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Abstract: In this work, a thermo-responsive and cross-linked fluoropolymer poly(2,2,2-Trifluoroethyl)
methacrylate (PTFEMA) was successfully prepared by reversible addition-fragmentation chain transfer
(RAFT) mediated aqueous polymerization with a thermo-responsive diblock poly(dimethylacrylamide-
b-N-isopropylacrylamide) (PDMA-b-PNIPAM) that performed a dual function as both a nanoreactor
and macro-RAFT agent. The cross-linked polymer particles proved to be in a spherical-like structure of
about 50 nm in diameter and with a relatively narrow particle size distribution. 1H-NMR and 19F-NMR
spectra showed that thermo-responsive diblock P(DMA-b-NIPAM) and cross-linked PTFEMA particles
were successfully synthesized. Influence of the amount of ammonium persulfate (APS), the molar ratio
of monomers to RAFT agent, influence of the amount of cross-linker on aqueous polymerization and
thermo-responsive characterization of the particles are investigated. Monomer conversion increased
from 44% to 94% with increasing the molar ratio of APS and P(DMA-b-NIPAM) from 1:9 to1:3. As the
reaction proceeded, the particle size increased from 29 to 49 nm due to the consumption of TFEMA
monomer. The size of cross-linked nanoparticles sharply decreased from 50.3 to 40.5 nm over the
temperature range 14–44 ◦C, suggesting good temperature sensitivity for these nanoparticles.

Keywords: RAFT polymerization; nanoreactor; aqueous polymerization; cross-linking; temperature
sensitivity

1. Introduction

In recent years, the study of fluoropolymers has gained tremendous attention because of their
versatility. Excellent chemical resistance, thermal stability and other special properties enable them to
be widely used in the fields of leather, textiles, building, and coating. In addition, many fluorinated
polymers and small molecules have been widely used in medicine and drug delivery because of their
biocompatibility and non-toxicity in vivo [1–3]. For example, sitagliptin, a selective, potent dipeptidyl
peptidase IV DPP-4 inhibitor, is the active ingredient in JANUVIA® and JANUMET® (a fixed dose
combination with the antidiabetic agent metformin), which both recently received approval for the
treatment of type 2 diabetes by the FDA [4]. The most widely used method for the preparation of
polymer nanoparticles is heterogeneous polymerization, including emulsion polymerization and
dispersion polymerization. Aqueous polymerization is a relatively economical and versatile tool
to produce nanoparticles with a low sensitivity to impurities [5]. Usually emulsifiers are used to
stabilize such type of emulsions. These emulsifiers are very toxic and also need to be removed from
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the final product, which imparts extra costs. Based on the reasons above, emulsifier-free aqueous
polymerization was developed. The main drawback of emulsifier-free aqueous polymerization was
the broad particle size distribution (PSD) with little or no control over particle size.

With the development of controlled/living radical polymerization (CLRP) the problem of
large dispersity (Ð) and uncontrolled molecular weight has been overcome to a large extent [6].
Researchers simultaneously found that it is a good way to produce particles with narrow size distribution.
CLRP include nitroxide-mediated polymerization, atom transfer radical polymerization and reversible
addition-fragmentation chain transfer (RAFT) polymerization [7–9]. Among these methods, RAFT
polymerization has distinct advantages compared to others. It can be applied to synthesize polymers
or copolymers with narrow molecular weight distribution for most monomers amenable to radical
polymerization. The molecular weight of the final product can be predicted from the ratio of monomer
consumed to chain transfer agent. In addition, there is compatibility with a vast range of functional
monomers, solvents and initiators. Also, there is no undesired metal species introduced during the
RAFT polymerization process [9,10].

Considerable attention has been directed towards the synthesis of polymer nanoparticles via RAFT
polymerization in dispersed aqueous medium (e.g., emulsion, miniemulsion) due to its capability
of controlled molecular weight and dispersity [6,11–16]. Firstly, homopolymers and copolymers
are synthesized and then used in aqueous RAFT polymerization. During this process amphiphilic
block copolymers not only provide an ideal setting for polymerization to prevent the aggregation
of nanoparticles but also acts as a reactant to produce products with well-controlled dispersity [6].
Many organic reactions have been carried out in nanoreactors [17,18]. These nanoreactors can provide
a nano-sized space for the reaction to take place. For P(DMA-b-NIPAM) copolymer, the PNIPAM block
is hydrophilic and water-soluble below its lower critical solution temperature (LCST ~36 ◦C) [19] while
above its LCST it forms self-stabilized monodisperse nanoreactors [6]. The main advantages of carrying
out CLRP using nanoreactors are the following: (1) easy to form micelles in water with better emulsion
stability; (2) pure products can be obtained with low dispersity and no residual emulsifier [20–23].

In this study, thermo-responsive and cross-linked poly((2,2,2-trifluoroethyl)methacrylate)
nanoparticles were successfully prepared. Firstly, a thermo-responsive diblock copolymer based
on RAFT solution polymerization was synthesized. The diblock copolymer containing a RAFT end
group is used for RAFT-mediated aqueous polymerization to prepare cross-linked nanospheres due
to its self-emulsifying property. Homopolymer PNIPAM has been extensively studied for drug
delivery applications because of its lower critical solution temperature (LCST) (at ~32 ◦C) [24].
However, PNIPAM homopolymers suffer from syneresis and lack of biodegradability. The fluorinated
core-shell structure can retain temperature-sensitive properties and water absorption along with
the uniformity and stability of nanospheres. The strong hydrophobicity of the fluorinated core can
enhance the performance of the loading of hydrophobic drug. To our knowledge, this is the first time
to synthesize thermo-responsive fluoropolymer nanospheres. It may have an attractive application
prospect in drug controlled release.

2. Results and Discussion

2.1. Synthesis and Characterization of PDMA-S-(C=S)-S-C12H25 and P(DMA-b-NIPAM)-S-(C=S)-S-C12H25

P(DMA-b-NIPAM)-S-(C=S)-S-C12H25 was synthesized via a two-step RAFT solution polymerization
of dimethylacrylamide (DMA) and N-isopropylacrylamide (NIPAM) with the trithiocarbonate RAFT agent
2-([(dodecylsulfanyl)carbonothioyl]sulfanyl)propanoic acid. As the 1H-NMR spectra in Figure 1 shows,
all proton signals are assigned. In Figure 1B, the feature signals of the polydimethylacrylamide (PDMA)
segment are seen (1.42–1.91 ppm –CH2– backbone PDMA; 2.30–2.78 ppm –CH– backbone PDMA;
2.78–3.27 ppm dimethyl group of NMe2, PDMA) [25]. For the diblock 1H-NMR spectrum in Figure 1C, the
feature signals of PDMA still remain, while the feature signals of poly(N-isopropylacrylamide) (PNIPAM)
now appear (3.80–4.22 ppm –CH– in side chain PNIPAM; 6.67–7.75 ppm –NH–, PNIPAM) [6,25].
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The signal at 0.95 ppm is attributed to the methyl protons of the RAFT agent, which indicates that
the structure of the final polymer still keeps the functional group of the RAFT agent. The chemical
structure of the chain transfer agent (CTA), macro-RAFT agent and diblock are thus confirmed from
the 1H-NMR.
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Figure 1. 1H-NMR spectra of (A) HOOCCH(CH3)-S-(C=S)-S-C12H25; (B) macro-CTA PDMA73-S-(C=S)-
S-C12H25; (C) copolymer P(DMA73-b-NIPAM77)-S-(C=S)-S-C12H25 in acetone.

Tables 1 and 2 show the data of the synthesis of poly(N,N-dimethylacrylamide) (PDMA) and
PDMA-b-PNIPAM. Figure 2A shows the gel permeation chromatography (GPC) traces of the macro-
RAFT agent of PDMA-S-(C=S)-S-C12H25 with a different ratio of monomer and RAFT agent, resulting
in a different degree of polymerization. Based on the GPC traces eluted by THF, the different molecular
weights ranging from 3900 to 10,800 g/mol with low dispersity (<1.1) for PDMA-S-(C=S)-S-C12H25 are
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obtained. Figure 2B shows the GPC traces of P(DMA-b-NIPAM)-S-(C=S)-S-C12H25 synthesized by the
same macro-RAFT agent. Diblock copolymers ranging from 7200 to 22,000 g/mol with low dispersity
were successfully obtained. These results confirm the well-controlled RAFT polymerization.

Table 1. Data for the reversible addition-fragmentation chain transfer (RAFT) mediated polymerization
of N,N-dimethylacrylamide (DMA) at 65 ◦C in dioxane.

[DMA]:[DOPAT] Mn,target
a (g/mol) x b (%) Mn,theory

c (g/mol) Mn,GPC
d Ð e

35:1 3800 97 3700 3900 1.09
100:1 10,250 84 8700 7500 1.11
150:1 15,200 73 11,200 10,700 1.09

a target molecular weight (Mn) of PDMA; b conversion of DMA calculated by gravimetry; c calculated from
the equation: Mn,theory = [DMA]

[DOPAT] × MDMA × conversion + MDOPAT where MDOPAT is the molecular weight of

2-([(dodecylsulfanyl)carbonothioyl]sulfanyl)-propanoic acid (DOPAT); d THF was used as eluent at a flow rate
of 1.0 mL/min; e dispersity of PDMA.

Table 2. Data for the RAFT-mediated polymerization of N-isopropylacrylamide (NIPAM) at 65 ◦C
in dioxane.

[NIPAM]:[macro-CTA] Mn,target
a (g/mol) x b (%) Mn,theory

c (g/mol) Mn,GPC
d Ð e

40:1 8100 92 7700 7200 1.07
100:1 17,200 78 12,400 14,800 1.16
250:1 31,800 64 20,300 22,000 1.17

a target molecular weight (Mn) of PDMA-b-PNIPAM; b conversion of NIPAM calculated by gravimetry;
c calculated from the equation: Mn,theory = [NIPAM]

[macro−CTA]
× MNIPAM × conversion + Mn,PDMA where Mn,PDMA

is the molecular weight of the PDMA33 macro-CTA; d THF was used as eluent at a flow rate of 1.0 mL/min;
e dispersity of PDMA-b-PNIPAM.
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temperature (25 °C). The micelles preloaded with the model drug Nile Red will form hydrogels upon 
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oil sands [27]. 

Figure 2. Gel permeation chromatography (GPC) traces of homopolymer or diblock copolymer
eluted by THF. (A) macro-RAFT agent of PDMA-S-(C=S)-S-C12H25 with different degree of
polymerization; (B) P(DMA-b-NIPAM)-S-(C=S)-S-C12H25 copolymers prepared with the molar ratios
of NIPAM/PDMA33-S-(C=S)-S-C12H25 at 43:1, 80:1, 140:1 and 250:1. Polymerization conditions:
PDMA33-S-(C=S)-S-C12H25:[AIBN] = 7:1, 65 ◦C, 20 h.
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2.2. Crosslinking Polymerization of TFEMA in Nanoreactors Formed
by P(DMA-b-NIPAM)-S-(C=S)-S-C12H25

Thermo-responsive block polymers have been extensively studied for drug delivery and
extraction. Gupta’s group reported that thermo-responsive triblock polymer poly-[(propylenesulfide)-
b-(N,N-dimethylacrylamide)-b-(N-isopropylacrylamide)] (PPS-b-PDMA-b-PNIPAAM) can form micelles
at room temperature (25 ◦C). The micelles preloaded with the model drug Nile Red will form hydrogels
upon heating to physiologic temperature (37 ◦C), and the resulting hydrogels demonstrated reactive
oxygen species (ROS)- dependent drug release [26]. Duhamel et al. demonstrated that poly(ethylene
glycol)-b-poly(2-(2-methoxyethoxy) ethyl methacrylate) (PEG-b-PMEO2MA) has the ability to extract
oil from oil sands [27].

Optical photographs of the thermo-responsive block polymers that we synthesized are
shown in Figure 3; the solution was transparent at 25 ◦C. When the temperature was raised
to 40 ◦C, the P(DMA33-b-NIPAMx)-S-(C=S)-S-C12H25 (x = 63, 130, 163) solution became opaque,
while P(DMA33-b-NIPAM32)-S-(C=S)-S-C12H25 showed no change. The thermo-responsive diblock
P(DMA-b-NIPAM)-S-(C=S)-S-C12H25 can completely dissolve in water below the LCST of the PNIPAM
block. The behavior of the PNIPAM block changes from soluble into insoluble once the temperature
is above the LCST, resulting in the aggregation of PNIPAM segments to form nanoreactors, and
hydrophilic segment PDMA acts as a stabilizer for the nanoreactors. The nanoreactors can encapsulate
TFEMA monomers and cross-linker EGDMA for reaction. Intensity weighted distributions of the
hydrodynamic diameter were obtained by dynamic light scattering (DLS). The micelle hydrodynamic
diameter increased from 16 to 33 nm while the degree of polymerization of the PNIPAM segment
increased from 63 to 163. The PNIPAM segments of P(DMA33-b-NIPAM32)-S-(C=S)-S-C12H25 are too
short to stabilize the micelles.
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Figure 3. (A) Optical photographs of P(DMA33-b-NIPAMx)-S-(C=S)-S-C12H25 (x = 32, 63, 130, 163)
aqueous solution with 2.0 wt % concentration at 25 ◦C; (B) Optical photographs at 40 ◦C and diameter
measured by dynamic light scattering (DLS).

The aqueous solution containing P(DMA-b-NIPAM)-S-(C=S)-S-C12H25, APS, TFEMA and
EGDMA will undergo polymerization in nanoreactors to generate cross-linked nanoparticles.
Figure 4 shows the 19F-NMR spectrum of lyophilized triblock copolymer P(DMA33-b-NIPAM163-b-
TFEMA50)-S-(C=S)-S-C12H25. The characteristic signals of the PTFEMA segment (−73.8 ppm –CF3

in side chain PTFEMA) can be seen. The particle morphology, shown by the transmission electron
microscopy (TEM) and scanning electron microscopy (SEM) images in Figures 5 and 6, clearly suggests
that stable and monodisperse spherical nanoparticles were formed. The particles’ corona was formed
by P(DMA-b-NIPAM) and the cross-linked PTFEMA block forms the hydrophobic core.
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Figure 5. Transmission electron microscopy (TEM) images for the final latex of RAFT-mediated aqueous
polymerization of TFEMA in the presence of P(DMA-b-NIPAM)-S-(C=S)-S-C12H25. Polymerization
conditions: P(DMA46-b-NIPAM31)-S-(C=S)-S-C12H25:[APS] = 3:1, P(DMA46-b-NIPAM31)-S-(C=S)-S-
C12H25:[TFEMA] = 1:200, [EGDMA]:[TFEMA] = 5:100, 70 ◦C, 120 min.
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Figure 6. Scanning electron microscopy (SEM) image for the lyophilized triblock copolymer P(DMA33-
b-NIPAM32-b-TFEMA500)-S-(C=S)-S-C12H25. Polymerization conditions: P(DMA33-b-NIPAM32)-S-
(C=S)-S-C12H25:[APS] = 3:1, P(DMA33-b-NIPAM32)-S-(C=S)-S-C12H25:[TFEMA] = 1:500, [EGDMA]:
[TFEMA] = 5:100, 70 ◦C, 120 min.
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2.3. Influence of the Amount of APS on Aqueous Polymerization

Several sets of experiments using different amounts of APS were carried out. Samples were
withdrawn at regular time intervals for determination of monomer conversion and particle size.
The particle size and the distribution of highly diluted samples were measured by DLS. Figure 7 shows
the evolution of TFEMA conversion versus time for RAFT-mediated aqueous polymerization using
P(DMA77-b-NIPAM73)-S-(C=S)-S-C12H25 as macro-RAFT agent.
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Figure 7. Evolutions of TFEMA conversion versus time for RAFT-mediated aqueous polymerization. 
Polymerization conditions: (A) macro-RAFT agent:[TFEMA] = 1:700, [EGDMA]:[TFEMA] = 5:100, 
70 °C; (B) macro-RAFT agent:[APS] = 3:1, [EGDMA]:[TFEMA] = 5:100, 70 °C; (C) macro-RAFT 
agent:[TFEMA] = 1:300, macro-RAFT agent:[APS] = 3:1 [EGDMA]:[TFEMA] = 5:100, 70 °C; (D) macro-
RAFT agent:[TFEMA] = 1:300, macro-RAFT agent:[APS] = 9:1, [EGDMA]:[TFEMA] = 5:100, 70 °C. 
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Polymerization conditions: (A) macro-RAFT agent:[TFEMA] = 1:700, [EGDMA]:[TFEMA] = 5:100, 70 ◦C;
(B) macro-RAFT agent:[APS] = 3:1, [EGDMA]:[TFEMA] = 5:100, 70 ◦C; (C) macro-RAFT agent:[TFEMA] =
1:300, macro-RAFT agent:[APS] = 3:1 [EGDMA]:[TFEMA] = 5:100, 70 ◦C; (D) macro-RAFT agent:[TFEMA]
= 1:300, macro-RAFT agent:[APS] = 9:1, [EGDMA]:[TFEMA] = 5:100, 70 ◦C.

As shown in Figure 7A the final monomer conversion was 44.3% when the molar ratio of APS and
chain transfer agent was 1:9. The final monomer conversion reached 94.2% upon changing the molar
ratio of APS and chain transfer agent from 1:9 to 1:3. The low APS concentration process could not
generate enough radicals to initiate the reaction, resulting in low monomer conversion. By increasing
the amount of APS, the polymerization rate increased due to the increase of the number of radicals.
Figure 7B shows the evolution of TFEMA conversion versus time, keeping the same amount of initiator.
In the two experiments, the molar ratio of TFEMA and macro-RAFT agent was varied, but the amount
of initiator was held constant. In the later stages of the reaction, there was not enough initiator to
initiate the reaction. As a result, the conversion of the reaction with more monomer was low [28].
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2.4. Influence of Amount of Cross-Linker on Nanoparticles

Several experiments were conducted with adding different amounts of cross-linker EGDMA.
During this process, P(DMA46-b-NIPAM31)-S-(C=S)-S-C12H25 was used as macro-RAFT agent.
From the results we can conclude that the amount of the EGDMA has a significant influence on
particle size. As shown in Figure 8, particle size increased linearly with increasing amount of EGDMA.
This is because the increase of amount of cross-linker leads to high cross-linking density. As a result,
the number of block copolymers connected on each nanoreactor is also increased, leading to larger
particle size.
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Figure 8. Relationship between particle size and amount of EGDMA added during RAFT-mediated
polymerization. Polymerization conditions: macro-RAFT agent:[TFEMA] = 1:700, macro-RAFT agent:[APS]
= 3:1, 70 ◦C, 120 min.

2.5. Influence of Amount of TFEMA on the Nanoparticles

The effect of amount of TFEMA on particle size was investigated using P(DMA46-b-NIPAM31)-S-
(C=S)-S-C12H25 as macro-RAFT agent. Intensity weighted distributions of the hydrodynamic diameter
were obtained by DLS. Figure 9 shows the evolution of particle size versus time or TFEMA conversion.
As the reaction proceeded, the particle size in diameter gradually increased from 28.55 to 49.04 nm.
This is because the monomer conversion gradually increased as the reaction proceeded, and the core
of spherical particle formed by cross-linking PTFEMA will expand with the increase of monomer
conversion. Higher monomer conversion means more monomer entered into nanoreactors for
polymerization resulting in larger particle size.
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2.6. Thermo-Responsive Characterization of Cross-Linked Nanoparticles 

Figure 10A shows the effect of temperature on the particle size in the range of 14–44 °C. From 14 
to 32 °C the particle diameter underwent small changes, but in the 32–37 °C range, the particle size 
was dramatically reduced from 48 to 41 nm. In the range of 35–44 °C, the particle size remained stable, 
indicating that the cross-linked nanospheres are temperature sensitive.  

Meanwhile, it suggests that the LCST of the nanospheres is 32 °C. PNIPAM segments are in a state 
of complete dissolution and stretching when the temperature is below 32 °C. As a result, the DLS-based 
size of the nanospheres is large. When the temperature is raised to the LCST of PNIPAM segments, 
PNIPAM segments begin to shrink rapidly leading to smaller particle size. After the complete shrinkage 
of PNIPAM segments at 37 °C, particle size will not change with the increase of temperature. This result 
proves that PNIPAM is connected with the cross-linked nanospheres, and it can freely stretch or shrink. 
To further prove this result, we synthesized the nanospheres with the same degree of polymerization 
of PDMA and PTFEMA and only changed the degree of polymerization of PNIPAM. As shown in 
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Figure 9. Evolution of particle size measured by DLS at 25 ◦C versus time or conversion for RAFT-mediated
aqueous polymerization. Polymerization conditions: (A) macro-RAFT agent:[TFEMA] = 1:700, macro-RAFT
agent:[APS] = 9:1, [EGDMA]:[TFEMA] = 5:100, 70 ◦C; (B) macro-RAFT agent:[TFEMA] = 1:700, macro-RAFT
agent:[APS] = 3:1, [EGDMA]:[TFEMA] = 5:100, 70 ◦C; (C) macro-RAFT agent:[TFEMA] = 1:700, macro-RAFT
agent:[APS] = 3:1, [EGDMA]:[TFEMA] = 5:100, 70 ◦C.

2.6. Thermo-Responsive Characterization of Cross-Linked Nanoparticles

Figure 10A shows the effect of temperature on the particle size in the range of 14–44 ◦C. From 14
to 32 ◦C the particle diameter underwent small changes, but in the 32–37 ◦C range, the particle size
was dramatically reduced from 48 to 41 nm. In the range of 35–44 ◦C, the particle size remained stable,
indicating that the cross-linked nanospheres are temperature sensitive.

Meanwhile, it suggests that the LCST of the nanospheres is 32 ◦C. PNIPAM segments are in a state
of complete dissolution and stretching when the temperature is below 32 ◦C. As a result, the DLS-based
size of the nanospheres is large. When the temperature is raised to the LCST of PNIPAM segments,
PNIPAM segments begin to shrink rapidly leading to smaller particle size. After the complete shrinkage
of PNIPAM segments at 37 ◦C, particle size will not change with the increase of temperature. This result
proves that PNIPAM is connected with the cross-linked nanospheres, and it can freely stretch or shrink.
To further prove this result, we synthesized the nanospheres with the same degree of polymerization
of PDMA and PTFEMA and only changed the degree of polymerization of PNIPAM. As shown in
Figure 10B, the particle size increased with the increase of degree of polymerization of PNIPAM,
indicating that PNIPAM is connected with the cross-linked nanospheres outside.
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Figure 10. DLS-based size measurement of P(DMA33-b-NIPAM163-b-TFEMA50)-S-(C=S)-S-C12H25

(A) at 0.5 mg/mL concentration in water at different temperature; (B) the particle size of P(DMA-b-
NIPAM-b-TFEMA)-S-(C=S)-S-C12H25 with different degree of polymerization of PNIPAM at 25 ◦C.
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3. Materials and Methods

3.1. Materials and Reagents

All reagents and solvents were of analytical grade and used as received unless otherwise stated.
Ethyleneglycol dimethacrylate (EGDMA, 98%, Aladdin, Shanghai, China) and N,N-dimethylacrylamide
(DMA, 98%, Aladdin) were passed through a column of basic alumina to remove inhibitor.
N-isopropylacrylamide (NIPAM, 99%, Sigma-Aldrich, St. Louis, MO, USA) was recrystallised
from a 70:30 hexane/toluene mixture prior to use. Azobisisobutyronitrile (AIBN, Aladdin, 98%)
was recrystallized twice from methanol prior to use. (2,2,2-Trifluoroethyl) methacrylate (TFEMA)
supplied by Wei Hai Newera (Weihai, China) was distilled under reduced pressure prior to use.
2-([(Dodecylsulfanyl)carbonothioyl]sulfanyl)-propanoic acid (DOPAT) was synthesized according to
a literature protocol [29].

3.2. NMR Analysis

The 1H-NMR and 19F-NMR analysis was performed on an AVANCE III 400 MHz digital
NMR spectrometer (Bruker BioSpin, Karlsruhe, Germany) using deuterated acetone as solvent with
tetramethylsilane as the internal standard at room temperature.

3.3. GPC Analysis

The molecular weights and dispersity (Ð) were determined by gel permeation chromatography (GPC)
at 35 ◦C with tetrahydrofuran (THF) as the eluent at a flow rate of 1.0 mL/min. Narrow-polydispersity
polystyrene was used as calibration standard. The system was equipped with a Model 1525 HPLC pump
(Waters, Milford, MA, USA) and a Waters Model 2414 refractive index (RI) detector.

3.4. TEM Characterization

Transmission electron microscopy (TEM) observation was performed using a JEOL-1400 electron
microscope (Jeol, Tokyo, Japan). A typical TEM grid preparation was as follows: A particle solution
was diluted with MilliQ water to approximately 0.10 wt %. A formvar precoated copper TEM grid was
covered with a drop of the solution for 60 s, and counterstained with 3% uranyl acetate (5 µL) for 20 s.

3.5. SEM Characterization

Morphology of lyophilized particle powder analysis was conducted by scanning electron
microscopy (SEM, S-2500, Hitachi Seiki, Tokyo, Japan).

3.6. DLS Characterization

A Zetasizer Nano-ZS90 (Malvern Instruments, Malvern, England) was used for dynamic light
scattering (DLS) characterization to measure particle size (hydrodynamic diameter Z-Ave) and particle
size distribution. The sample refractive index (RI) was set at 1.59 for polystyrene.

3.7. Synthesis of Macro-RAFT Agent of PDMA77-S-(C=S)-S-C12H25

In a typical synthesis, a round-bottomed flask was charged with DMA (15.00 g; 1.51 × 10−1 mol),
DOPAT (0.5289 g; 1.51 × 10−3 mol), AIBN (0.0502 g, 3.06 × 10−4 mol; CTA/initiator molar ratio = 4.9) and
dioxane (23.00 g). The sealed reaction vessel was purged with nitrogen and placed in a pre-heated oil bath
at 65 ◦C for 7 h. The solution was cooled in an ice bath, diluted with dioxane. The polymer was recovered
by precipitation in diethyl ether, filtration and drying under vacuum for 48 h at 35 ◦C. 1H-NMR
indicated the actual degree of polymerization of 77 for the PDMA macro-CTA. Mn = 7900 g·mol−1 and
Mw/Mn = 1.12, as determined by GPC.
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3.8. Synthesis of Thermo-Responsive Diblock P(DMA77-b-NIPAM73)-S-(C=S)-S-C12H25

In a typical synthesis, a round-bottomed flask was charged with NIPAM (1.1338 g, 1.00 × 10−2 mol),
PDMA77-S-(C=S)-S-C12H25 (1.00 g; 1.25 × 10−4 mol), AIBN (0.0025 g, 1.52 × 10−5 mol; CTA/initiator
molar ratio = 8.2) and dioxane (3.50 g). The sealed reaction vessel was purged with nitrogen and
placed in a pre-heated oil bath at 65 ◦C for 24 h. The solution was cooled in an ice bath, diluted
with dioxane. The polymer was recovered by precipitation in a mixture hexane:toluene (90:10),
filtration and drying under vacuum for 48 h at 35 ◦C. 1H-NMR indicated the NIPAM actual degree
of polymerization of 73 for the P(DMA77-b-NIPAM73)-S-(C=S)-S-C12H25. Mn =14900 g·mol−1 and
Mw/Mn = 1.15, as determined by GPC.

3.9. Aqueous RAFT-Mediated Polymerization of Cross-Linked TFEMA Nanoparticles in the Presence of
P(DMA-b-NIPAM)-S-(C=S)-S-C12H25

The following aqueous polymerization protocol conducted at 15% w/w solids and targeting
PDMA77-b-PNIPMA73-b-PTFEMA700 is typical. Water (9.59 g) and P(DMA77-b-NIPAM73)-S-(C=S)-S-
C12H25 (0.19 g; 1.17 × 10−5 mol) were added to a round-bottomed flask and stirred in an ice bath for 1 h
to allow the complete solubilization of the diblocks. TFEMA (1.4179 g; 8.44 × 10−3 mol), EGDMA
(0.0833 g; 4.21 × 10−4 mol), APS (0.0009 g; 3.95 × 10−6 mol) were added to the flask. The solution was
deoxygenated with nitrogen and immersed in a water bath at 35 ◦C for 10 min to allow the formation
of micelles. Then the solution was heated at 70 ◦C for 120 min.

4. Conclusions

In summary, thermo-responsive and cross-linked PTFEMA nanospheres were successfully
prepared. Firstly, RAFT solution polymerization was used to synthesize a thermo-responsive diblock
copolymer P(DMA-b-NIPAM)-S-(C=S)-S-C12H25 with low dispersity and well-controlled molecular
weight. The 1H-NMR spectral analysis confirmed that copolymers were successfully synthesized.
Gel permeation chromatography was conducted to demonstrate the narrow molecular weight
dispersity. Then we gave evidence that the thermo-responsive diblock copolymer can turn into
nanoreactors when the temperature reaches 32 ◦C. We proceeded a successful RAFT-mediated
aqueous polymerization of TFEMA using P(DMA-b-NIPAM)-S-(C=S)-S-C12H25 trithiocarbonate as
both a stabilizer and a macro-RAFT agent. During the process of aqueous polymerization, the monomer
conversion increased with increasing the molar ratio of initiator to chain transfer agent. The particle size
increased with increasing the monomer conversion. The particle size of the cross-linked nanospheres
quickly decreased when the temperature reached 32 ◦C showing temperature sensitivity.
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