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Abstract

:

Systemic lupus erythematosus (SLE) is a systemic autoimmune disease involving multiple organs and tissues, which is characterized by the presence of excessive anti-nuclear autoantibodies. The pathogenesis of SLE has been intensively studied but remains far from clear. Increasing evidence has shown that the genetic susceptibilities and environmental factors-induced abnormalities in immune cells, dysregulation of apoptosis, and defects in the clearance of apoptotic materials contribute to the development of SLE. As the main source of auto-antigens, aberrant cell death may play a critical role in the pathogenesis of SLE. In this review, we summarize up-to-date research progress on different levels of cell death—including increasing rate of apoptosis, necrosis, autophagy and defects in clearance of dying cells—and discuss the possible underlying mechanisms, especially epigenetic modifications, which may provide new insight in the potential development of therapeutic strategies for SLE.
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1. Introduction


Systemic lupus erythematosus (SLE) is a systemic autoimmune disorder that predominantly affects women (the female to male ratio is 9 to 1) [1]. It is characterized by an abundance of autoantibodies in the circulation of patients [2], together with aberrant innate and adaptive immune responses [3,4]. Although the exact etiology of SLE remains unclear, many factors have been shown to play a role in autoimmune pathogenesis of SLE, including genetic susceptibility and various environmental factors [5]. SLE occurs when an individual with genetic susceptibility encounters environmental triggers such as sunlight, drugs, or infection. The majority of these triggers may induce cell death in an epigenetically-regulated fashion and lead to increased exposure, availability, and immunogenic characteristics of intracellular self-antigens. Consequently, immune tolerance is broken down which may result from defects in clearance of dead cell materials and abnormal presentation of auto-antigens by antigen-presenting cells (APCs) to T cells. Upon activation by self-antigens, T cells provide help to auto-reactive B cells, leading to production of abundant auto-antibodies. As a result, these auto-antibodies bind to self-antigens by forming immune complexes (ICs) that are deposited in multiple organs, leading to organ inflammation, dysfunction, and failure [6,7,8,9]. In this complex disease process, abnormal cell death may act as an initial trigger for the development of autoimmune disorders.



1.1. Dysregulated Apoptosis in SLE


Apoptosis, also called programmed cell death, is a main cellular mechanism for body to maintain tissue homeostasis. Apoptosis is induced by activation of extrinsic pathway involving membrane receptors such as Fas or intrinsic pathway involving Bcl-2 family proteins [10]. Factors that trigger apoptosis include intracellular p53 signaling and extracellular factors such as chemotherapy, radiation, cell stress, and inflammation. All stimuli above lead to activation of capase-3 that initiates the process of apoptosis. Dysregulation of apoptosis are linked to the pathogenesis of SLE since cellular debris from apoptotic cells are the likely sources of auto-antigens in SLE. Increased apoptosis of immune cells, particularly T lymphocytes, has been reported in PBMCs and cutaneous lesions from SLE patients [11,12,13,14]. Serum samples from SLE patients were found to induce apoptosis among normal lymphocytes and neutrophils [15,16], which may be related to increased levels of soluble Fas ligand (FasL) in lupus serum activating Fas/FasL via the extrinsic pathway of apoptosis [16,17]. In addition, exposure to UV light, a potent inducer for apoptosis [18], has a strong association with lupus development [19].



However, how exactly apoptosis contributes to SLE remains partially understood. In SLE, apoptotic blebs and nucleosomes are formed during apoptosis and become the source of auto-antigens. These cellular materials are taken up by immature myeloid dendritic cells (imDCs) undergoing maturation by expressing high levels of costimulatory molecules (CD86, CD40, and MHC-II) and pro-inflammatory cytokines, including IL-6 and IL-12p70. Mature DCs activate T helper 1 cells (Th1) and Th2 cells through CD86 and CD40 binding to their ligands. Moreover, mature DCs can also polarize naïve T cells (Th0) to Th1 cells under influence of IL-12p70. Under the effects of IL-6, regulatory T cells are inhibited whereas Th17 cell differentiation is promoted. With help from T cells, autoreactive B cells produce autoantibodies against self-antigens. Subsequently, autoantibodies are involved in forming immune-complexes (ICs) after binding to auto-antigens. In addition, after taking up ICs containing nucleic acids, plasmacytoid dendritic cells (pDCs) produce high amount of IFN-α, which then promote antibody production and isotype switching. ICs are deposited in renal tissue, resulting in immune cell infiltration and local tissue damage, which can further induce more apoptosis (Figure 1) [20] acting as a positive loop to break down immune tolerance and accelerate disease progression.




1.2. Epigenetic Modification-Mediated Increased Apoptosis in SLE


Epigenetics, the study of the reversible and potentially heritable changes in gene expression without genetic code alterations—including DNA methylation, histone modification, and microRNAs (miRNAs)-mediated regulation—is a new area of investigation into the pathogenesis of SLE [21]. Lines of evidence have shown the involvement of epigenetic alterations such as miRNAs-mediated regulation and DNA methylation in the process of apoptosis.



1.2.1. miRNAs-Mediated Apoptosis in SLE


Recent studies have demonstrated that miRNAs are small, non-coding RNAs (21–25 base pairs) and function as posttranscriptional and posttranslational regulators of gene expression. miRNAs exert their functions by binding to the 3′-untranslated region (UTR) of the messenger RNA (mRNA) of a target gene, causing mRNA cleavage, translational repression, or translational arrest [22,23], thereby silencing the gene expression. Similar to the increased rate of apoptosis, decreased apoptotic rate of T cells may also contribute to SLE. The lupus-prone mouse model (MRL/lpr) with a mutation on Fas displays a defective apoptosis, a typical example of over-proliferating T and B cells. This results in lupus-like cutaneous lesion and nephritis. Indeed, several anti-apoptosis microRNAs are found to be decreased in lupus patients while the pro-apoptotic microRNAs are increased in the circulation of SLE. miR-17-92 family is capable of inhibiting apoptosis by suppressing the Bim and PTEN expression [24], which shows reduced levels in lupus sera [25]. Interestingly, increased levels of miR-29b and miR-29c, targeting anti-apoptotic member Bcl-2 have been observed in lupus pDCs after the administration of glucocorticoids [26], as well as in lupus T cells [27]. In addition, miR-21 can suppress apoptosis of activated T cells by targeting tumor suppressor gene Tipe2 [28], which is also increased in lupus patients [29,30].




1.2.2. DNA Methylation and Apoptosis


DNA methylation is a biochemical process in which a methyl group is added to a cytosine or DNA methylation is a biochemical process in which a methyl group is added to a cytosine or adenine at the 5′ position of a CpG dinucleotide, converting the cytosine to methylcytosine [31]. In general, CpG island methylation is associated with gene silencing. Methylation serves as a mark that indicates repression of gene expression. Therefore, DNA methylation is involved in many biological processes such as cell differentiations, apoptosis, and immune regulation. Although there is lack of direct evidence on DNA methylation-mediated apoptosis in SLE, abnormal expression of DNA methylation-mediated genes involved in regulating apoptosis have been reported to be aberrantly expressed in SLE patients. For example, p53, a tumor suppressor gene with the capacity of inducing apoptosis by altering the expression of genes with p53 binding sites, is found to be downregulated by aberrant methylation in tumor cells [32,33]. On the contrary, increased p53 protein expression and cell apoptosis rate has been observed in discoid lupus skin lesion [34] and peripheral blood [35]. Moreover, DNA demethylation has been detected in CD4+ T cells, but not in CD8+ T cells or peripheral blood mononuclear cells (PBMCs) from SLE patients [36,37]. This evidence may suggest that DNA hypomethylation of the p53 gene contributes to the enhanced p53 expression and causes abnormal apoptosis in lupus patients, a notion that needs further investigation.



Several studies have demonstrated that methyl-CpG-binding domain 4 (MBD4) can be recruited by methylated DNA and thereby leading to the recruitment of histone modifying and chromatin-remodeling complexes to methylated sites [38,39]. MBD4 is involved in the apoptosis signaling pathway [40] and found to be overexpressed by lupus CD4+ T cells [41]. Furthermore, Fas-FasL [42] and PD-1-PD-L1 [43] pathways are linked with lupus pathogenesis [13,44,45], which are also regulated by DNA methylation and participated in the apoptosis process. Both PD-1 and PD-L1 molecules are overexpressed by immune cells and cancer cells respectively due to the loss of 5-hmc [46] or hypomethylation [43] on the promoter region, which may provide potential therapeutic targets for autoimmune disorders and cancers.





1.3. Impaired Clearance of Apoptotic Materials in SLE


Under homeostasis, apoptotic cells are rapidly cleared by resident macrophages from tissues. Otherwise, accumulated apoptotic cells may induce either inflammation or immune responses leading to the breakdown of immune tolerance and autoimmune pathogenesis. Early apoptotic cells secrete anti-inflammatory cytokines, such as IL-10, TGF-beta, and express find-me (adenosine triphosphate (ATP), uridine triphosphate (UTP), dimer of ribosomal protein S19 (dRp S19)), eat-me (phosphatidylserine (PS), phosphatidylcholine (PC), phosphatidylethanolamine (PE)), and keep-out (Lactotransferrin (LTF)) signals to macrophages for tolerance induction [47]. Macrophages that have ingested apoptotic cells secrete ‘tolerate me’ cytokines, including transforming growth factor β (TGFβ) and IL-10, which create an anti-inflammatory milieu at the sites of cell death (Figure 2). Early studies have observed impaired phagocytic capacity of monocyte-derived macrophages from SLE patients [48,49,50,51]. Moreover, defective phagocytosis is also linked to decreased C reactive protein level and complement consumption in the sera of lupus patients [52].



When the clearance of apoptotic cells is impaired, excessive apoptotic cells undergo secondary necrosis and release danger signals to break down the immune tolerance. Danger signals including nucleosomes, non-histone nuclear proteins, metabolic intermediates, and nuclear antigens can activate the NF-κB pathway and inflammasomes to produce pro-inflammatory cytokines and promote survival of autoreactive lymphocytes [53]. Recently, elevated levels of the high mobility group box 1 (HMGB1) have been detected in the sera of SLE patients [54,55]. In addition, the secondary necrotic cells (SNECs) can promote the production of auto-antibodies [56], while SNEC-containing ICs can stimulate pathogen recognize receptors (PRRs), leading to the production of IL-6, IL1β, IL-8, and abnormal activation of DCs [52], contributing to the development of SLE.



Epigenetic Mechanisms Underlying Impaired Phagocytic Function of Macrophages


Currently, there is little evidence revealing the link between DNA methylation and macrophage functions. However, it has been recently reported that DNA demethylation is detected in the sphingosine-1 phosphate receptor 5 (S1PR5), which may explain the observed defects in S1P system and phagocytic ability in macrophages [57]. Notably, an increased sera level of S1P has been found in juvenile-onset SLE [58], suggesting a link between DNA methylation-mediated macrophage function and the pathogenesis of SLE. It has become clear that both differentiation and maturation of macrophages are indeed regulated by epigenetic modifications [59]. However, further studies are needed to establish the link among epigenetics, macrophages, and SLE.





1.4. NETosis and SLE


Neutrophil extracellular traps (NETs) act as an important defense mechanism during infection by trapping and killing bacteria via the extrusion of nuclear material including DNA and histones in a web-like structure [60]. NETs are composed of histones, chromatin, and proteins secreted by granules—including elastases, myeloperoxidases, matrixmetalloproteinases 9, pentraxin 3 and antimicrobial molecules such as cathelcidins [61,62]. NETs are mainly released by activated neutrophils that undergo a novel cell-death mechanism named NETosis [63]. Under normal conditions, extracellular NETs can limit inflammation through degrading chemokines and cytokines [64]. However, NETs can also become a harmful source of auto-antigens and contribute to autoimmune diseases such as SLE [64]. When NETs are not promptly cleared, they expose dsDNA molecules and aggregate decorated with endogenous and exogenous immunostimulatory molecules, prone to promote auto-antibody production [65]. NETs also activate caspase-1, a key enzyme in inflammasome, thereby promoting the release of an active form of IL-1beta and IL-18 [66], which consequently drives Th17 differentiation and promotes autoimmune inflammation. In addition, most of the antigens released by NETs appear to become more immunogenic through post-translational modifications. For example, cirtullinated histones are preferentially recognized by antibodies in lupus patients [67]. In fact, most specific auto-antigens in SLE are NET components, indicating a role of excessive NETosis and defective clearance of NETs in SLE [68]. Increasing evidence has revealed the presence of excessive NETs in the inflammatory sites of lupus including glomeruli [69] and skin [64]. In lupus patients, both IFN-α and immune complexes, are potential triggers of NETosis [67]. Recently, the reduced clearance of NETs is also observed in lupus patients [70], which may result from the presence of D-Nase1 inhibitors or anti-NET antibodies. Since mere exposure to NETs may not result in the development of autoimmune diseases, additional triggers such as infection need to be identified [71].




1.5. Autophagy and SLE


Autophagy is a lysosome-mediated catabolic process to maintain intracellular homeostasis via disposal of damaged, non-functional, or unnecessary proteins and organelles. Autophagy is also involved in immune regulation and plays a critical role in the development, survival, and proliferation of T and B lymphocytes [72,73,74]. Autophagy involves three morphological phases: initiation (i.e., formation of phagophores), elongation, and closure (i.e., increase in the size of the phagophore and its closure into a completed autophagosome), and maturation (i.e., conversion of autophagosomes into degradative organelles, termed autophagolysosomes, by fusion with late endosomal and lysosomal organelles). The serine/threonine kinase mammalian target of rapamycin (mTOR) plays a key role in the regulation of autophagy. DNA-ICs are phagocytized by pDCs, inducing IFN-α production via toll like receptor 9 (TLR9) activation, which requires a noncanonical autophagy pathway called LC3-associated phagocytosis (LAP). LC3 amplifies the response to intracellular DNA, and another important member of the autophagy pathway, Beclin-1, serves as an inhibitor, thereby suppressing IFN-α production, a key effector cytokine in lupus pathogenesis. The perturbation of autophagy has been linked with autoimmune disorders, especially SLE. The first indirect evidence was reported in 1964, which demonstrated the association of lysosomal function and SLE [75]. In recent studies, a strong connection between autophagy and lupus has been revealed by the findings of single-nucleotide polymorphisms (SNPs) in autophagy-related gene 5 (Atg5) to lupus susceptibility [76,77,78], which is further supported by the findings of an important role of Atg7 in B cell development and activation of autophagy in SLE patients [79]. It has been reported that decreased levels of Beclin-1, mTOR, and LC3-II are detected in lupus patients [80]. Interestingly, currently used drugs for SLE treatment can regulate autophagy. Dexamethasone has been shown to induce autophagy via inhibiting mTOR phosphorylation [81]. Moreover, the commonly used hydroxychloroquine exhibits therapeutic effects by lysosomal acidification [82]. In addition, vitamin D also induces autophagy via interfering lysosomal acidification, thereby inhibiting the degradation of autophagic vacuoles [83]. Furthermore, cyclosporine A and rapamycin have been found to suppress mTOR and inhibit autophagy [80]. Therefore, further investigations are needed to elucidate the role of autophagy in the pathogenesis and treatment of SLE.



Although there is evidence that autophagy is regulated by epigenetics, our current understanding of SLE etiopathogenesis is still very limited. For histone modification, histones present small protein tails protruding from the nucleosome, which is accessible to modifications including methylation, acetylation, and ubiquitination [84]. It has been shown that each modification has a specific function. For example, histone H3K9 acetylation enhances transcription whereas methylation shows an opposite effect. It is well known that the addition of H3K4me3 enhances gene expression, whereas H3K9me3 and H3K27me3 lead to gene downregulation [85,86]. Sirtuin-1 (Sirt-1), a histone deacetylase, has been shown to regulate autophagy by increasing mitochondrial function and reducing oxidative stress [87]. The elevated expression level of Sirt-1 has been reported in lupus-prone MRL/lpr mice [88]. Furthermore, the downregulation of Sirt-1 results in short-term enhanced H3 and H4 acetylation, with reduced levels of anti-dsDNA, glomerular IgG deposition, and kidney damage [36].




1.6. Necroptosis and SLE


Necroptosis is another important form of cell death via a caspase-independent defense mechanism against intracellular pathogens, which is triggered by activation of TNF and Fas-FasL pathways. Recent studies have shown that IFN-α has the capacity of necroptosis induction in a mouse model [89]. IFN-α receptor-deficient macrophages are resistant to Salmonella-induced necroptosis [90], suggesting a possible role of necroptosis in the IFN-α abundant lupus patients. Indeed, increased necroptosis has been observed in B cells from active lupus patients [91]. To date, there are few studies on necroptosis in SLE, but extensive studies on TNF-like weak inducer of apoptosis (TWEAK) have indicated a central role for the TNF pathway in the induction of lupus nephritis [92].





2. Conclusions


Current studies have shown that dysregulated cell death contributes to SLE by increasing availability, pathogenic modifications, and abnormal processing and presenting of self-antigens. Epigenetic modifications involve this complex process at different levels, including triggering apoptosis at the initial phase, induction of impaired clearance of apoptotic materials by inappropriate DNA methylation, and aberrant antigen presentation or IFN-α production by DCs [93]. To induce the apoptosis of over-activated immune cells, recombinant PD-L1Ig has been proposed as a therapy in lupus [94]. Nevertheless, further studies on epigenetics-mediated apoptosis and its role in SLE development are needed to deepen our understanding of etiopathogenesis, which may facilitate the development of novel therapeutic strategies for treating autoimmune diseases.







Acknowledgments


This work was supported by the National Natural Science Foundation of China (No. 81522038, No. 81430074, No. 81220108017, and No. 81602767), National Basic Research Program of China (2014CB541904), the Ph.D. Programs Foundation of Ministry of Education of China (No. 20120162130003), the Programs of Science-Technology Commission of Hunan province (2013FJ4202) and the National Key Clinical Specialty Construction Project of National Health and Family Planning Commission of the People’s Republic of China.




Author Contributions


Haijing Wu and Siqi Fu wrote the manuscript. Ming Zhao, Liwei Lu, and Qianjin Lu revised the manuscript.




Conflicts of Interest


The authors declare no conflict of interest.




References


	



D’Cruz, D.P.; Khamashta, M.A.; Hughes, G.R. Systemic lupus erythematosus. Lancet 2007, 369, 587–596. [Google Scholar] [CrossRef]

	



Tan, E.M.; Kunkel, H.G. Characteristics of a soluble nuclear antigen precipitating with sera of patients with systemic lupus erythematosus. J. Immunol. 1966, 96, 464–471. [Google Scholar] [PubMed]

	



Takeno, M.; Nagafuchi, H.; Kaneko, S.; Wakisaka, S.; Oneda, K.; Takeba, Y.; Yamashita, N.; Suzuki, N.; Kaneoka, H.; Sakane, T. Autoreactive T cell clones from patients with systemic lupus erythematosus support polyclonal autoantibody production. J. Immunol. 1997, 158, 3529–3538. [Google Scholar] [PubMed]

	



Santulli-Marotto, S.; Retter, M.W.; Gee, R.; Mamula, M.J.; Clarke, S.H. Autoreactive B cell regulation: Peripheral induction of developmental arrest by lupus-associated autoantigens. Immunity 1998, 8, 209–219. [Google Scholar] [CrossRef]

	



Gatto, M.; Zen, M.; Ghirardello, A.; Bettio, S.; Bassi, N.; Iaccarino, L.; Punzi, L.; Doria, A. Emerging and critical issues in the pathogenesis of lupus. Autoimmun. Rev. 2013, 12, 523–536. [Google Scholar] [CrossRef] [PubMed]

	



Joseph, F.G.; Lammie, G.A.; Scolding, N.J. CNS lupus: A study of 41 patients. Neurology 2007, 69, 644–654. [Google Scholar] [CrossRef] [PubMed]

	



Kuhn, A.; Ruland, V.; Bonsmann, G. Cutaneous lupus erythematosus: Update of therapeutic options part II. J. Am. Acad. Dermatol. 2011, 65, e195–e213. [Google Scholar] [CrossRef] [PubMed]

	



Gabba, A.; Piga, M.; Vacca, A.; Porru, G.; Garau, P.; Cauli, A.; Mathieu, A. Joint and tendon involvement in systemic lupus erythematosus: An ultrasound study of hands and wrists in 108 patients. Rheumatology (Oxf.) 2012, 51, 2278–2285. [Google Scholar] [CrossRef] [PubMed]

	



Wanitpongpun, C.; Teawtrakul, N.; Mahakkanukrauh, A.; Siritunyaporn, S.; Sirijerachai, C.; Chansung, K. Bone marrow abnormalities in systemic lupus erythematosus with peripheral cytopenia. Clin. Exp. Rheumatol. 2012, 30, 825–829. [Google Scholar] [PubMed]

	



Bouts, Y.M.; Wolthuis, D.F.; Dirkx, M.F.; Pieterse, E.; Simons, E.M.; van Boekel, A.M.; Dieker, J.W.; van der Vlag, J. Apoptosis and NET formation in the pathogenesis of SLE. AutoImmunity 2012, 45, 597–601. [Google Scholar] [CrossRef] [PubMed]

	



Saenz-Corral, C.I.; Vega-Memije, M.E.; Martinez-Luna, E.; Cuevas-Gonzalez, J.C.; Rodriguez-Carreon, A.A.; de la Rosa, J.J.; Fde, J.D.; Avalos-Diaz, E. Apoptosis in chronic cutaneous lupus erythematosus, discoid lupus, and lupus profundus. Int. J. Clin. Exp. Pathol. 2015, 8, 7260–7265. [Google Scholar] [PubMed]

	



Souliotis, V.L.; Sfikakis, P.P. Increased DNA double-strand breaks and enhanced apoptosis in patients with lupus nephritis. Lupus 2015, 24, 804–815. [Google Scholar] [CrossRef] [PubMed]

	



Yang, X.; Sun, B.; Wang, H.; Yin, C.; Wang, X.; Ji, X. Increased serum IL-10 in lupus patients promotes apoptosis of T cell subsets via the caspase 8 pathway initiated by Fas signaling. J. Biomed. Res. 2015, 29, 232–240. [Google Scholar] [PubMed]

	



Colonna, L.; Lood, C.; Elkon, K.B. Beyond apoptosis in lupus. Curr. Opin. Rheumatol. 2014, 26, 459–466. [Google Scholar] [CrossRef] [PubMed]

	



Bengtsson, A.A.; Gullstrand, B.; Truedsson, L.; Sturfelt, G. SLE serum induces classical caspase-dependent apoptosis independent of death receptors. Clin. Immunol. 2008, 126, 57–66. [Google Scholar] [CrossRef] [PubMed]

	



Mecklenbrauker, I.; Saijo, K.; Zheng, N.Y.; Leitges, M.; Tarakhovsky, A. Protein kinase Cdelta controls self-antigen-induced B-cell tolerance. Nature 2002, 416, 860–865. [Google Scholar] [CrossRef] [PubMed]

	



Silvestris, F.; Williams, R.C.; Calvani, N.; Grinello, D.; Tucci, M.; Cafforio, P.; Dammacco, F. Serum elevations of soluble Fas (CD95/apo-I) concur in deregulating T cell apoptosis during active lupus disease. Clin. Exp. Med. 2002, 2, 13–27. [Google Scholar] [CrossRef] [PubMed]

	



Singh, J.; Dwivedi, A.; Mujtaba, S.F.; Singh, K.P.; Pal, M.K.; Chopra, D.; Goyal, S.; Srivastav, A.K.; Dubey, D.; Gupta, S.K.; et al. Ambient UV-B exposure reduces the binding of ofloxacin with bacterial DNA gyrase and induces DNA damage mediated apoptosis. Int. J. Biochem. Cell Biol. 2016, 73, 111–126. [Google Scholar] [CrossRef] [PubMed]

	



Abe, M.; Ishikawa, O.; Miyachi, Y.; Kanai, Y. In vitro spontaneous and UVB-induced lymphocyte apoptosis are not specific to SLE. Photodermatol. Photoimmunol. Photomed. 1997, 13, 204–207. [Google Scholar] [CrossRef] [PubMed]

	



Fransen, J.H.; van der Vlag, J.; Ruben, J.; Adema, G.J.; Berden, J.H.; Hilbrands, L.B. The role of dendritic cells in the pathogenesis of systemic lupus erythematosus. Arthritis Res. Ther. 2010, 12, 207. [Google Scholar] [CrossRef] [PubMed]

	



Jeffries, M.A.; Sawalha, A.H. Epigenetics in systemic lupus erythematosus: Leading the way for specific therapeutic agents. Int. J. Clin. Rheumtol. 2011, 6, 423–439. [Google Scholar] [CrossRef] [PubMed]

	



Chen, C.Z.; Li, L.; Lodish, H.F.; Bartel, D.P. MicroRNAs modulate hematopoietic lineage differentiation. Science 2004, 303, 83–86. [Google Scholar] [CrossRef] [PubMed]

	



Fabian, M.R.; Sonenberg, N.; Filipowicz, W. Regulation of mRNA translation and stability by microRNAs. Annu. Rev. Biochem. 2010, 79, 351–379. [Google Scholar] [CrossRef] [PubMed]

	



Mogilyansky, E.; Rigoutsos, I. The miR-17/92 cluster: A comprehensive update on its genomics, genetics, functions and increasingly important and numerous roles in health and disease. Cell Death Differ. 2013, 20, 1603–1614. [Google Scholar] [CrossRef] [PubMed]

	



Carlsen, A.L.; Schetter, A.J.; Nielsen, C.T.; Lood, C.; Knudsen, S.; Voss, A.; Harris, C.C.; Hellmark, T.; Segelmark, M.; Jacobsen, S.; et al. Circulating microRNA expression profiles associated with systemic lupus erythematosus. Arthritis Rheumatol. 2013, 65, 1324–1334. [Google Scholar] [CrossRef] [PubMed]

	



Hong, Y.; Wu, J.; Zhao, J.; Wang, H.; Liu, Y.; Chen, T.; Kan, X.; Tao, Q.; Shen, X.; Yan, K.; et al. miR-29b and miR-29c are involved in Toll-like receptor control of glucocorticoid-induced apoptosis in human plasmacytoid dendritic cells. PLoS ONE 2013, 8, e69926. [Google Scholar] [CrossRef] [PubMed]

	



Qin, H.; Zhu, X.; Liang, J.; Wu, J.; Yang, Y.; Wang, S.; Shi, W.; Xu, J. MicroRNA-29b contributes to DNA hypomethylation of CD4+ T cells in systemic lupus erythematosus by indirectly targeting DNA methyltransferase 1. J. Dermatol. Sci. 2013, 69, 61–67. [Google Scholar] [CrossRef] [PubMed]

	



Ruan, Q.; Wang, P.; Wang, T.; Qi, J.; Wei, M.; Wang, S.; Fan, T.; Johnson, D.; Wan, X.; Shi, W.; et al. MicroRNA-21 regulates T-cell apoptosis by directly targeting the tumor suppressor gene Tipe2. Cell Death Dis. 2014, 5, e1095. [Google Scholar] [CrossRef] [PubMed]

	



Stagakis, E.; Bertsias, G.; Verginis, P.; Nakou, M.; Hatziapostolou, M.; Kritikos, H.; Iliopoulos, D.; Boumpas, D.T. Identification of novel microRNA signatures linked to human lupus disease activity and pathogenesis: MiR-21 regulates aberrant T cell responses through regulation of PDCD4 expression. Ann. Rheum. Dis. 2011, 70, 1496–1506. [Google Scholar] [CrossRef] [PubMed]

	



Tang, Z.M.; Fang, M.; Wang, J.P.; Cai, P.C.; Wang, P.; Hu, L.H. Clinical relevance of plasma miR-21 in new-onset systemic lupus erythematosus patients. J. Clin. Lab. Anal. 2014, 28, 446–451. [Google Scholar] [CrossRef] [PubMed]

	



Bernstein, B.E.; Meissner, A.; Lander, E.S. The mammalian epigenome. Cell 2007, 128, 669–681. [Google Scholar] [CrossRef] [PubMed]

	



Amatya, V.J.; Naumann, U.; Weller, M.; Ohgaki, H. TP53 promoter methylation in human gliomas. Acta Neuropathol. 2005, 110, 178–184. [Google Scholar] [CrossRef] [PubMed]

	



Lima, E.M.; Leal, M.F.; Burbano, R.R.; Khayat, A.S.; Assumpcao, P.P.; Bello, M.J.; Rey, J.A.; Smith, M.A.; Casartelli, C. Methylation status of ANAPC1, CDKN2A and TP53 promoter genes in individuals with gastric cancer. Braz. J. Med. Biol. Res. 2008, 41, 539–543. [Google Scholar] [CrossRef] [PubMed][Green Version]

	



Weinreb, D.B.; Desman, G.T. Expression of p53 and apoptosis in discoid lupus erythematosus. Croat. Med. J. 2005, 46, 998. [Google Scholar] [PubMed]

	



Chauhan, R.; Handa, R.; Das, T.P.; Pati, U. Over-expression of TATA binding protein (TBP) and p53 and autoantibodies to these antigens are features of systemic sclerosis, systemic lupus erythematosus and overlap syndromes. Clin. Exp. Immunol. 2004, 136, 574–584. [Google Scholar] [CrossRef] [PubMed]

	



Javierre, B.M.; Fernandez, A.F.; Richter, J.; Al-Shahrour, F.; Martin-Subero, J.I.; Rodriguez-Ubreva, J.; Berdasco, M.; Fraga, M.F.; O’Hanlon, T.P.; Rider, L.G.; et al. Changes in the pattern of DNA methylation associate with twin discordance in systemic lupus erythematosus. Genome Res. 2010, 20, 170–179. [Google Scholar] [CrossRef] [PubMed]

	



Zhao, M.; Liu, S.; Luo, S.; Wu, H.; Tang, M.; Cheng, W.; Zhang, Q.; Zhang, P.; Yu, X.; Xia, Y.; et al. DNA methylation and mRNA and microRNA expression of SLE CD4+ T cells correlate with disease phenotype. J. Autoimmun. 2014, 54, 127–136. [Google Scholar] [CrossRef] [PubMed]

	



Esteller, M. Epigenetic gene silencing in cancer: The DNA hypermethylome. Hum. Mol. Genet. 2007, 16, R50–R59. [Google Scholar] [CrossRef] [PubMed]

	



Lopez-Serra, L.; Esteller, M. Proteins that bind methylated DNA and human cancer: Reading the wrong words. Br. J. Cancer 2008, 98, 1881–1885. [Google Scholar] [CrossRef] [PubMed]

	



Meng, H.X.; Hackett, J.A.; Nestor, C.; Dunican, D.S.; Madej, M.; Reddington, J.P.; Pennings, S.; Harrison, D.J.; Meehan, R.R. Apoptosis and DNA methylation. Cancers (Basel) 2011, 3, 1798–1820. [Google Scholar] [CrossRef] [PubMed]

	



Balada, E.; Ordi-Ros, J.; Serrano-Acedo, S.; Martinez-Lostao, L.; Vilardell-Tarres, M. Transcript overexpression of the MBD2 and MBD4 genes in CD4+ T cells from systemic lupus erythematosus patients. J. Leukoc. Biol. 2007, 81, 1609–1616. [Google Scholar] [CrossRef] [PubMed]

	



Thaler, R.; Karlic, H.; Spitzer, S.; Klaushofer, K.; Varga, F. Extra-cellular matrix suppresses expression of the apoptosis mediator Fas by epigenetic DNA methylation. Apoptosis 2010, 15, 728–737. [Google Scholar] [CrossRef] [PubMed]

	



Orskov, A.D.; Treppendahl, M.B.; Skovbo, A.; Holm, M.S.; Friis, L.S.; Hokland, M.; Gronbaek, K. Hypomethylation and up-regulation of PD-1 in T cells by azacytidine in MDS/AML patients: A rationale for combined targeting of PD-1 and DNA methylation. Oncotarget 2015, 6, 9612–9626. [Google Scholar] [CrossRef] [PubMed]

	



Hu, S.; Ke, S.; Wang, W.; Ran, H.; Chen, M.; Zhang, F.; Qiu, X.; Jiang, M.; Zou, C.; Zhang, R.; et al. A single fas gene mutation changes lupus onset, severity, location, and molecular abnormalities in mice. Curr. Mol. Med. 2015, 15, 380–385. [Google Scholar] [CrossRef] [PubMed]

	



Siwiec, A.; Majdan, M. The role of the PD-1 protein in pathogenesis of autoimmune diseases, with particular consideration of rheumatoid arthritis and systemic lupus erythematosus. Postepy Hig. Med. Dosw. (Online) 2015, 69, 534–542. [Google Scholar] [CrossRef] [PubMed]

	



McPherson, R.C.; Konkel, J.E.; Prendergast, C.T.; Thomson, J.P.; Ottaviano, R.; Leech, M.D.; Kay, O.; Zandee, S.E.; Sweenie, C.H.; Wraith, D.C.; et al. Epigenetic modification of the PD-1 (Pdcd1) promoter in effector CD4(+) T cells tolerized by peptide immunotherapy. Elife 2014, 3. [Google Scholar] [CrossRef] [PubMed]

	



Navratil, J.S.; Ahearn, J.M. Apoptosis, clearance mechanisms, and the development of systemic lupus erythematosus. Curr. Rheumatol. Rep. 2001, 3, 191–198. [Google Scholar] [CrossRef] [PubMed]

	



Tas, S.W.; Quartier, P.; Botto, M.; Fossati-Jimack, L. Macrophages from patients with SLE and rheumatoid arthritis have defective adhesion in vitro, while only SLE macrophages have impaired uptake of apoptotic cells. Ann. Rheum. Dis. 2006, 65, 216–221. [Google Scholar] [CrossRef] [PubMed]

	



Herrmann, M.; Voll, R.E.; Zoller, O.M.; Hagenhofer, M.; Ponner, B.B.; Kalden, J.R. Impaired phagocytosis of apoptotic cell material by monocyte-derived macrophages from patients with systemic lupus erythematosus. Arthritis Rheumatol. 1998, 41, 1241–1250. [Google Scholar] [CrossRef]

	



Baumann, I.; Kolowos, W.; Voll, R.E.; Manger, B.; Gaipl, U.; Neuhuber, W.L.; Kirchner, T.; Kalden, J.R.; Herrmann, M. Impaired uptake of apoptotic cells into tingible body macrophages in germinal centers of patients with systemic lupus erythematosus. Arthritis Rheumatol. 2002, 46, 191–201. [Google Scholar] [CrossRef]

	



Ren, Y.; Tang, J.; Mok, M.Y.; Chan, A.W.; Wu, A.; Lau, C.S. Increased apoptotic neutrophils and macrophages and impaired macrophage phagocytic clearance of apoptotic neutrophils in systemic lupus erythematosus. Arthritis Rheumatol. 2003, 48, 2888–2897. [Google Scholar] [CrossRef] [PubMed]

	



Kruse, K.; Janko, C.; Urbonaviciute, V.; Mierke, C.T.; Winkler, T.H.; Voll, R.E.; Schett, G.; Munoz, L.E.; Herrmann, M. Inefficient clearance of dying cells in patients with SLE: Anti-dsDNA autoantibodies, MFG-E8, HMGB-1 and other players. Apoptosis 2010, 15, 1098–1113. [Google Scholar] [CrossRef] [PubMed]

	



Church, L.D.; Cook, G.P.; McDermott, M.F. Primer: Inflammasomes and interleukin 1beta in inflammatory disorders. Nat. Clin. Pract. Rheumatol. 2008, 4, 34–42. [Google Scholar] [CrossRef] [PubMed]

	



Li, X.; Yue, Y.; Zhu, Y.; Xiong, S. Extracellular, but not intracellular HMGB1, facilitates self-DNA induced macrophage activation via promoting DNA accumulation in endosomes and contributes to the pathogenesis of lupus nephritis. Mol. Immunol. 2015, 65, 177–188. [Google Scholar] [CrossRef] [PubMed]

	



Lu, M.; Yu, S.; Xu, W.; Gao, B.; Xiong, S. HMGB1 Promotes Systemic Lupus Erythematosus by Enhancing Macrophage Inflammatory Response. J. Immunol. Res. 2015, 2015, 946748. [Google Scholar] [CrossRef] [PubMed]

	



Radic, M.; Herrmann, M.; van der Vlag, J.; Rekvig, O.P. Regulatory and pathogenetic mechanisms of autoantibodies in SLE. AutoImmunity 2011, 44, 349–356. [Google Scholar] [CrossRef] [PubMed]

	



Barnawi, J.; Jersmann, H.; Haberberger, R.; Hodge, S.; Meech, R. Reduced DNA methylation of sphingosine-1 phosphate receptor 5 in alveolar macrophages in COPD: A potential link to failed efferocytosis. Respirology 2016. [Google Scholar] [CrossRef] [PubMed]

	



Watson, L.; Tullus, K.; Marks, S.D.; Holt, R.C.; Pilkington, C.; Beresford, M.W. Increased serum concentration of sphingosine-1-phosphate in juvenile-onset systemic lupus erythematosus. J. Clin. Immunol. 2012, 32, 1019–1025. [Google Scholar] [CrossRef] [PubMed]

	



Wallner, S.; Schroder, C.; Leitao, E.; Berulava, T.; Haak, C.; Beisser, D.; Rahmann, S.; Richter, A.S.; Manke, T.; Bonisch, U.; et al. Epigenetic dynamics of monocyte-to-macrophage differentiation. Epigenet. Chromatin 2016, 9, 33. [Google Scholar] [CrossRef] [PubMed]

	



Brinkmann, V.; Reichard, U.; Goosmann, C.; Fauler, B.; Uhlemann, Y.; Weiss, D.S.; Weinrauch, Y.; Zychlinsky, A. Neutrophil extracellular traps kill bacteria. Science 2004, 303, 1532–1535. [Google Scholar] [CrossRef] [PubMed]

	



Papayannopoulos, V.; Zychlinsky, A. NETs: A new strategy for using old weapons. Trends Immunol. 2009, 30, 513–521. [Google Scholar] [CrossRef] [PubMed]

	



Villanueva, E.; Yalavarthi, S.; Berthier, C.C.; Hodgin, J.B.; Khandpur, R.; Lin, A.M.; Rubin, C.J.; Zhao, W.; Olsen, S.H.; Klinker, M.; et al. Netting neutrophils induce endothelial damage, infiltrate tissues, and expose immunostimulatory molecules in systemic lupus erythematosus. J. Immunol. 2011, 187, 538–552. [Google Scholar] [CrossRef] [PubMed]

	



Bosch, X. Systemic lupus erythematosus and the neutrophil. N. Engl. J. Med. 2011, 365, 758–760. [Google Scholar] [CrossRef] [PubMed]

	



Schauer, C.; Janko, C.; Munoz, L.E.; Zhao, Y.; Kienhofer, D.; Frey, B.; Lell, M.; Manger, B.; Rech, J.; Naschberger, E.; et al. Aggregated neutrophil extracellular traps limit inflammation by degrading cytokines and chemokines. Nat. Med. 2014, 20, 511–517. [Google Scholar] [CrossRef] [PubMed]

	



Yu, S.L.; Kuan, W.P.; Wong, C.K.; Li, E.K.; Tam, L.S. Immunopathological roles of cytokines, chemokines, signaling molecules, and pattern-recognition receptors in systemic lupus erythematosus. Clin. Dev. Immunol. 2012, 2012, 715190. [Google Scholar] [CrossRef] [PubMed]

	



Kahlenberg, J.M.; Carmona-Rivera, C.; Smith, C.K.; Kaplan, M.J. Neutrophil extracellular trap-associated protein activation of the NLRP3 inflammasome is enhanced in lupus macrophages. J. Immunol. 2013, 190, 1217–1226. [Google Scholar] [CrossRef] [PubMed]

	



Radic, M. Clearance of Apoptotic Bodies, NETs, and Biofilm DNA: Implications for Autoimmunity. Front. Immunol. 2014, 5, 365. [Google Scholar] [CrossRef] [PubMed]

	



Spengler, J.; Lugonja, B.; Ytterberg, A.J.; Zubarev, R.A.; Creese, A.J.; Pearson, M.J.; Grant, M.M.; Milward, M.; Lundberg, K.; Buckley, C.D.; et al. Release of Active Peptidyl Arginine Deiminases by Neutrophils Can. Explain Production of Extracellular Citrullinated Autoantigens in Rheumatoid Arthritis Synovial Fluid. Arthritis Rheumatol. 2015, 67, 3135–3145. [Google Scholar] [CrossRef] [PubMed]

	



Kumar, S.V.; Kulkarni, O.P.; Mulay, S.R.; Darisipudi, M.N.; Romoli, S.; Thomasova, D.; Scherbaum, C.R.; Hohenstein, B.; Hugo, C.; Muller, S.; et al. Neutrophil Extracellular Trap-Related Extracellular Histones Cause Vascular Necrosis in Severe GN. J. Am. Soc. Nephrol. 2015, 26, 2399–2413. [Google Scholar] [CrossRef] [PubMed]

	



Hakkim, A.; Furnrohr, B.G.; Amann, K.; Laube, B.; Abed, U.A.; Brinkmann, V.; Herrmann, M.; Voll, R.E.; Zychlinsky, A. Impairment of neutrophil extracellular trap degradation is associated with lupus nephritis. Proc. Natl. Acad. Sci. USA 2010, 107, 9813–9818. [Google Scholar] [CrossRef] [PubMed]

	



Liu, C.L.; Tangsombatvisit, S.; Rosenberg, J.M.; Mandelbaum, G.; Gillespie, E.C.; Gozani, O.P.; Alizadeh, A.A.; Utz, P.J. Specific post-translational histone modifications of neutrophil extracellular traps as immunogens and potential targets of lupus autoantibodies. Arthritis Res. Ther. 2012, 14, R25. [Google Scholar] [CrossRef] [PubMed]

	



Levine, B.; Mizushima, N.; Virgin, H.W. Autophagy in immunity and inflammation. Nature 2011, 469, 323–335. [Google Scholar] [CrossRef] [PubMed]

	



Alessandri, C.; Barbati, C.; Vacirca, D.; Piscopo, P.; Confaloni, A.; Sanchez, M.; Maselli, A.; Colasanti, T.; Conti, F.; Truglia, S.; et al. T lymphocytes from patients with systemic lupus erythematosus are resistant to induction of autophagy. FASEB J. 2012, 26, 4722–4732. [Google Scholar] [CrossRef] [PubMed]

	



Conway, K.L.; Kuballa, P.; Khor, B.; Zhang, M.; Shi, H.N.; Virgin, H.W.; Xavier, R.J. ATG5 regulates plasma cell differentiation. Autophagy 2013, 9, 528–537. [Google Scholar] [CrossRef] [PubMed]

	



Weissmann, G. Lysosomes, Autoimmune Phenomena, and Diseases of Connective Tissue. Lancet 1964, 2, 1373–1375. [Google Scholar] [CrossRef]

	



International Consortium for Systemic Lupus Erythematosus Genetics; Harley, J.B.; Alarcon-Riquelme, M.E.; Criswell, L.A.; Jacob, C.O.; Kimberly, R.P.; Moser, K.L.; Tsao, B.P.; Vyse, T.J.; Langefeld, C.D.; et al. Genome-wide association scan in women with systemic lupus erythematosus identifies susceptibility variants in ITGAM, PXK, KIAA1542 and other loci. Nat. Genet. 2008, 40, 204–210. [Google Scholar] [CrossRef] [PubMed]

	



Gateva, V.; Sandling, J.K.; Hom, G.; Taylor, K.E.; Chung, S.A.; Sun, X.; Ortmann, W.; Kosoy, R.; Ferreira, R.C.; Nordmark, G.; et al. A large-scale replication study identifies TNIP1, PRDM1, JAZF1, UHRF1BP1 and IL10 as risk loci for systemic lupus erythematosus. Nat. Genet. 2009, 41, 1228–1233. [Google Scholar] [CrossRef] [PubMed]

	



Zhou, X.J.; Lu, X.L.; Lv, J.C.; Yang, H.Z.; Qin, L.X.; Zhao, M.H.; Su, Y.; Li, Z.G.; Zhang, H. Genetic association of PRDM1-ATG5 intergenic region and autophagy with systemic lupus erythematosus in a Chinese population. Ann. Rheum. Dis. 2011, 70, 1330–1337. [Google Scholar] [CrossRef] [PubMed]

	



Clarke, A.J.; Ellinghaus, U.; Cortini, A.; Stranks, A.; Simon, A.K.; Botto, M.; Vyse, T.J. Autophagy is activated in systemic lupus erythematosus and required for plasmablast development. Ann. Rheum. Dis. 2015, 74, 912–920. [Google Scholar] [CrossRef] [PubMed]

	



Pan, Q.; Gao, C.; Chen, Y.; Feng, Y.; Liu, W.J.; Liu, H.F. Update on the role of autophagy in systemic lupus erythematosus: A novel therapeutic target. Biomed. Pharmacother. 2015, 71, 190–193. [Google Scholar] [CrossRef] [PubMed]

	



Harr, M.W.; McColl, K.S.; Zhong, F.; Molitoris, J.K.; Distelhorst, C.W. Glucocorticoids downregulate Fyn and inhibit IP(3)-mediated calcium signaling to promote autophagy in T lymphocytes. Autophagy 2010, 6, 912–921. [Google Scholar] [CrossRef] [PubMed]

	



Boya, P.; Gonzalez-Polo, R.A.; Casares, N.; Perfettini, J.L.; Dessen, P.; Larochette, N.; Metivier, D.; Meley, D.; Souquere, S.; Yoshimori, T.; et al. Inhibition of macroautophagy triggers apoptosis. Mol. Cell. Biol. 2005, 25, 1025–1040. [Google Scholar] [CrossRef] [PubMed]

	



Wu, S.; Sun, J. Vitamin D, vitamin D receptor, and macroautophagy in inflammation and infection. Discov. Med. 2011, 11, 325–335. [Google Scholar] [PubMed]

	



Rothbart, S.B.; Strahl, B.D. Interpreting the language of histone and DNA modifications. Biochim. Biophys. Acta 2014, 1839, 627–643. [Google Scholar] [CrossRef] [PubMed]

	



Renaudineau, Y.; Youinou, P. Epigenetics and autoimmunity, with special emphasis on methylation. Keio J. Med. 2011, 60, 10–16. [Google Scholar] [CrossRef] [PubMed]

	



Black, J.C.; van Rechem, C.; Whetstine, J.R. Histone lysine methylation dynamics: Establishment, regulation, and biological impact. Mol. Cell 2012, 48, 491–507. [Google Scholar] [CrossRef] [PubMed]

	



Ou, X.; Lee, M.R.; Huang, X.; Messina-Graham, S.; Broxmeyer, H.E. SIRT1 positively regulates autophagy and mitochondria function in embryonic stem cells under oxidative stress. Stem Cells 2014, 32, 1183–1194. [Google Scholar] [CrossRef] [PubMed][Green Version]

	



Hu, N.; Long, H.; Zhao, M.; Yin, H.; Lu, Q. Aberrant expression pattern of histone acetylation modifiers and mitigation of lupus by SIRT1-siRNA in MRL/lpr mice. Scand. J. Rheumatol. 2009, 38, 464–471. [Google Scholar] [CrossRef] [PubMed]

	



Murphy, J.M.; Czabotar, P.E.; Hildebrand, J.M.; Lucet, I.S.; Zhang, J.G.; Alvarez-Diaz, S.; Lewis, R.; Lalaoui, N.; Metcalf, D.; Webb, A.I.; et al. The pseudokinase MLKL mediates necroptosis via a molecular switch mechanism. Immunity 2013, 39, 443–453. [Google Scholar] [CrossRef] [PubMed]

	



Robinson, N.; McComb, S.; Mulligan, R.; Dudani, R.; Krishnan, L.; Sad, S. Type I interferon induces necroptosis in macrophages during infection with Salmonella enterica serovar Typhimurium. Nat. Immunol. 2012, 13, 954–962. [Google Scholar] [CrossRef] [PubMed]

	



Fan, H.; Liu, F.; Dong, G.; Ren, D.; Xu, Y.; Dou, J.; Wang, T.; Sun, L.; Hou, Y. Activation-induced necroptosis contributes to B-cell lymphopenia in active systemic lupus erythematosus. Cell Death Dis. 2014, 5, e1416. [Google Scholar] [CrossRef] [PubMed]

	



Sanz, A.B.; Izquierdo, M.C.; Sanchez-Nino, M.D.; Ucero, A.C.; Egido, J.; Ruiz-Ortega, M.; Ramos, A.M.; Putterman, C.; Ortiz, A. TWEAK and the progression of renal disease: Clinical translation. Nephrol. Dial. Transplant. 2014, 29 (Suppl. 1), i54–i62. [Google Scholar] [CrossRef] [PubMed]

	



Yan, S.; Yim, L.Y.; Tam, R.C.; Chan, A.; Lu, L.; Lau, C.S.; Chan, V.S. MicroRNA-155 Mediates Augmented CD40 Expression in Bone Marrow Derived Plasmacytoid Dendritic Cells in Symptomatic Lupus-Prone NZB/W F1 Mice. Int. J. Mol. Sci. 2016, 17, 1282. [Google Scholar] [CrossRef] [PubMed]

	



Zhou, H.; Xiong, L.; Wang, Y.; Ding, L.; Hu, S.; Zhao, M.; Zhou, L. Treatment of murine lupus with PD-LIg. Clin. Immunol. 2016, 162, 1–8. [Google Scholar] [CrossRef] [PubMed]








[image: Molecules 22 00030 g001 550] 





Figure 1. The role of apoptosis in the development of SLE. At the initiation phase of SLE, macrophages have defects in cleaning up apoptotic cells. The cellular materials from apoptotic cells can be taken up by immature DCs (imDCs). The imDCs therefore undergo a maturation stage and become mature DCs with the upregulated CD40, CD86, and MHC-II levels. Mature DCs then polarize Th0 cells into Th1, Th2, and Th17 cells, which help B cell differentiation and activation. At the same time, apoptotic bodies bind to antibodies and form immune complexes (ICs). ICs further activate pDCs and promote the production of IFN-α, which promotes antibody production and isotype switching. ICs are also deposited in renal tissue, leading to immune cell infiltration and local tissue damage, which can induce more apoptosis, forming a positive loop in the progression phase of SLE. ACB, apoptotic cell body (“late apoptotic cell”); Blebs, apoptotic blebs; EAC, early apoptotic cell; MF, macrophage; mDC, myeloid dendritic cell; Nucleosomes, apoptosis-induced hyper acetylated nucleosomes; pDC, plasmacytoid dendritic cell; Th, T helper cell; Treg, regulatory T cell. 
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Figure 2. Apoptotic cells induce immune tolerance and autoimmunity. Early apoptotic cells secrete anti-inflammatory cytokines—such as IL-10, TGF-beta—and express find-me (ATP, UTP, dRp S19), eat-me (PS, PE, PC), and keep-out (LTF) signals to macrophage for tolerance induction. However, when the clearance of early apoptotic cells is impaired, they will undergo late apoptotic process and release danger signals such as HMGB-1 and NETs as well as exposure auto-antigens (DNA, RNA, and chromatin). Macrophages are activated by these danger signals and then produce inflammatory cytokines—including IL-1, IL-6, and TNF-α—which may contribute to the development of autoimmune disorders. ATP, adenosine triphosphate; UTP, uridine triphosphate; dRp S19, dimer of ribosomal protein S19; PS, phosphatidylserine, PC, phosphatidylcholine; PE, phosphatidylethanolamine; LTF, Lactotransferrin. 
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