Monoclonal Antibodies and Immunoassay for Medical Plant-Derived Natural Products: A Review
Abstract
:1. Introduction
2. Synthesis of Artificial Antigens
2.1. Coupling Method between Carrier Protein and Hapten
2.1.1. Sodium Periodate Oxidation Method
2.1.2. Carbodiimide Method
2.1.3. Mixed Anhydrides Reaction (MAR)
2.1.4. Active Ester Method (AEM)
2.1.5. Succinate Method
2.1.6. Mannich Condensation
2.2. Identification of Artificial Antigen
2.2.1. Matrix-Assisted Laser Desorption Ionization Time-of-Flight Mass Spectrometry (MALDI-TOF-MS)
2.2.2. Ultraviolet Spectrum (UV) Analyses
2.2.3. Agarose Gel Electrophoresis
3. Production of Anti-MPNP MAbs
4. Specificity and Cross-Reactivity
4.1. Advantages of Cross-Reactivity
4.1.1. Use in Pharmacological Study
4.1.2. Use in the Synthesis of Antigen Conjugate
4.1.3. Others Advantages
5. Immunoassay for MPNP Using MAbs
5.1. Enzyme-Linked Immunosorbent Assay (ELISA)
5.1.1. Detection and Quality Control of Toxic Components
Aristolochic Acids
Aconitine
Ginkgolic Acids
5.1.2. Content Determination in Biological Samples or Drugs
5.1.3. Harvesting and Breeding of Medicinal Plants
5.1.4. Metabolic Study
5.2. Fluorescence-Linked Immunosorbent Assay (FLISA)
5.2.1. Labelled with Fluorescein Isothiocyanate (FITC)
5.2.2. Labelled with Green Fluorescent Protein
5.3. Eastern Blotting (Chromatographic Immunostaining)
5.3.1. On Polyvinylidene Fluoride (PVDF) Membrane
Single Staining
Double Staining
5.3.2. On Polyether Sulfone (PES) Membrane
Single Staining
Double Staining
5.4. Sandwich ELISA
5.5. Immunochromatographic Assay
5.5.1. Labeled with Colloidal Gold
5.5.2. Labeled with Quantum Dots
5.6. Immunoaffinity Chromatography Column
5.6.1. Rapid Separation and Purification of Target Compounds
5.6.2. Bioactivity and Pharmacological Analysis
6. Conclusions and Future Prospects
Acknowledgments
Conflicts of Interest
References
- De Smet, P.A. Herbal Remedies. N. Engl. J. Med. 2002, 347, 2046–2056. [Google Scholar] [PubMed]
- Osbourn, A.E.; Lanzotti, V. Plant-Derived Natural Products: Synthesis, Function, and Application; Springer: New York, NY, USA, 2009. [Google Scholar]
- Rowinsky, E.K.; Donehower, R.C. The Clinical Pharmacology Of Paclitaxel (Taxol). Semin. Oncol. 1993, 20, 16–25. [Google Scholar] [PubMed]
- Klayman, D.L.; Lin, A.J.; Acton, N.; Scovill, J.P.; Hoch, J.M.; Milhous, W.K.; Theoharides, A.D.; Dobek, A.S. Isolation of Artemisinin (Qinghaosu) from Artemisia Annua Growing in the United States. J. Nat. Prod. 1984, 47, 715–717. [Google Scholar] [CrossRef] [PubMed]
- Kohler, G.; Milstein, C. Continuous Cultures of Fused Cells Secreting Antibody of Predefined Specificity. Nature 1975, 256, 495–497. [Google Scholar] [CrossRef] [PubMed]
- Van Emon, J.M. Immunoassay and Other Bioanalytical Techniques; CRC Press/Taylor & Francis: Boca Raton, FL, USA, 2007. [Google Scholar]
- Leu, J.G.; Chen, B.X.; Schiff, P.B.; Erlanger, B.F. Characterization of Polyclonal and Monoclonal Anti-Taxol Antibodies and Measurement of Taxol in Serum. Cancer Res. 1993, 53, 1388–1391. [Google Scholar] [PubMed]
- Qu, H.; Sai, J.; Wang, Y.; Sun, Y.; Zhang, Y.; Li, Y.; Zhao, Y.; Wang, Q. Establishment of an Enzyme-Linked Immunosorbent Assay and Application on Determination of Ginsenoside Re in Human Saliva. Planta Med. 2014, 80, 1143–1150. [Google Scholar] [CrossRef] [PubMed]
- Qu, H.; Wang, Y.; Shan, W.; Zhang, Y.; Feng, H.; Sai, J.; Wang, Q.; Zhao, Y. Development of Elisa for Detection of Rh1 and Rg2 and Potential Method of Immunoaffinity Chromatography for Separation of Epimers. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2015, 985, 197–205. [Google Scholar] [CrossRef] [PubMed]
- Loungratana, P.; Tanaka, H.; Shoyama, Y. Production of Monoclonal Antibody against Ginkgolic Acids in Ginkgo Biloba Linn. Am. J. Chin. Med. 2004, 32, 33–48. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Qu, H.; Zeng, W.; Zhao, Y.; Shan, W.; Wang, X.; Wang, Q.; Zhao, Y. Development of an Enzyme-Linked Immunosorbent Assay and Immunoaffinity Chromatography for Glycyrrhizic Acid Using an Anti-Glycyrrhizic Acid Monoclonal Antibody. J. Sep. Sci. 2015, 38, 2363–2370. [Google Scholar] [CrossRef] [PubMed]
- Qu, H.; Zhang, G.; Li, Y.; Sun, H.; Sun, Y.; Zhao, Y.; Wang, Q. Development of an Enzyme-Linked Immunosorbent Assay Based on Anti-Puerarin Monoclonal Antibody and Its Applications. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2014, 953–954, 120–125. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Qu, H.; Wang, X.; Zhang, Y.; Shan, W.; Zhao, Y.; Wang, Q. A Sensitive and Specific Indirect Competitive Enzyme-Linked Immunosorbent Assay for Detection of Paeoniflorin and Its Application in Pharmacokinetic Interactions between Paeoniflorin and Glycyrrhizinic Acid. Planta Med. 2015, 81, 765–770. [Google Scholar] [CrossRef] [PubMed]
- Qu, H.; Zhang, Y.; Qu, B.; Cheng, J.; Liu, S.; Feng, S.; Wang, Q.; Zhao, Y. Novel Immunoassay and Rapid Immunoaffinity Chromatography Method for the Detection and Selective Extraction of Naringin in Citrus Aurantium. J. Sep. Sci. 2016, 39, 1389–1398. [Google Scholar] [CrossRef] [PubMed]
- Qu, H.H.; Sun, Y.; Wu, T.T.; Zhang, G.L.; Cheng, J.J.; Wang, X.Q.; Feng, H.B.; Zhao, Y.; Wang, Q.G. Pharmacokinetics of Geniposide by Monoclonal Antibody-Based Icelisa in Mice after Oral Administration of Huanglian-Jiedu-Tang. Biol. Pharm. Bull. 2014, 37, 1525–1533. [Google Scholar] [CrossRef] [PubMed]
- Ishiyama, M.; Shoyama, Y.; Murakami, H.; Shinohara, H. Production of Monoclonal Antibodies and Development of an Elisa for Solamargine. Cytotechnology 1995, 18, 153–158. [Google Scholar] [CrossRef] [PubMed]
- Xuan, L.; Tanaka, H.; Xu, Y.; Shoyama, Y. Preparation of Monoclonal Antibody against Crocin and Its Characterization. Cytotechnology 1999, 29, 65–70. [Google Scholar] [CrossRef] [PubMed]
- Zhu, S.; Shimokawa, S.; Shoyama, Y.; Tanaka, H. A Novel Analytical Elisa-Based Methodology for Pharmacologically Active Saikosaponins. Fitoterapia 2006, 77, 100–108. [Google Scholar] [CrossRef] [PubMed]
- Fujii, S.; Morinaga, O.; Uto, T.; Nomura, S.; Shoyama, Y. Development of a Monoclonal Antibody-Based Immunochemical Assay for Liquiritin and Its Application to the Quality Control of Licorice Products. J. Agric. Food Chem. 2014, 62, 3377–3383. [Google Scholar] [CrossRef] [PubMed]
- Phrompittayarat, W.; Putalun, W.; Tanaka, H.; Jetiyanon, K.; Wittaya-Areekul, S.; Ingkaninan, K. Determination of Pseudojujubogenin Glycosides from Brahmi Based on Immunoassay Using a Monoclonal Antibody against Bacopaside I. Phytochem. Anal. PCA 2007, 18, 411–418. [Google Scholar] [CrossRef] [PubMed]
- Limsuwanchote, S.; Wungsintaweekul, J.; Yusakul, G.; Han, J.Y.; Sasaki-Tabata, K.; Tanaka, H.; Shoyama, Y.; Morimoto, S. Preparation of a Monoclonal Antibody against Notoginsenoside R1, a Distinctive Saponin from Panax Notoginseng, and Its Application to Indirect Competitive Elisa. Planta Med. 2014, 80, 337–342. [Google Scholar] [CrossRef] [PubMed]
- Fukuda, N.; Tanaka, H.; Shoyama, Y. Formation of Monoclonal Antibody against a Major Ginseng Component, Ginsenoside Rg1 and Its Characterization. Monoclonal Antibody for a Ginseng Saponin. Cytotechnology 2000, 34, 197–204. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, H.; Fukuda, N.; Yahara, S.; Isoda, S.; Yuan, C.S.; Shoyama, Y. Isolation of Ginsenoside Rb1 from Kalopanax Pictus by Eastern Blotting Using Anti-Ginsenoside Rb1 Monoclonal Antibody. Phytother. Res. PTR 2005, 19, 255–258. [Google Scholar] [CrossRef] [PubMed]
- Sakamoto, S.; Yusakul, G.; Pongkitwitoon, B.; Paudel, M.K.; Tanaka, H.; Morimoto, S. Simultaneous Determination of Soy Isoflavone Glycosides, Daidzin and Genistin by Monoclonal Antibody-Based Highly Sensitive Indirect Competitive Enzyme-Linked Immunosorbent Assay. Food Chem. 2015, 169, 127–133. [Google Scholar] [CrossRef] [PubMed]
- Morinaga, O.; Nakajima, S.; Tanaka, H.; Shoyama, Y. Production of Monoclonal Antibodies against a Major Purgative Component, Sennoside B, Their Characterization and Use in Elisa. Analyst 2001, 126, 1372–1376. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Qu, H.; Feng, H.; Wang, X.; Shan, W.; Zeng, W.; Wang, Q.; Zhao, Y. Development of an Enzyme-Linked Immunosorbent Assay for Chenodeoxycholic Acid Using an Anti-Chenodeoxycholic Acid Monoclonal Antibody. Anal. Methods 2015, 7, 4583–4589. [Google Scholar] [CrossRef]
- Zhao, Y.; Kong, H.; Sun, Y.; Feng, H.; Zhang, Y.; Su, X.; Qu, H.; Wang, Q. Assessment of Baicalin in Mouse Blood by Monoclonal Antibody-Based Icelisa. Biomed. Chromatogr. BMC 2014, 28, 1864–1868. [Google Scholar] [CrossRef] [PubMed]
- Williams, M.; Malick, J.B. Drug Discovery and Development; Churchill Livingstone/Elsevier: London, UK, 2013. [Google Scholar]
- Tian, M.; Tanaka, H.; Shang, M.Y.; Karashima, S.; Chao, Z.; Wang, X.; Cai, S.Q.; Shoyama, Y. Production, Characterization of a Monoclonal Antibody against Aristolochic Acid-Ii and Development of Its Assay System. Am. J. Chin. Med. 2008, 36, 425–436. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, H.; Putalun, W.; De-Eknamkul, W.; Matangkasombut, O.; Shoyama, Y. Preparation of a Novel Monoclonal Antibody against the Antimalarial Drugs, Artemisinin and Artesunate. Planta Med. 2007, 73, 1127–1132. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.S.; Tanaka, H.; Yuan, C.S.; Shoyama, Y. Development Of Monoclonal Antibody against Isoquinoline Alkaloid Coptisine and Its Application for the Screening of Medicinal Plants. Cytotechnology 2004, 44, 115–123. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.S.; Tanaka, H.; Shoyama, Y. Immunoquantitative Analysis for Berberine and Its Related Compounds Using Monoclonal Antibodies in Herbal Medicines. Analyst 2004, 129, 87–91. [Google Scholar] [CrossRef] [PubMed]
- Mizugaki, M.; Itoh, K.; Hayasaka, M.; Ishiwata, S.; Nozaki, S.; Nagata, N.; Hanadate, K.; Ishida, N. Monoclonal Antibody-Based Enzyme-Linked Immunosorbent Assay for Glycyrrhizin and Its Aglycon, Glycyrrhetic Acid. J. Immunoass. 1994, 15, 21–34. [Google Scholar] [CrossRef]
- Sakata, R.; Shoyama, Y.; Murakami, H. Production of Monoclonal Antibodies and Enzyme Immunoassay for Typical Adenylate Cyclase Activator, Forskolin. Cytotechnology 1994, 16, 101–108. [Google Scholar] [CrossRef] [PubMed]
- Limsuwanchote, S.; Wungsintaweekul, J.; Keawpradub, N.; Putalun, W.; Morimoto, S.; Tanaka, H. Development of Indirect Competitive Elisa for Quantification of Mitragynine in Kratom (Mitragyna Speciosa (Roxb.) Korth.). Forensic Sci. Int. 2014, 244, 70–77. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Qu, H.; Zhang, Y.; Sun, Y.; Feng, H.; Shan, W.; Zhao, Y.; Wang, Q. Enzyme-Linked Immunosorbent Assay for Hyodeoxycholic Acid in Pharmaceutical Products Using a Monoclonal Antibody. Anal. Lett. 2015, 48, 1285–1296. [Google Scholar] [CrossRef]
- Yusakul, G.; Sakamoto, S.; Juengwatanatrakul, T.; Putalun, W.; Tanaka, H.; Morimoto, S. Preparation and Application of a Monoclonal Antibody against the Isoflavone Glycoside Daidzin Using a Mannich Reaction-Derived Hapten Conjugate. Phytochem. Anal. PCA 2016, 27, 81–88. [Google Scholar] [CrossRef] [PubMed]
- Sakamoto, S.; Putalun, W.; Tsuchihashi, R.; Morimoto, S.; Kinjo, J.; Tanaka, H. Development of an Enzyme-Linked Immunosorbent Assay (ELISA) Using Highly-Specific Monoclonal Antibodies against Plumbagin. Anal. Chim. Acta 2008, 607, 100–105. [Google Scholar] [CrossRef] [PubMed]
- Kido, K.; Edakuni, K.; Morinaga, O.; Tanaka, H.; Shoyama, Y. An Enzyme-Linked Immunosorbent Assay for Aconitine-Type Alkaloids Using an Anti-Aconitine Monoclonal Antibody. Anal. Chim. Acta 2008, 616, 109–114. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, H.; Goto, Y.; Shoyama, Y. Monoclonal Antibody Based Enzyme Immunoassay for Marihuana (Cannabinoid) Compounds. J. Immunoass. 1996, 17, 321–342. [Google Scholar] [CrossRef]
- Erlanger, B.F.; Beiser, S.M. Antibodies Specific for Ribonucleosides and Ribonucleotides and Their Reaction With DNA. Proc. Natl. Acad. Sci. USA 1964, 52, 68–74. [Google Scholar] [CrossRef] [PubMed]
- Hermanson, G.T. Bioconjugate Techniques, 2nd ed.; Academic Press: Cambridge, MA, USA, 2008. [Google Scholar]
- Goto, Y.S.Y.; Morimoto, S.; Shoyama, Y. Determination of Tetrahydrocannabinolic Acid-Carrier Protein Conjugate by Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry and Antibody Formation. Org. Mass Spectrom. 1994, 29, 668–671. [Google Scholar] [CrossRef]
- Sakamoto, S.; Yusakul, G.; Pongkitwitoon, B.; Tanaka, H.; Morimoto, S. Colloidal Gold-Based Indirect Competitive Immunochromatographic Assay for Rapid Detection of Bioactive Isoflavone Glycosides Daidzin and Genistin in Soy Products. Food Chem. 2016, 194, 191–195. [Google Scholar] [CrossRef] [PubMed]
- Qu, H.; Qu, B.; Wang, X.; Zhang, Y.; Cheng, J.; Zeng, W.; Liu, S.; Wang, Q.; Zhao, Y. Rapid, Sensitive Separation of the Three Main Isoflavones in Soybean Using Immunoaffinity Chromatography. J. Sep. Sci. 2016, 39, 1195–1201. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C. Hybridoma Technology for the Generation of Monoclonal Antibodies; Humana Press: New York, NY, USA, 2012; pp. 117–135. [Google Scholar]
- Al-Rubeai, M. Antibody Expression and Production; Springer: Dordrecht, The Netherlands, 2011; pp. 1076–1085. [Google Scholar]
- Putalun, W.; Taura, F.; Qing, W.; Matsushita, H.; Tanaka, H.; Shoyama, Y. Anti-Solasodine Glycoside Single-Chain Fv Antibody Stimulates Biosynthesis of Solasodine Glycoside in Plants. Plant Cell Rep. 2003, 22, 344–349. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Tanaka, H.; Shoyama, Y. One-Step Immunochromatographic Separation and Elisa Quantification of Glycyrrhizin from Traditional Chinese Medicines. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2007, 850, 53–58. [Google Scholar] [CrossRef] [PubMed]
- Weiler, E.W.; Kruger, H.; Zenk, M.H. Radioimmunoassay for the Determination of the Steroidal Alkaloid Solasodine and Related Compounds in Living Plants and Herbarium Specimens. Planta Med. 1980, 39, 112–124. [Google Scholar] [CrossRef]
- Lu, Z.; Morinaga, O.; Tanaka, H.; Shoyama, Y. A Quantitative Elisa Using Monoclonal Antibody to Survey Paeoniflorin and Albiflorin in Crude Drugs and Traditional Chinese Herbal Medicines. Biol. Pharm. Bull. 2003, 26, 862–866. [Google Scholar] [CrossRef] [PubMed]
- Morinaga, O.; Tanaka, H.; Shoyama, Y. Detection and quantification of ginsenoside Re in ginseng samples by a chromatographic immunostaining method using monoclonal antibody against ginsenoside Re. J. Chromatogr. 2006, 830, 100–104. [Google Scholar] [CrossRef] [PubMed]
- Kido, K.; Morinaga, O.; Shoyama, Y.; Tanaka, H. Quick Analysis of Baicalin in Scutellariae Radix by Enzyme-Linked Immunosorbent Assay Using a Monoclonal Antibody. Talanta 2008, 77, 346–350. [Google Scholar] [CrossRef] [PubMed]
- Chao, Z.; Tan, M.; Paudel, M.K.; Sakamoto, S.; Ma, L.; Sasaki-Tabata, K.; Tanaka, H.; Shoyama, Y.; Xuan, L.; Morimoto, S. Development of an Indirect Competitive Enzyme-Linked Immunosorbent Assay (Icelisa) Using Highly Specific Monoclonal Antibody against Paclitaxel. J. Nat. Med. 2013, 67, 512–518. [Google Scholar] [CrossRef] [PubMed]
- Bensoussan, A. Herbal Medicine Safety; Australasian Medical Publishing: Newtown NSW, Australia, 2005. [Google Scholar]
- Bent, S. Herbal Medicine in the United States: Review of Efficacy, Safety, and Regulation: Grand Rounds at University of California, San Francisco Medical Center. J. Gen. Intern. Med. 2008, 23, 854–859. [Google Scholar] [CrossRef] [PubMed]
- Saad, B.; Azaizeh, H.; Abu-Hijleh, G.; Said, O. Safety of Traditional Arab Herbal Medicine. Evid. Based Complement. Altern. Med. 2006, 3, 433–439. [Google Scholar] [CrossRef] [PubMed]
- Balachandran, P.; Wei, F.; Lin, R.C.; Khan, I.A.; Pasco, D.S. Structure Activity Relationships of Aristolochic Acid Analogues: Toxicity in Cultured Renal Epithelial Cells. Kidney Int. 2005, 67, 1797–1805. [Google Scholar] [CrossRef] [PubMed]
- Cosyns, J.P.; Dehoux, J.P.; Guiot, Y.; Goebbels, R.M.; Robert, A.; Bernard, A.M.; van de Strihou, C. Chronic Aristolochic Acid Toxicity in Rabbits: A Model of Chinese Herbs Nephropathy? Kidney Int. 2001, 59, 2164–2173. [Google Scholar] [CrossRef] [PubMed]
- Shang, M.Y.; Tian, M.; Tanaka, H.; Li, X.W.; Cai, S.Q.; Shoyama, Y. Quality Control of Traditional Chinese Medicine by Monoclonal Antibody Method. Curr. Drug Discov. Technol. 2011, 8, 60–65. [Google Scholar] [CrossRef] [PubMed]
- Morinaga, O.; Uto, T.; Sakamoto, S.; Tanaka, H.; Shoyama, Y. Enzyme-Linked Immunosorbent Assay for Total Sennosides Using Anti-Sennside a and Anti-Sennoside B Monoclonal Antibodies. Fitoterapia 2009, 80, 28–31. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, H.; Shoyama, Y. Monoclonal Antibody Against Tetrahydrocannabinolic Acid Distinguishes Cannabis Sativa Samples from Different Plant Species. Forensic Sci. Int. 1999, 106, 135–146. [Google Scholar] [CrossRef]
- Sritularak, B.; Morinaga, O.; Yuan, C.S.; Shoyama, Y.; Tanaka, H. Quantitative Analysis of Ginsenosides Rb1, Rg1, and Re in American Ginseng Berry and Flower Samples by Elisa Using Monoclonal Antibodies. J. Nat. Med. 2009, 63, 360–363. [Google Scholar] [CrossRef] [PubMed]
- Fujii, S.; Tuvshintogtokh, I.; Mandakh, B.; Munkhjargal, B.; Uto, T.; Morinaga, O.; Shoyama, Y. Screening of Glycyrrhiza Uralensis Fisch. Ex Dc. Containing High Concentrations of Glycyrrhizin by Eastern Blotting and Enzyme-Linked Immunosorbent Assay Using Anti-Glycyrrhizin Monoclonal Antibody for Selective Breeding of Licorice. J. Nat. Med. 2014, 68, 717–722. [Google Scholar] [CrossRef] [PubMed]
- Huihua, Q.; Feng, W.; Wenchao, S.; Xueqian, W.; Jinjun, C.; Hui, K.; Yan, Z.; Qingguo, W. Pharmacokinetic Analysis of Orally Administered Puerarin in Human Saliva Using an Indirect Competition Elisa. Anal. Methods 2015, 7, 8335–8343. [Google Scholar] [CrossRef]
- Yeo, S.J.; Huong, D.T.; Han, J.H.; Kim, J.Y.; Lee, W.J.; Shin, H.J.; Han, E.T.; Park, H. Performance of Coumarin-Derived Dendrimer-Based Fluorescence-Linked Immunosorbent Assay (FLISA) to Detect Malaria Antigen. Malar. J. 2014, 13, 266. [Google Scholar] [CrossRef] [PubMed]
- Sakamoto, S.; Taura, F.; Pongkitwitoon, B.; Putalun, W.; Tsuchihashi, R.; Kinjo, J.; Tanaka, H.; Morimoto, S. Development of Sensitivity-Improved Fluorescence-Linked Immunosorbent Assay Using a Fluorescent Single-Domain Antibody against the Bioactive Naphthoquinone, Plumbagin. Anal. Bioanal. Chem. 2010, 396, 2955–2963. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Qu, H.; Wang, X.; Zhang, Y.; Cheng, J.; Zhao, Y.; Wang, Q. Development of Fluorescence-Linked Immunosorbent Assay for Paeoniflorin. J. Fluoresc. 2015, 25, 885–890. [Google Scholar] [CrossRef] [PubMed]
- Shan, W.; Cheng, J.; Qu, B.; Sai, J.; Kong, H.; Qu, H.; Zhao, Y.; Wang, Q. Development of a Fluorescence-Linked Immunosorbent Assay for Baicalin. J. Fluoresc. 2015, 25, 1371–1376. [Google Scholar] [CrossRef] [PubMed]
- Sakamoto, S.; Tanizaki, Y.; Pongkitwitoon, B.; Tanaka, H.; Morimoto, S. A Chimera of Green Fluorescent Protein with Single Chain Variable Fragment Antibody against Ginsenosides for Fluorescence-Linked Immunosorbent Assay. Protein Expr. Purif. 2011, 77, 124–130. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, H.; Putalun, W.; Tsuzaki, C.; Shoyama, Y. A Simple Determination of Steroidal Alkaloid Glycosides by Thin-Layer Chromatography Immunostaining Using Monoclonal Antibody against Solamargine. Febs Lett. 1997, 404, 279–282. [Google Scholar] [CrossRef]
- Shan, S.; Tanaka, H.; Shoyama, Y. Enzyme-Linked Immunosorbent Assay for Glycyrrhizin Using Anti-Glycyrrhizin Monoclonal Antibody and an Eastern Blotting Technique for Glucuronides of Glycyrrhetic Acid. Anal. Chem. 2001, 73, 5784–5790. [Google Scholar] [CrossRef] [PubMed]
- Taylor, S.C.; Posch, A. The Design of a Quantitative Western Blot Experiment. BioMed Res. Int. 2014. [Google Scholar] [CrossRef] [PubMed]
- Shan, S.; Tanaka, H.; Shoyama, Y. Western Blotting Method for the Immunostaining Detection of Glucuronides of Glycyrrhetic Acid Using Anti-Glycyrrhizin Monoclonal Antibody. Biol. Pharm. Bull. 1999, 22, 221–223. [Google Scholar] [CrossRef] [PubMed]
- Fukuda, N.; Tanaka, H.; Shoyama, Y. Applications of Elisa, Western Blotting and Immunoaffinity Concentration for Survey of Ginsenosides in Crude Drugs of Panax Species and Traditional Chinese Herbal Medicines. Analyst 2000, 125, 1425–1429. [Google Scholar] [CrossRef] [PubMed]
- Fukuda, N.; Tanaka, H.; Shoyama, Y. Double Staining of Ginsenosides by Western Blotting Using Anti-Ginsenoside Rb1 and Rg1 Monoclonal Antibodies. Biol. Pharm. Bull. 2001, 24, 1157–1160. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, H.; Fukuda, N.; Shoyama, Y. Identification and Differentiation of Panax Species Using Elisa, Rapd and Eastern Blotting. Phytochem. Anal. PCA 2006, 17, 46–55. [Google Scholar] [CrossRef] [PubMed]
- Morinaga, O.; Uto, T.; Sakamoto, S.; Putalun, W.; Lhieochaiphant, S.; Tanaka, H.; Shoyama, Y. Development of Eastern Blotting Technique for Sennoside A and Sennoside B Using Anti-Sennoside A and Anti-Sennoside B Monoclonal Antibodies. Phytochem. Anal. PCA 2009, 20, 154–158. [Google Scholar] [CrossRef] [PubMed]
- Kajita, H. Practical Use and Technical Notes on Ultrafiltration Membrane for Analysis of Pesticide Residues and Veterinary Drugs in Foods. J. Food Hyg. Soc. Jpn. 2007, 48, J5–J6. [Google Scholar]
- Krieter, D.H.; Lemke, H.D. Polyethersulfone as a High-Performance Membrane. Contrib. Nephrol. 2011, 173, 130–136. [Google Scholar] [PubMed]
- Gomes, S.A.; Nogueira, J.M.; Rebelo, M.J. An Amperometric Biosensor for Polyphenolic Compounds in Red Wine. Biosens. Bioelectron. 2004, 20, 1211–1216. [Google Scholar] [CrossRef] [PubMed]
- Putalun, W.; Fukuda, N.; Tanaka, H.; Shoyama, Y. A One-Step Immunochromatographic Assay for Detecting Ginsenosides Rb1 and Rg1. Anal. Bioanal. Chem. 2004, 378, 1338–1341. [Google Scholar] [CrossRef] [PubMed]
- Morinaga, O.; Fujino, A.; Tanaka, H.; Shoyama, Y. An On-Membrane Quantitative Analysis System for Glycyrrhizin in Licorice Roots and Traditional Chinese Medicines. Anal. Bioanal. Chem. 2005, 383, 668–672. [Google Scholar] [CrossRef] [PubMed]
- Morinaga, O.; Fukuda, N.; Tanaka, H.; Shoyama, Y. Chromatographic Resolution of Glucosidic Compounds, Ginsenosides on Polyethersulphone Membrane, and Its Application to the Quantitative Immunoassay for Ginseng Saponins. Glycobiology 2005, 15, 1061–1066. [Google Scholar] [CrossRef] [PubMed]
- Morinaga, O.; Lu, Z.; Lin, L.; Uto, T.; Sangmalee, S.; Putalun, W.; Tanaka, H.; Shoyama, Y. Detection of Paeoniflorin and Albiflorin by Immunostaining Technique Using Anti-Paeoniflorin Monoclonal Antibody. Phytochem. Anal. PCA 2013, 24, 124–128. [Google Scholar] [CrossRef] [PubMed]
- Morinaga, O.; Zhu, S.; Tanaka, H.; Shoyama, Y. Visual Detection of Saikosaponins by on-Membrane Immunoassay and Estimation of Traditional Chinese Medicines Containing Bupleuri Radix. Biochem. Biophys. Res. Commun. 2006, 346, 687–692. [Google Scholar] [CrossRef] [PubMed]
- Fujii, S.; Morinaga, O.; Uto, T.; Nomura, S.; Shoyama, Y. Development of Double Eastern Blotting for Major Licorice Components, Glycyrrhizin and Liquiritin for Chemical Quality Control of Licorice Using Anti-Glycyrrhizin and Anti-Liquiritin Monoclonal Antibodies. J. Agric. Food Chem. 2016, 64, 1087–1093. [Google Scholar] [CrossRef] [PubMed]
- Ekins, R. More Sensitive Immunoassays. Nature 1980, 284, 14–15. [Google Scholar] [CrossRef] [PubMed]
- Qu, H.; Wang, X.; Qu, B.; Kong, H.; Zhang, Y.; Shan, W.; Cheng, J.; Wang, Q.; Zhao, Y. Sandwich Enzyme-Linked Immunosorbent Assay for Naringin. Anal. Chim. Acta 2016, 903, 149–155. [Google Scholar] [CrossRef] [PubMed]
- Putalun, W.; Tanaka, H.; Shoyama, Y. Rapid Detection of Glycyrrhizin by Immunochromatographic Assay. Phytochem. Anal. PCA 2005, 16, 370–374. [Google Scholar] [CrossRef] [PubMed]
- Qu, H.; Zhang, Y.; Qu, B.; Kong, H.; Qin, G.; Liu, S.; Cheng, J.; Wang, Q.; Zhao, Y. Rapid Lateral-Flow Immunoassay for the Quantum Dot-Based Detection of Puerarin. Biosens. Bioelectron. 2016, 81, 358–362. [Google Scholar] [CrossRef] [PubMed]
- Paudel, M.K.; Putalun, W.; Sritularak, B.; Morinaga, O.; Shoyama, Y.; Tanaka, H.; Morimoto, S. Development of a Combined Technique Using a Rapid One-Step Immunochromatographic Assay and Indirect Competitive Elisa for the Rapid Detection of Baicalin. Anal. Chim. Acta 2011, 701, 189–193. [Google Scholar] [CrossRef] [PubMed]
- Putalun, W.; Morinaga, O.; Tanaka, H.; Shoyama, Y. Development of a One-Step Immunochromatographic Strip Test for the Detection of Sennosides A And B. Phytochem. Anal. PCA 2004, 15, 112–116. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Xiao, J.; Wang, Q.; Zhang, Y. A Modified Quantum Dot-Based Dot Blotting Assay for Rapid Detection of Fish Pathogen Vibrio Anguillarum. J. Microbiol. Biotechnol. 2016, 26, 1457–1463. [Google Scholar] [CrossRef] [PubMed]
- Kurien, B.T.; Scofield, R.H. Other Notable Methods of Membrane Protein Detection: A Brief Review. Methods Mol. Biol. 2015, 1314, 357–370. [Google Scholar] [PubMed]
- Li, B.; Yu, Q.; Duan, Y. Fluorescent Labels in Biosensors for Pathogen Detection. Crit. Rev. Biotechnol. 2015, 35, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Le, T.; Xie, Y.; Zhu, L.; Zhang, L. Rapid and Sensitive Detection of 3-Amino-2-Oxazolidinone Using a Quantum Dot-Based Immunochromatographic Fluorescent Biosensor. J. Agric. Food Chem. 2016, 64, 8678–8683. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Feng, H.; Shan, W.; Cheng, J.; Wang, X.; Zhao, Y.; Qu, H.; Wang, Q. Development of Immunoaffinity Chromatography to Specifically Knockout Baicalin from Gegenqinlian Decoction. J. Sep. Sci. 2015, 38, 2746–2752. [Google Scholar] [CrossRef] [PubMed]
- Jiang, J.G. Identification and Quality Control of Chinese Medicine Based on the Fingerprint Techniques. Curr. Med. Chem. 2009, 16, 3064–3075. [Google Scholar]
- Yanagihara, H.; Sakata, R.; Minami, H.; Tanaka, H.; Shoyama, Y.; Murakami, H. Immunoaffinity Column Chromatography against Forskolin Using an Anti-Forskolin Monoclonal Antibody and Its Application. Anal. Chim. Acta 1996, 335, 63–70. [Google Scholar] [CrossRef]
- Putalun, W.; Tanaka, H.; Shoyama, Y. Rapid Separation of Solasodine Glycosides by an Immunoaffinity Column Using Anti-Solamargine Monoclonal Antibody. Cytotechnology 1999, 31, 153–158. [Google Scholar] [CrossRef] [PubMed]
- Yuan, C.S.; Tanaka, H. Bioactivity of American Ginseng by Knockout Extract Preparation Using Monoclonal Antibody. Curr. Drug Discov. Technol. 2011, 8, 32–41. [Google Scholar] [CrossRef] [PubMed]
- Uto, T.; Morinaga, O.; Tanaka, H.; Shoyama, Y. Analysis of the Synergistic Effect of Glycyrrhizin and Other Constituents in Licorice Extract on Lipopolysaccharide-Induced Nitric Oxide Production Using Knock-Out Extract. Biochem. Biophys. Res. Commun. 2012, 417, 473–478. [Google Scholar] [CrossRef] [PubMed]
- He, T.; Wang, Y.; Li, P.; Zhang, Q.; Lei, J.; Zhang, Z.; Ding, X.; Zhou, H.; Zhang, W. Nanobody-Based Enzyme Immunoassay for Aflatoxin in Agro-Products with High Tolerance to Cosolvent Methanol. Anal. Chem. 2014, 86, 8873–8880. [Google Scholar] [CrossRef] [PubMed]
- Ma, L.; Sun, Y.; Kang, X.; Wan, Y. Development of Nanobody-Based Flow Injection Chemiluminescence Immunoassay for Sensitive Detection of Human Prealbumin. Biosens. Bioelectron. 2014, 61, 165–171. [Google Scholar] [CrossRef] [PubMed]
Coupling Method | MPNP | Reference |
---|---|---|
Sodium periodate oxidation method | Ginsenoside Re | [8] |
Ginsenoside Rh1 | [9] | |
Ginkgolic Acids | [10] | |
Glycyrrhizic acid | [11] | |
Puerarin | [12] | |
Paclitaxel | [7] | |
Paeoniflorin | [13] | |
Naringin | [14] | |
Geniposide | [15] | |
Solamargine | [16] | |
Crocin | [17] | |
Saikosaponins a | [18] | |
Liquiritin | [19] | |
Bacopaside I | [20] | |
Notoginsenoside R1 | [21] | |
Ginsenoside Rg1 | [22] | |
Ginsenoside Rb1 | [23] | |
Daidzin | [24] | |
Carbodiimide method | Sennoside B | [25] |
Chenodeoxycholic acid | [26] | |
Baicalin | [27] | |
Aristolochic Acid-I | [28] | |
Aristolochic Acid-II | [29] | |
Artemisinin | [30] | |
Coptisine | [31] | |
Berberine | [32] | |
Glycyrrhetic acid | [33] | |
Forskolin | [34] | |
Mitragynine | [35] | |
Mixed anhydrides reaction | Hyodeoxycholic Acid | [36] |
Mannich condensation | Daidzin | [37] |
Succinate method | Plumbagin | [38] |
Aconitine | [39] | |
Mctive ester method | Tetrahydrocannabinolic-Acid | [40] |
Classification | MAbs | Structure | Reference |
---|---|---|---|
Alkaloid | Tetrahydrocannabinolic acid | [40] | |
Solasodine | [48] | ||
Solamargine | [16] | ||
Mitragynine | [35] | ||
Mconitine | [39] | ||
Coptisine | [31] | ||
Berberine | [32] | ||
Monoterpene | Paeoniflorin | [13] | |
Sesquiterpenes | Artemisinin | [30] | |
Diterpene | Forskolin | [34] | |
Paclitaxel | [7] | ||
Triterpene | Ginsenoside Rb1 | [23] | |
Bacopaside I | [20] | ||
Saikosaponin a | [18] | ||
Glycyrrhizic acid | [11] | ||
Ginsenoside Rg1 | [22] | ||
Ginsenoside Re | [8] | ||
Ginsenoside Rh1 | [9] | ||
Notoginsenoside R1 | [21] | ||
Tetraterpene | Crocin | [17] | |
Iridoid | Geniposide | [15] | |
Quinones | Sennoside B | [25] | |
Plumbagin | [38] | ||
Aristolochic Acid I | [28] | ||
Aristolochic Acid II | [29] | ||
Flavonoid | Naringin | [14] | |
Baicalin | [27] | ||
Liquiritin | [19] | ||
Daidzin | [45] | ||
Puerarin | [12] | ||
Bile acids | Chenodeoxycholic acid | [26] | |
Hyodeoxycholic acid | [36] | ||
Phenolic acids | Ginkgolic Acid | [10] |
MAbs | Compound | Cross-Reactivity (%) | References |
---|---|---|---|
Forskolin | 7-deacetyl-forskolin | 5.60 | [34] |
Solamargine | Solasonine | 92.1 | [16] |
Solasodine | 43.8 | ||
Glycyrrhizic acid | Glycyrrhetinic acid | 31.57 | [11] |
Glycyrrketic Acid | 18αH-Olean-ll-oxo-12-ene-30-oic acid (18α-HGA) | 18.9 | [33] |
3α-hydroxy GA; Olean-12-ene-3α-hydroxy-ll-oxo-30-oic acid | 2.3 | ||
30-ol GA; Olean-12-ene-11-ox03β | 3.66 | ||
Ginsenoside Rg1 | Ginsenoside Re | 3.3 | [22] |
Crocin | Crocetin triglucoside | 39.6 | [17] |
Crocetin diglucoside | 26.8 | ||
Crocetin | 2.6 | ||
Sennoside B | Sennoside A | 2.45 | [25] |
Paeoniflorin | Albiflorin | 143.7 | [51] |
Oxypaeoniflorin | 5.2 | ||
Benzoylpaeoniflorin | 29.4 | ||
Saikosaponin a | Saikosaponin c | 2.65 | [18] |
Saikosaponin d | 3.76 | ||
Ginkgolic Acids | Olivetolic acid | 54.2 | [10] |
Divarinolic acid | 9.98 | ||
Coptisine | Berberine | 20.6 | [31] |
Palmatine | 20.4 | ||
Berberrubine | 29.8 | ||
Jateorrhizine | 14 | ||
Berberine | Coptisine | 140.7 | [32] |
Palmatine | 50.7 | ||
Berberrubine | 15.1 | ||
9-Acetylberberine | 12.3 | ||
Ginsenoside Re | Ginsenoside Rg1 | 70.94 | [52] |
Ginsenoside Rd | 76.23 | ||
Bacopaside I | Bacopaside II | 299.33 | [20] |
Bacopasaponin C | 64.05 | ||
Bacopaside V | 94.4 | ||
Artemisinin | Artesunate | 630 | [30] |
Dihydroartemisinin | 29.9 | ||
Plumbagin | Menadione | 80.50 | [38] |
Baicalin | Baicalein | 51.41 | [53] |
Aristolochic acid-II | Aristolochic acid I | 3.45 | [29] |
AA-IIIa | 17 | ||
Aristolochic acids-I | AA-II 69.3.02. | 69.3 | [28] |
Decarboxy-AA-II | 8.9 | ||
Aconitine | Mesaconitine | 93.1 | [39] |
Hypaconitine | 104 | ||
Jesaconitine | 65.6 | ||
Benzoylaconine | 8.84 | ||
Benzoylmesaconine | 4.96 | ||
Mitragynine | Speciogynine | 30.54 | [35] |
Paynantheine | 24.83 | ||
Mitraciliatine | 8.63 | ||
Tryptamine | 2.79 | ||
Notoginsenoside R1 | Ginsenoside Rb1 | 2.61 | [21] |
Paclitaxel | Docetaxel | 70.7 | [54] |
7-Xylosyltaxol | 31.8 | ||
liquiritin | Liquiritigenin | 33.09 | [19] |
Daidzin (SPOM) | daidzein | 16.16 | [24] |
Genistin | 82.35 | ||
Genistein | 24.42 | ||
Glycitin | 11.92 | ||
Daidzin (Mannich condensation) | Daidzein | 1.57 | [37] |
Naringin | Neohesperidin | 18.80 | [14] |
Puerarin | Baicalein | 58.1 | [12] |
Chenodeoxycholic acid | Cholic acid | 2.1 | [26] |
Deoxycholic acid | 4.3 | ||
Ginsenoside-Rh1 | Ginsenoside Rg2(S) | 470.65 | [9] |
Ginsenoside Rg3(S) | 13.88 | ||
Ginsenoside Rh2(S) | 12.25 |
MAbs | Label | Detection Limits (μg/mL) | References |
---|---|---|---|
Sennoside B | Colloidal gold | 0.1250 | [93] |
Rb1, Rg1 | Colloidal gold | 2.0000 | [82] |
Glycyrrhizic acid | Colloidal gold | 0.2500 | [90] |
Baicalin | Colloidal gold | 0.6000 | [92] |
Daidzin | Colloidal gold | 0.1250 | [44] |
Puerarin | CdSe/ZnS QDs | 0.0058 | [91] |
Analyte | Capacity of Immunoaffinity Chromatography Column | References |
---|---|---|
Forskolin | 9.41 ug/mL gel | [100] |
Solamargine | 6.19μg/mL gel | [101] |
Ginsenoside Rb1 | 20 mg/mL gel | [75] |
Glycyrrhizin | 33.5 μg/mL gel | [49] |
Puerarin | 22 μg/mL gel | [12] |
Daidzin | 12.26 mg/g Sepharose 4B | [45] |
Naringin | 10 mg/g Sepharose 4B | [14] |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yan, X.; Zhao, Y.; Zhang, Y.; Qu, H. Monoclonal Antibodies and Immunoassay for Medical Plant-Derived Natural Products: A Review. Molecules 2017, 22, 355. https://doi.org/10.3390/molecules22030355
Yan X, Zhao Y, Zhang Y, Qu H. Monoclonal Antibodies and Immunoassay for Medical Plant-Derived Natural Products: A Review. Molecules. 2017; 22(3):355. https://doi.org/10.3390/molecules22030355
Chicago/Turabian StyleYan, Xin, Yan Zhao, Yue Zhang, and Huihua Qu. 2017. "Monoclonal Antibodies and Immunoassay for Medical Plant-Derived Natural Products: A Review" Molecules 22, no. 3: 355. https://doi.org/10.3390/molecules22030355
APA StyleYan, X., Zhao, Y., Zhang, Y., & Qu, H. (2017). Monoclonal Antibodies and Immunoassay for Medical Plant-Derived Natural Products: A Review. Molecules, 22(3), 355. https://doi.org/10.3390/molecules22030355