Synthesis, Characterization and In Vitro Evaluation of a Novel Glycol Chitosan-EDTA Conjugate to Inhibit Aminopeptidase-Mediated Degradation of Thymopoietin Oligopeptides
Abstract
:1. Introduction
2. Results and Discussion
2.1. FTIR Measurement
2.2. NMR Measurement
2.3. Evaluation of Chelating Ability
2.4. Inhibition of Aminopeptidase-Mediated Peptide Degradation
2.5. Cytotoxicity of GCS-EDTA
3. Materials and Methods
3.1. Materials
3.2. Synthesis of Glycol Chitosan-EDTA Conjugate
3.3. FTIR and NMR Characterization
3.4. Evaluation of Chelating Ability of GCS-EDTA to Calcein
3.5. In Vitro Evaluation of Enzyme Inhibition Efficiency of GCS-EDTA
3.6. Calculation of Degradation Clearances
3.7. Cytotoxicity Studies
3.8. Statistical Analysis
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Werle, M.; Takeuchi, H.; Bernkop-Schnurch, A. Modified chitosans for oral drug delivery. J. Pharm. Sci. 2009, 98, 1643–1656. [Google Scholar] [CrossRef] [PubMed]
- Sogias, I.A.; Williams, A.C.; Khutoryanskiy, V.V. Why is chitosan mucoadhesive? Biomacromolecules 2008, 9, 1837–1842. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Feng, J.; Cui, L.; Zhang, Y.; Li, W.; Li, C.; Shi, N.; Chen, Y.; Kong, W. Investigation into efficiency of a novel glycol chitosan-bestatin conjugate to protect thymopoietin oligopeptides from enzymatic degradation. J. Pharm. Sci. 2016, 105, 828–837. [Google Scholar] [CrossRef] [PubMed]
- Danielsen, E.T.; Danielsen, E.M. Glycol chitosan: A stabilizer of lipid rafts in the intestinal brush border. BBA Biomembr. 2017, 1859, 360–367. [Google Scholar] [CrossRef] [PubMed]
- Mandracchia, D.; Trapani, A.; Tripodo, G.; Perrone, M.G.; Giammona, G.; Trapani, G.; Colabufo, N.A. In Vitro evaluation of glycol chitosan based formulations as oral delivery systems for efflux pump inhibition. Carbohyd. Polym. 2017, 166, 73–82. [Google Scholar] [CrossRef] [PubMed]
- Bernkop-Schnurch, A.; Kast, C.E. Chemically modified chitosans as enzyme inhibitors. Adv. Drug Deliv. Rev. 2001, 52, 127–137. [Google Scholar] [CrossRef]
- Park, K.; Kim, J.H.; Nam, Y.S.; Lee, S.; Nam, H.Y.; Kim, K.; Park, J.H.; Kim, I.S.; Choi, K.; Kim, S.Y.; et al. Effect of polymer molecular weight on the tumor targeting characteristics of self-assembled glycol chitosan nanoparticles. J. Control. Release 2007, 122, 305–314. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.; Xie, X.; Zheng, M.; Yu, L.; Zhang, L.; Zhao, J.; Jiang, D.; Che, X. Fabrication and characterization of nuclear localization signal-conjugated glycol chitosan micelles for improving the nuclear delivery of doxorubicin. Int. J. Nanomed. 2012, 7, 5079–5090. [Google Scholar] [CrossRef] [PubMed]
- Pereira, P.; Correia, A.; Gama, F.M. In vivo imaging of glycol chitosan-based nanogel biodistribution. Macromol. Biosci. 2016, 16, 432–440. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hussain, M.A.; Koval, C.A.; Shenvi, A.B.; Aungst, B.J. An aminoboronic acid derivative inhibits thymopentin metabolism by mucosal membrane aminopeptidases. Life Sci. 1990, 47, 227–231. [Google Scholar] [CrossRef]
- Heizmann, J.; Langguth, P.; Biber, A.; Oschmann, R.; Merkle, H.P.; Wolffram, S. Enzymatic cleavage of thymopoietin oligopeptides by pancreatic and intestinal brush-border enzymes. Peptides 1996, 17, 1083–1089. [Google Scholar] [CrossRef]
- Lang, S.; Langguth, P.; Oschmann, R.; Traving, B.; Merkle, H.P. Transport and metabolic pathway of thymocartin (tp4) in excised bovine nasal mucosa. J. Pharm. Pharmacol. 1996, 48, 1190–1196. [Google Scholar] [CrossRef] [PubMed]
- Dawson, R.M.C.; Elliott, D.C.; Elliott, W.H.; Jones, K.M. Data for Biochemical Research, 3rd ed.; Oxford University Press: New York, NY, USA, 1986. [Google Scholar]
- Beynon, R.; Bond, J.S. Proteolytic enzymes: A Practical Approach, 2nd ed.; Oxford University Press: Oxford, UK, 2001. [Google Scholar]
- Bernkop-Schnurch, A.; Paikl, C.; Valenta, C. Novel bioadhesive chitosan-edta conjugate protects leucine enkephalin from degradation by aminopeptidase N. Pharm. Res. 1997, 14, 917–922. [Google Scholar] [CrossRef] [PubMed]
- Cui, F.; He, C.; He, M.; Tang, C.; Yin, L.; Qian, F.; Yin, C. Preparation and evaluation of chitosan-ethylenediaminetetraacetic acid hydrogel films for the mucoadhesive transbuccal delivery of insulin. J. Biomed. Mater. Res. A 2009, 89, 1063–1071. [Google Scholar] [CrossRef] [PubMed]
- Fitch, A.; Dragan, S. Infrared spectroscopy determination of lead binding to ethylenediaminotetraacetic acid. J. Chem. Educ. 1998, 75, 1018. [Google Scholar] [CrossRef]
- Ryczkowski, J. Ft-ir study of the adsorption of some complexones and of edta alkaline salts into alumina. Vib. Spectrosc. 2000, 22, 55–62. [Google Scholar] [CrossRef]
- Huo, M.; Zhang, Y.; Zhou, J.; Zou, A.; Yu, D.; Wu, Y.; Li, J.; Li, H. Synthesis and characterization of low-toxic amphiphilic chitosan derivatives and their application as micelle carrier for antitumor drug. Int. J. Pharm. 2010, 394, 162–173. [Google Scholar] [CrossRef] [PubMed]
- Amsden, B.; Sukarto, A.; Knight, D.; Shapka, S. Methacrylated glycol chitosan as a photopolymerizable biomaterial. Biomacromolecules 2007, 8, 3758–3766. [Google Scholar] [CrossRef] [PubMed]
- Knight, D.K.; Shapka, S.N.; Amsden, B.G. Structure, depolymerization, and cytocompatibility evaluation of glycol chitosan. J. Biomed. Mater. Res. A 2007, 83, 787–798. [Google Scholar] [CrossRef] [PubMed]
- Kale, A.; Pijning, T.; Sonke, T.; Dijkstra, B.W.; Thunnissen, A.M. Crystal structure of the leucine aminopeptidase from pseudomonas putida reveals the molecular basis for its enantioselectivity and broad substrate specificity. J. Mol. Biol. 2010, 398, 703–714. [Google Scholar] [CrossRef] [PubMed]
- Burley, S.K.; David, P.R.; Sweet, R.M.; Taylor, A.; Lipscomb, W.N. Structure determination and refinement of bovine lens leucine aminopeptidase and its complex with bestatin. J. Mol. Biol. 1992, 224, 113–140. [Google Scholar] [CrossRef]
- Schmidt, M.C.; Rubas, W.; Merkle, H.P. Nasal epithelial permeation of thymotrinan (tp3) versus thymocartin (tp4): Competitive metabolism and self-enhancement. Pharm. Res. 2000, 17, 222–228. [Google Scholar] [CrossRef] [PubMed]
Sample Availability: No sample of the compounds is available from the authors. |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Feng, J.; Chen, Y.; Li, F.; Cui, L.; Shi, N.; Kong, W.; Zhang, Y. Synthesis, Characterization and In Vitro Evaluation of a Novel Glycol Chitosan-EDTA Conjugate to Inhibit Aminopeptidase-Mediated Degradation of Thymopoietin Oligopeptides. Molecules 2017, 22, 1253. https://doi.org/10.3390/molecules22081253
Feng J, Chen Y, Li F, Cui L, Shi N, Kong W, Zhang Y. Synthesis, Characterization and In Vitro Evaluation of a Novel Glycol Chitosan-EDTA Conjugate to Inhibit Aminopeptidase-Mediated Degradation of Thymopoietin Oligopeptides. Molecules. 2017; 22(8):1253. https://doi.org/10.3390/molecules22081253
Chicago/Turabian StyleFeng, Jiao, Yan Chen, Feng Li, Lili Cui, Nianqiu Shi, Wei Kong, and Yong Zhang. 2017. "Synthesis, Characterization and In Vitro Evaluation of a Novel Glycol Chitosan-EDTA Conjugate to Inhibit Aminopeptidase-Mediated Degradation of Thymopoietin Oligopeptides" Molecules 22, no. 8: 1253. https://doi.org/10.3390/molecules22081253
APA StyleFeng, J., Chen, Y., Li, F., Cui, L., Shi, N., Kong, W., & Zhang, Y. (2017). Synthesis, Characterization and In Vitro Evaluation of a Novel Glycol Chitosan-EDTA Conjugate to Inhibit Aminopeptidase-Mediated Degradation of Thymopoietin Oligopeptides. Molecules, 22(8), 1253. https://doi.org/10.3390/molecules22081253