Effects of Culture Substrate Made of Poly(N-isopropylacrylamide-co-acrylic acid) Microgels on Osteogenic Differentiation of Mesenchymal Stem Cells
Abstract
:1. Introduction
2. Results and Discussion
2.1. Coating of Microgels on Surface
2.2. Effect of Microgel Coating on Morphology of MSCs
2.3. Effect of Morphology Change on MSCs’ Fate without Any Inducing Factors
2.4. Effect of Morphological Change on MSCs’ Fate with Inducing Factors
3. Materials and Methods
3.1. Materials
3.2. Synthesis and Characterization of P(NIPAM-AA) Microgel Particles
3.3. Coating Culture Dish with Microgels
3.4. Confocal and Scanning Electron Microscopy Imaging of Microgel-Coated Surfaces
3.5. Isolation and Culture of MSCs
3.6. In Vitro Osteogenic Differentiation of MSCs
3.7. Alkaline Phosphatase and Alizarin Red S Staining
3.8. Immunofluorescence Microscopy Observation
3.9. Real Time Reverse Transcription-Polymerase Chain Reaction (RT-PCR)
3.10. Statistical Analysis
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Haraguchi, Y.; Shimizu, T.; Yamato, M.; Okano, T. Concise Review: Cell Therapy and Tissue Engineering for Cardiovascular Disease. Stem Cells Transl. Med. 2012, 1, 136–141. [Google Scholar] [CrossRef] [PubMed]
- Hodgkinson, T.; Yuan, X.; Bayat, A. Adult stem cells in tissue engineering. Expert Rev. Med. Dev. 2009, 6, 621–640. [Google Scholar] [CrossRef] [PubMed]
- Naderi, H.; Matin, M.; Bahrami, A. Review paper: Critical Issues in Tissue Engineering: Biomaterials, Cell Sources, Angiogenesis, and Drug Delivery Systems. J. Biomater. Appl. 2011, 26, 383–417. [Google Scholar] [CrossRef] [PubMed]
- Lim, S.; Lee, D.; Sivakumaran, P.; Crombie, D.; Slavin, J.; Dottori, M.; Conley, B.; Denham, M.; Leung, J.; Tee, R.; et al. In vivo tissue engineering chamber supports human induced pluripotent stem cell survival and rapid differentiation. Biochem. Biophys. Res. Commun. 2012, 422, 75–79. [Google Scholar] [CrossRef] [PubMed]
- Sundelacruz, S.; Kaplan, D. Stem cell- and scaffold-based tissue engineering approaches to osteochondral regenerative medicine. Semin. Cell Dev. Biol. 2009, 20, 646–655. [Google Scholar] [CrossRef] [PubMed]
- Augello, A.; Kurth, T.; De Bari, C. Mesenchymal Stem Cells: A Perspective from in Vitro Cultures to in Vivo Migration And Niches. Eur. Cells Mater. 2010, 20, 121–133. [Google Scholar]
- Birmingham, E.; Niebur, G.; McHugh, P.; Shaw, G.; Barry, F.; McNamara, L. Osteogenic Differentiation of Mesenchymal Stem Cells Is Regulated by Osteocyte and Osteoblast Cells in a Simplified Bone Niche. Eur. Cells Mater. 2012, 23, 13–27. [Google Scholar]
- Guan, J.; Wang, F.; Li, Z.; Chen, J.; Guo, X.; Liao, J.; Moldovan, N.I. The stimulation of the cardiac differentiation of mesenchymal stem cells in tissue constructs that mimic myocardium structure and biomechanics. Biomaterials 2011, 32, 5568–5580. [Google Scholar] [CrossRef] [PubMed]
- Higuchi, A.; Ling, Q.D.; Chang, Y.; Hsu, S.T.; Umezawa, A. Physical cues of biomaterials guide stem cell differentiation fate. Chem. Rev. 2013, 113, 3297–3328. [Google Scholar] [CrossRef] [PubMed]
- Higuchi, A.; Ling, Q.D.; Kumar, S.S.; Chang, Y.; Alarfaj, A.A.; Munusamy, M.A.; Murugan, K.; Hsu, S.T.; Umezawa, A. Physical cues of cell culture materials lead the direction of differentiation lineages of pluripotent stem cells. J. Mater. Chem. B 2015, 3, 8032–8058. [Google Scholar] [CrossRef]
- Jeon, O.; Alt, D.; Linderman, S.; Alsberg, E. Biochemical and Physical Signal Gradients in Hydrogels to Control Stem Cell Behavior. Adv. Mater. 2013, 25, 6366–6372. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Fitzgerald, W.; Zimmerberg, J.; Kleinman, H.; Margolis, L. Cell-Cell and cell-extracellular matrix interactions regulate embryonic stem cell differentiation. Stem Cells 2007, 25, 553–561. [Google Scholar] [CrossRef] [PubMed]
- Clause, K.; Liu, L.; Tobita, K. Directed Stem Cell Differentiation: The Role of Physical Forces. Cell Commun. Adhes. 2010, 17, 48–54. [Google Scholar] [CrossRef] [PubMed]
- Engler, A.; Sen, S.; Sweeney, H.; Discher, D. Matrix elasticity directs stem cell lineage specification. Cell 2006, 126, 677–689. [Google Scholar] [CrossRef] [PubMed]
- Discher, D. Matrix elasticity directs stem cell lineage—Soluble factors that limit osteogenesis. Bone 2009, 44, S205–S206. [Google Scholar] [CrossRef]
- Jang, J.-Y.; Lee, S.W.; Park, S.H.; Shin, J.W.; Mun, C.; Kim, S.-H.; Kim, D.H.; Shin, J.-W. Combined Effects of Surface Morphology and Mechanical Straining Magnitudes on the Differentiation of Mesenchymal Stem Cells without Using Biochemical Reagents. J. Biomed. Biotechnol. 2011, 2011, 860652. [Google Scholar] [CrossRef] [PubMed]
- Yim, E.; Pang, S.; Leong, K. Synthetic nanostructures inducing differentiation of human mesenchymal stem cells into neuronal lineage. Exp. Cell Res. 2007, 313, 1820–1829. [Google Scholar] [CrossRef] [PubMed]
- Uhlig, K.; Boerner, H.; Wischerhoff, E.; Lutz, J.; Jaeger, M.; Laschewsky, A.; Duschl, C. On the Interaction of Adherent Cells with Thermoresponsive Polymer Coatings. Polymers 2014, 6, 1164–1177. [Google Scholar] [CrossRef]
- Peng, I.C.; Yeh, C.C.; Lu, Y.T.; Muduli, S.; Ling, Q.D.; Alarfai, A.A.; Munusamy, M.A.; Kumar, S.S.; Murugan, K.; Lee, H.C.; et al. Continuous harvest of stem cells via partial detachment from thermoresponsive nanobrush surfaces. Biomaterials 2016, 76, 76–86. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.; Zhou, S. First observation of the molten globule state of a single homopolymer chain. Phys. Rev. Lett. 1996, 77, 3053–3055. [Google Scholar] [CrossRef] [PubMed]
- Dai, Z.; Ngai, T.; Wu, C. Internal motions of linear chains and spherical microgels in dilute solution. Soft Matter. 2011, 7, 4111–4121. [Google Scholar] [CrossRef]
- Da Silva, R.; Mano, J.; Reis, R. Smart thermoresponsive coatings and surfaces for tissue engineering: switching cell-material boundaries. Trends Biotechnol. 2007, 25, 577–583. [Google Scholar] [CrossRef] [PubMed]
- Liao, T.; Moussallem, M.; Kim, J.; Schlenoff, J.; Ma, T. N-Isopropylacrylamide-Based Thermoresponsive Polyelectrolyte Multilayer Films for Human Mesenchymal Stem Cell Expansion. Biotechnol. Prog. 2010, 26, 1705–1713. [Google Scholar] [CrossRef] [PubMed]
- Nash, M.E.; Carroll, W.M.; Nikoloskya, N.; Yang, R.; Connell, C.; Gorelov, A.V.; Dockery, P.; Liptrot, C.; Lyng, F.M.; Garcia, A.; et al. Straightforward, One-Step Fabrication of Ultrathin Thermoresponsive Films from Commercially Available pNIPAm for Cell Culture and Recovery. Acs Appl. Mater. Interfaces 2011, 3, 1980–1990. [Google Scholar] [CrossRef] [PubMed]
- Yamada, N.; Okano, T.; Sakai, H.; Karikusa, F.; Sawasaki, Y.; Sakurai, Y. Thermo-Responsive polymeric surfaces; control of attachment and detachment of cultured cells. Macromol. Rapid Commun. 1990, 11, 571–576. [Google Scholar]
- Okano, T.; Yamada, N.; Okuhara, M.; Sakai, H.; Sakurai, Y. Mechanism of cell detachment from temperature-modulated, hydrophilic-hydrophobic polymer surfaces. Biomaterials 1995, 16, 297–303. [Google Scholar] [CrossRef]
- Orr, A.; Helmke, B.; Blackman, B.; Schwartz, M. Mechanisms of mechanotransduction. Dev. Cell 2006, 10, 11–20. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, S.; Zeiser, M.; Hellweg, T.; Duschl, C.; Fery, A.; Mohwald, H. Adhesion and Mechanical Properties of PNIPAM Microgel Films and Their Potential Use as Switchable Cell Culture Substrates. Adv. Funct. Mater. 2010, 20, 3235–3243. [Google Scholar] [CrossRef]
- Dai, Z.; Ngai, T. Microgel particles: The structure-property relationships and their biomedical applications. J. Polym. Sci. Part A Polym. Chem. 2013, 51, 2995–3003. [Google Scholar] [CrossRef]
- Dai, Z.; Shu, Y.; Wan, C.; Wu, C. Effects of pH and thermally sensitive hybrid gels on osteogenic differentiation of mesenchymal stem cells. J. Biomater. Appl. 2015, 29, 1272–1283. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.; Deng, C.; Li, Y. TGF-Beta and BMP Signaling in Osteoblast Differentiation and Bone Formation. Int. J. Biol. Sci. 2012, 8, 272–288. [Google Scholar] [CrossRef] [PubMed]
- McBeath, R.; Pirone, D.; Nelson, C.; Bhadriraju, K.; Chen, C. Cell shape, cytoskeletal tension, and RhoA regulate stem cell lineage commitment. Dev. Cell 2004, 6, 483–495. [Google Scholar] [CrossRef]
- Pourati, J.; Maniotis, A.; Spiegel, D.; Schaffer, J.L.; Butler, J.P.; Fredberg, J.J.; Ingber, D.E.; Stamenovic, D.; Wang, N. Is cytoskeletal tension a major determinant of cell deformability in adherent endothelial cells? Am. J. Physiol. Cell Physiol. 1998, 274, C1283–C1289. [Google Scholar]
- Kelly, D.; Jacobs, C. The Role of Mechanical Signals in Regulating Chondrogenesis and Osteogenesis of Mesenchymal Stem Cells. Birth Defects Res. Part C Embryo Today Rev. 2010, 90, 75–85. [Google Scholar] [CrossRef] [PubMed]
- Yourek, G.; Hussain, M.; Mao, J. Cytoskeletal changes of mesenchymal stem cells during differentiation. Asaio J. 2007, 53, 219–228. [Google Scholar] [CrossRef] [PubMed]
- Sample Availability: Samples of the compounds P(NIPAM-AA) microgels are not available from the authors.
© 2016 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dai, Z.; Shu, Y.; Wan, C.; Wu, C. Effects of Culture Substrate Made of Poly(N-isopropylacrylamide-co-acrylic acid) Microgels on Osteogenic Differentiation of Mesenchymal Stem Cells. Molecules 2016, 21, 1192. https://doi.org/10.3390/molecules21091192
Dai Z, Shu Y, Wan C, Wu C. Effects of Culture Substrate Made of Poly(N-isopropylacrylamide-co-acrylic acid) Microgels on Osteogenic Differentiation of Mesenchymal Stem Cells. Molecules. 2016; 21(9):1192. https://doi.org/10.3390/molecules21091192
Chicago/Turabian StyleDai, Zhuojun, Yinglan Shu, Chao Wan, and Chi Wu. 2016. "Effects of Culture Substrate Made of Poly(N-isopropylacrylamide-co-acrylic acid) Microgels on Osteogenic Differentiation of Mesenchymal Stem Cells" Molecules 21, no. 9: 1192. https://doi.org/10.3390/molecules21091192
APA StyleDai, Z., Shu, Y., Wan, C., & Wu, C. (2016). Effects of Culture Substrate Made of Poly(N-isopropylacrylamide-co-acrylic acid) Microgels on Osteogenic Differentiation of Mesenchymal Stem Cells. Molecules, 21(9), 1192. https://doi.org/10.3390/molecules21091192