. J. Mater. Chem. B. 2014, 2, 1813–1824. [Google Scholar] [CrossRef]
- Li, J.; Ke, W.; Li, H.; Zha, Z.; Han, Y.; Ge, Z. Endogenous stimuli-sensitive multistage polymeric micelleplex anticancer drug delivery system for efficient tumor penetration and cellular internalization. Adv. Healthc. Mater. 2015, 4, 2206–2219. [Google Scholar] [CrossRef] [PubMed]
- D’Emanuele, A.; Jevprasesphant, R.; Penny, J.; Attwood, D. The use of a dendrimer-propranolol prodrug to bypass efflux transporters and enhance oral bioavailability. J. Control. Release 2004, 95, 447–453. [Google Scholar] [CrossRef] [PubMed]
- Najlah, M.; Freeman, S.; Attwood, D.; D’Emanuele, A. Synthesis and assessment of first-generation polyamidoamine dendrimer prodrugs to enhance the cellular permeability of P-GP substrates. Bioconjug. Chem. 2007, 18, 937–946. [Google Scholar] [PubMed]
- Saovapakhiran, A.; D’Emanuele, A.; Attwood, D.; Penny, J. Surface modification of PAMAM dendrimers modulates the mechanism of cellular internalization. Bioconjug. Chem. 2009, 20, 693–701. [Google Scholar] [CrossRef] [PubMed]
- Najlah, M.; Freeman, S.; Attwood, D.; D’Emanuele, A. Synthesis, characterization and stability of dendrimer prodrugs. Int. J. Pharm. 2006, 308, 175–182. [Google Scholar] [CrossRef] [PubMed]
- Najlah, M.; Freeman, S.; Attwood, D.; D’Emanuele, A. In vitro evaluation of dendrimer prodrugs for oral drug delivery. Int. J. Pharm. 2007, 336, 183–190. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.; Gillies, E.R.; Fox, M.E.; Guillaudeu, S.J.; Fréchet, J.M.J.; Dy, E.E.; Szoka, F.C. A single dose of doxorubicin-functionalized bow-tie dendrimer cures mice bearing C-26 colon carcinomas. Proc. Natl. Acad. Sci. USA 2006, 103, 16649–16654. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Fréchet, J.M.J. Preparation of water-soluble dendritic unimolecular micelles as potential drug delivery agents. Polym. Mater. Sci. Eng. 1999, 80, 167–168. [Google Scholar] [CrossRef]
- Pan, G.; Lemmouchi, Y.; Akala, E.O.; Bakare, O. Studies on PEGylated and drug-loaded PAMAM dendrimers. J. Bioact. Compat. Polym. 2005, 20, 113–128. [Google Scholar] [CrossRef]
- Greenwald, R.B.; Choe, Y.H.; McGuire, J.; Conover, C.D. Effective drug delivery by PEGylated drug conjugates. Adv. Drug Deliv. Rev. 2003, 55, 217–250. [Google Scholar] [CrossRef]
- D’Emanuele, A.; Attwood, D. Dendrimer-drug interactions. Adv. Drug Deliv. Rev. 2005, 14, 2147–2162. [Google Scholar] [CrossRef] [PubMed]
- Amir, R.J.; Pessah, N.; Shamis, M.; Shabat, D. Self-immolative dendrimers. Angew. Chem. Int. Ed. Engl. 2003, 42, 4494–4499. [Google Scholar] [CrossRef] [PubMed]
- Shamis, M.; Lode, H.N.; Shabat, D. Bioactivation of self-immolative dendritic prodrugs by catalytic antibody 38C2. J. Am. Chem. Soc. 2004, 18, 1726–1731. [Google Scholar] [CrossRef] [PubMed]
- Wong, A.D.; DeWit, M.A.; Gillies, E.R. Amplified release through the stimulus triggered degradation of self-immolative oligomers, dendrimers, and linear polymers. Adv. Drug Deliv. Rev. 2012, 64, 1031–1045. [Google Scholar] [CrossRef] [PubMed]
- Gopin, A.; Ebner, S.; Attali, B.; Shabat, D. Enzymatic activation of second-generation dendritic prodrugs: Conjugation of self-immolative dendrimers with poly(ethylene glycol) via click chemistry. Bioconj. Chem. 2006, 17, 1432–1440. [Google Scholar] [CrossRef] [PubMed]
- Amir, R.J.; Danieli, E.; Shabat, D. Receiver-amplifier, self-immolative dendritic device. Chemistry 2007, 13, 812–821. [Google Scholar] [CrossRef] [PubMed]
- Sagi, A.; Segal, E.; Satchi-Fainaro, R.; Shabat, D. Remarkable drug-release enhancement with an elimination-based AB3 self-immolative dendritic amplifier. Bioorg. Med. Chem. 2007, 15, 3720–3727. [Google Scholar] [CrossRef] [PubMed]
- Shamis, M.; Shabat, D. Single-triggered AB6 self-immolative dendritic amplifiers. Chemistry 2007, 13, 4523–4528. [Google Scholar] [CrossRef] [PubMed]
- Avital-Shmilovici, M.; Shabat, D. Enzymatic activation of hydrophobic self-immolative dendrimers: The effect of reporters with ionizable functional groups. Bioorg. Med. Chem. Lett. 2009, 19, 3959–3962. [Google Scholar] [CrossRef] [PubMed]
- Gnaim, S.; Shabat, D. Quinone-methide species, a gateway to functional molecular systems: From self-immolative dendrimers to long-wavelength fluorescent dyes. Acc. Chem. Res. 2014, 47, 2970–2984. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Szalai, M.L.; Kevwitch, R.M.; McGrath, D.V.J. Dendrimer disassembly by benzyl ether depolymerization. J. Am. Chem. Soc. 2003, 12, 10516–10517. [Google Scholar] [CrossRef] [PubMed]
- Lim, J.; Chouai, A.; Lo, S.T.; Liu, W.; Sun, X.; Simanek, E.E. Design, synthesis, characterization and biological evaluation of triazine dendrimers bearing paclitaxel using ester and ester/disulfide linkages. Bioconj. Chem. 2009, 20, 2154–2161. [Google Scholar] [CrossRef] [PubMed]
- Lim, J.; Lo, S.T.; Hill, S.; Pavan, G.M.; Sun, X.; Simanek, E. Antitumor activity and molecular dynamics simulations of paclitaxel-laden triazine dendrimers. Mol. Pharm. 2012, 9, 404–412. [Google Scholar] [CrossRef] [PubMed]
- Bosnjakovic, A.; Mishra, M.K.; Ren, W.; Kurtoglu, Y.E.; Shi, T.; Fan, D.; Kannan, R.M. Poly(amidoamine) dendrimer-erythromycin conjugates for drug delivery to macrophages involved in periprosthetic inflammation. Nanomedicine 2011, 7, 284–294. [Google Scholar] [CrossRef] [PubMed]
- Wei, J.; Shi, J.; Zhang, J.; He, G.; Pan, J.; He, J.; Zhou, R.; Guo, L.; Ouyang, L. Design, synthesis and biological evaluation of enzymatically cleavable NSAIDs prodrugs derived from self-immolative dendritic scaffolds for the treatment of inflammatory diseases. Bioorg. Med. Chem. 2013, 21, 4192–4200. [Google Scholar] [CrossRef] [PubMed]
- Vembu, S.; Pazhamalai, S.; Gopalakrishnan, M. Potential antibacterial activity of triazine dendrimer: Synthesis and controllable drug release properties. Bioorg Med. Chem. 2015, 23, 4561–4566. [Google Scholar] [CrossRef] [PubMed]
- Giarolla, J.; Rando, D.G.; Pasqualoto, K.F.M.; Zaim, M.H.; Ferreira, E.I. Molecular modeling as a promising tool to study dendrimer prodrugs delivery. J. Mol. Struct. Theochem 2010, 939, 133–138. [Google Scholar] [CrossRef]
- Giarolla, J.; Pasqualoto, K.F.M.; Rando, D.G.; Zaim, M.H.; Ferreira, E.I. Molecular modeling study on the disassembly of dendrimers designed as potential antichagasic and antileishmanial prodrugs. J. Mol. Model. 2012, 18, 2257–2269. [Google Scholar] [CrossRef] [PubMed]
- Santos, S.S.; Giarolla, J.; Pasqualoto, K.F.M.; Ferreira, E.I. Molecular modeling as a tool for studying the disassembly of potentially leishmanicide-targeted dendrimer. Mol. Simul. 2013, 39, 860–867. [Google Scholar] [CrossRef]
- Santos, S.S.; Giarolla, J.; Pasqualoto, K.F.M.; Ferreira, E.I. In silico study to analyse the disassembly of quercetin-targeted dendrimers potentially leishmanicide. Mol. Simul. 2015, 41, 1–14. [Google Scholar]
- Giarolla, J.; Pasqualoto, K.F.M.; Ferreira, E.I. Design and exploratory data analysis of a second generation of dendrimer prodrugs potentially antichagasic and leishmanicide. Mol. Divers. 2013, 17, 711–720. [Google Scholar] [CrossRef] [PubMed]
- Tam, J.P.; Lu, Y.A.; Yang, J.L. Antimicrobial dendrimeric peptides. Eur. J. Biochem. 2002, 269, 923–932. [Google Scholar] [CrossRef] [PubMed]
- Liang, Y.; Narayanasamy, J.; Rapp, K.L.; Schinazi, R.F.; Chu, C.K. PAMAM dendrimers and branched polyethyleneglycol (nanoparticles) prodrugs of (−)-beta-d-(2R, 4R)-dioxolane-thymine (DOT) and their anti-HIV activity. Antivir. Chem. Chemother. 2006, 17, 321–329. [Google Scholar] [CrossRef] [PubMed]
- Howell, B.A.; Fan, D. Poly(amidoamine) dendrimer-supported organoplatinum antitumour agents. Proc. R. Soc. A 2009, 1–12. [Google Scholar] [CrossRef]
- Erez, R.; Segal, E.; Miller, K.; Satchi-Fainaro, R.; Shabat, D. Enhanced cytotoxicity of a polymer-drug conjugate with triple payload of paclitaxel. Bioorg. Med. Chem. 2009, 17, 4327–4335. [Google Scholar] [CrossRef] [PubMed]
- Gurdag, S.; Khandare, J.; Stapels, S.; Matherly, L.H.; Kannan, R.M. Activity of dendrimer-methotrexate conjugates on methotrexate-sensitive and-resistant cell lines. Bioconj. Chem. 2006, 17, 275–283. [Google Scholar] [CrossRef] [PubMed]
- Wiwattanapatapee, R.; Carrero-Gomez, B.; Malik, N.; Duncan, R. Anionic PAMAM dendrimers rapidly cross adult rat intestine in vitro: A potential oral delivery systems? Pharm. Res. 2000, 17, 991–998. [Google Scholar] [CrossRef] [PubMed]
- Thomas, T.P.; Majoros, I.J.; Kotlyar, A.; Latallo, J.F.K.; Bielinska, A.; Myc, A.; Baker, J.R. Targeting and inhibition of cell growth by an engineered dendritic nanodevice. J. Med. Chem. 2005, 48, 3729–3735. [Google Scholar] [CrossRef] [PubMed]
- Majoros, I.J.; Thomas, T.P.; Mehta, C.B.; Baker, J.R., Jr. Poly(amidoamine) dendrimer-based multifunctional engineered nanodevice for cancer therapy. J. Med. Chem. 2005, 22, 5892–5899. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Thomas, T.P.; Desai, A.; Zong, H.; Leroueil, P.R.; Majoros, I.J.; Baker, J.R. Targeted dendrimeric anticancer prodrug: A methotrexate-folic acid-poly(amidoamine) conjugate and a novel, rapid, “one pot” synthetic approach. Bioconj. Chem. 2010, 21, 489–495. [Google Scholar] [CrossRef] [PubMed]
- Hong, S.; Leroueil, P.R.; Majoros, I.J.; Orr, B.G.; Baker, J.R.; Holl, M.M.B. The binding avidity of a nanoparticle-based multivalent targeted drug delivery platform. Chem. Biol. 2007, 14, 107–115. [Google Scholar] [CrossRef] [PubMed]
- Latallo, J.F.K.; Candido, K.A.; Cao, Z.Y.; Nigavekar, S.S.; Majoros, I.J.; Thomas, T.P.; Balogh, L.P.; Khan, M.K.; Baker, J.R. Nanoparticle targeting of anticancer drug improves therapeutic response in animal model of human epithelial cancer. Cancer Res. 2005, 65, 5317–5324. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Li, Z.; Xie, X.; Wang, C.; You, J.; Mo, F.; Jin, B.; Chen, J.; Shao, J.; Chen, H.; Jia, L. Dendrimeric anticancer prodrugs for targeted delivery of ursolic acid to folate receptor-expressing cancer cells: Synthesis and biological evaluation. Eur. J. Pharm. Sci. 2015, 70, 55–63. [Google Scholar] [CrossRef] [PubMed]
- Pan, J.; Ma, L.; Li, B.; Li, Y.; Guo, L. Novel dendritic naproxen prodrugs withpoly(aspartic acid) oligopeptide: Synthesisand hydroxyapatite binding in vitro. Synth. Commun. 2012, 42, 3441–3454. [Google Scholar] [CrossRef]
- Ouyang, L.; Huang, W.; He, G.; Guo, L. Bone targeting prodrugs based on peptide dendrimers, synthesis and hydroxyapatite binding in vitro. Lett. Org. Chem. 2009, 6, 272–277. [Google Scholar] [CrossRef]
- Goonewardena, S.N.; Kratz, J.D.; Zong, H.; Desai, A.M.; Tang, S.; Emery, S.; Baker, J.R., Jr.; Huang, B. Design considerations for PAMAM dendrimer therapeutics. Bioorg. Med. Chem. Lett. 2013, 23, 2872–2875. [Google Scholar] [CrossRef] [PubMed]
- Kojima, C.; Nishisaka, E.; Suehiro, T.; Watanabe, K.; Harada, A.; Goto, T.; Magata, Y.; Kono, K. The synthesis and evaluation of polymer prodrug/collagen hybrid gels for delivery into metastatic cancer cells. Nanomedicine 2013, 9, 767–775. [Google Scholar] [CrossRef] [PubMed]
- Kojima, C.; Suehiro, T.; Watanabe, K.; Ogawa, M.; Fukuhara, A.; Nishisaka, E.; Harada, A.; Kono, K.; Inui, T.; Magata, Y. Doxorubicin-conjugated dendrimer/collagen hybrid gels for metastasis-associated drug delivery systems. Acta Biomater. 2013, 9, 5673–5680. [Google Scholar] [CrossRef] [PubMed]
- Jiang, B.; Zhao, J.; Li, Y.; He, D.; Pan, J.; Cao, J.; Guo, L. Dual-targeting Janus dendrimer based peptides for bone cancer: Synthesis and preliminary biological evaluation. Lett. Org. Chem. 2013, 10, 594–601. [Google Scholar] [CrossRef]
- Satsangi, A.; Roy, S.S.; Satsangi, R.K.; Tolcher, A.W.; Vadlamudi, R.K.; Goins, B.; Ong, J.L. Synthesis of a novel, sequentially active-targeted drug delivery nanoplatform for breast cancer therapy. Biomaterials 2015, 59, 88–101. [Google Scholar] [CrossRef] [PubMed]
- Satsangi, A.; Roy, S.S.; Satsangi, R.K.; Vadlamudi, R.K.; Ong, J.L. Design of a paclitaxel prodrug conjugate for active targeting of an enzyme upregulated in breast cancer cells. Mol. Pharm. 2014, 11, 1906–1918. [Google Scholar] [CrossRef] [PubMed]
- Lidický, O.; Janousková, O.; Strohalm, J.; Alam, M.; Klener, P.; Etrych, T. Anti-lymphoma efficacy comparison of anti-CD20 monoclonal antibody-targeted and non-targeted star-shaped polymer-prodrug conjugates. Molecules 2015, 20, 19849–19864. [Google Scholar] [CrossRef] [PubMed]
- Khandare, J.J.; Jayant, S.; Singh, A.; Chandna, P.; Wang, Y.; Vorsa, N.; Minko, T. Dendrimer versus linear conjugate: Influence of polymeric architecture on the delivery and anticancer effect of paclitaxel. Bioconj. Chem. 2006, 17, 1464–1472. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Z.; D’Emanuele, A.; Lennon, K.; Attwood, D. Synthesis and micellization of linear-dendritic copolymers and their solubilization ability for poorly water-soluble drugs. Macromolecules 2009, 42, 7936–7944. [Google Scholar] [CrossRef]
- Zolotarskaya, O.Y.; Xu, L.; Valerie, K.; Yang, H. Click synthesis of a polyamidoamine dendrimer based camptothecin prodrug. RSC Adv. 2015, 5, 58600–58608. [Google Scholar] [CrossRef] [PubMed]
- Cai, L.; Xu, G.; Shi, C.; Guo, D.; Wang, X.; Luo, J. Telodendrimer nanocarrier for co-delivery of paclitaxel and cisplatin: A synergistic combination nanotherapy of ovarian cancer treatment. Biomaterials 2015, 37, 456–468. [Google Scholar] [CrossRef] [PubMed]
© 2016 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Da Silva Santos, S.; Igne Ferreira, E.; Giarolla, J. Dendrimer Prodrugs. Molecules 2016, 21, 686. https://doi.org/10.3390/molecules21060686
Da Silva Santos S, Igne Ferreira E, Giarolla J. Dendrimer Prodrugs. Molecules. 2016; 21(6):686. https://doi.org/10.3390/molecules21060686
Chicago/Turabian StyleDa Silva Santos, Soraya, Elizabeth Igne Ferreira, and Jeanine Giarolla. 2016. "Dendrimer Prodrugs" Molecules 21, no. 6: 686. https://doi.org/10.3390/molecules21060686
APA StyleDa Silva Santos, S., Igne Ferreira, E., & Giarolla, J. (2016). Dendrimer Prodrugs. Molecules, 21(6), 686. https://doi.org/10.3390/molecules21060686