Effect of 2,6-Bis-(1-hydroxy-1,1-diphenyl-methyl) Pyridine as Organic Additive in Sulfide NiMoP/γ-Al2O3 Catalyst for Hydrodesulfurization of Straight-Run Gas Oil
Abstract
:1. Introduction
2. Experimental
2.1. Catalyst Preparation
2.2. Characterization Techniques
2.3. Catalytic Activity
- khds: Pseudo 1.5 order HDS kinetic constant (Sw%−0.5 h−1);
- Sp: Sulfur in product (wt %);
- Sf: Sulfur in feedstock (wt %);
- LHSV: Liquid Hourly Space Velocity (h−1).
3. Results
3.1. N2 Physisorption (N2-Phys)
3.2. X-ray Diffraction (XRD)
3.3. Fourier Transformed Infrared Spectroscopy (FT-IR)
3.4. Raman Spectroscopy
3.5. Thermal Analysis (TGA/DTA)
3.6. Temperature Programmed Reduction (TPR)
3.7. X-ray Photoelectron Spectroscopy of Sulfided NiMoP/γ-Al2O3 Catalyst (XPS)
3.8. Fourier Transformed Infrared Spectroscopy of Sulfided NiMoP/γ-Al2O3 Catalysts
3.9. Catalytic Activity Measurements
4. Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Diario Oficial de la Federación. Norma Oficial Mexicana nom-016-cre-2016. 2016; Vol. NOM-016-CRE-2016. Available online: http://www.dof.gob.mx/nota_detalle.php?codigo=5450011&fecha=29/08/2016 (accessed on 29 August 2016).
- Topsoe, H.; Clausen, B.S.; Massot, F.E. Hydrotreating Catalysis. In Catalysis—Catalysis-Science and Technology; Anderson, J.R., Boudart, M., Eds.; Springer: Berlin/Heidelberg, Germany, 1996; Volume 11. [Google Scholar]
- Bataille, F.; Lemberton, J.-L.; Michaud, P.; Pérot, G.; Vrinat, M.; Lemaire, M.; Schulz, E.; Breysse, M.; Kasztelan, S. Alkyldibenzothiophenes hydrodesulfurization-promoter effect, reactivity, and reaction mechanism. J. Catal. 2000, 191, 409–422. [Google Scholar] [CrossRef]
- Castillo-Villalón, P.; Ramírez, J.; Cuevas, R.; Vázquez, P.; Castañeda, R. Influence of the support on the catalytic performance of Mo, CoMo, and NiMo catalysts supported on Al2O3 and TiO2 during the HDS of thiophene, dibenzothiophene, or 4,6-dimethyldibenzothiophene. Catal. Today 2016, 259, 140–149. [Google Scholar] [CrossRef]
- Kallinikos, L.E.; Jess, A.; Papayannakos, N.G. Kinetic study and H2S effect on refractory DBTs desulfurization in a heavy gasoil. J. Catal. 2010, 269, 169–178. [Google Scholar] [CrossRef]
- Korányi, T.I.; Dobrovolszky, M.; Koltai, T.; Matusek, K.; Paál, Z.; Tétényi, P. Preparation and characterization of candidate catalysts for deep hydrodesulfurization of gasoils. Sulfidation and acidity characteristics of supported Ni/W and Ni/Mo catalysts. Fuel Process. Technol. 1999, 61, 55–71. [Google Scholar] [CrossRef]
- Santes, V.; Herbert, J.; Cortez, M.T.; Zárate, R.; Díaz, L.; Swamy, P.N.; Aouine, M.; Vrinat, M. Catalytic hydrotreating of heavy gasoil FCC feed on alumina-titania-supported NiMo catalysts. Appl. Catal. A Gen. 2005, 281, 121–128. [Google Scholar] [CrossRef]
- Al-Dalama, K.; Stanislaus, A. Temperature programmed reduction of SiO2-Al2O3 supported Ni, Mo and NiMo catalysts prepared with EDTA. Thermochim. Acta 2011, 520, 67–74. [Google Scholar] [CrossRef]
- Al-Dalama, K.; Stanislaus, A. A comparative study of the influence of chelating agents on the hydrodesulfurization (HDS) activity of alumina and silica-alumina-supported CoMo catalysts. Energy Fuels 2006, 20, 1777–1783. [Google Scholar] [CrossRef]
- Santolalla-Vargas, C.E.; Suárez Toriello, V.A.; de los Reyes, J.A.; Cromwell, D.K.; Pawelec, B.; Fierro, J.L.G. Effects of pH and chelating agent on the NiWS phase formation in NiW/γ-Al2O3 HDS catalysts. Mater. Chem. Phys. 2015, 166, 105–115. [Google Scholar] [CrossRef]
- Suárez-Toriello, V.A.; Santolalla-Vargas, C.E.; de los Reyes, J.A.; Vázquez-Zavala, A.; Vrinat, M.; Geantet, C. Influence of the solution pH in impregnation with citric acid and activity of Ni/W/Al2O3 catalysts. J. Mol. Catal. A Chem. 2015, 404–405, 36–46. [Google Scholar] [CrossRef]
- Escobar, J.; Barrera, M.C.; de los Reyes, J.A.; Toledo, J.A.; Santes, V.; Colín, J.A. Effect of chelating ligands on Ni-Mo impregnation over wide-pore ZrO2-TiO2. J. Mol. Catal. A Chem. 2008, 287, 33–40. [Google Scholar] [CrossRef]
- Chen, J.; Maugé, F.; El Fallah, J.; Oliviero, L. IR spectroscopy evidence of MoS2 morphology change by citric acid addition on MoS2/Al2O3 catalysts—A step forward to differentiate the reactivity of M-edge and S-edge. J. Catal. 2014, 320, 170–179. [Google Scholar] [CrossRef]
- Klimova, T.E.; Valencia, D.; Mendoza-Nieto, J.A.; Hernández-Hipólito, P. Behavior of NiMo/SBA-15 catalysts prepared with citric acid in simultaneous hydrodesulfurization of dibenzothiophene and 4,6-dimethyldibenzothiophene. J. Catal. 2013, 304, 29–46. [Google Scholar] [CrossRef]
- Sundaramurthy, V.; Dalai, A.K.; Adjaye, J. Effect of EDTA on hydrotreating activity of CoMo/γ-Al2O3 catalyst. Catal. Lett. 2005, 102, 299–306. [Google Scholar] [CrossRef]
- Kishan, G.; Coulier, L.; de Beer, V.H.J.; van Veen, J.A.R.; Niemantsverdriet, J.W. Sulfidation and thiophene hydrodesulfurization activity of nickel tungsten sulfide model catalysts, prepared without and with chelating agents. J. Catal. 2000, 196, 180–189. [Google Scholar] [CrossRef]
- Koizumi, N.; Hamabe, Y.; Yoshida, S.; Yamada, M. Simultaneous promotion of hydrogenation and direct desulfurization routes in hydrodesulfurization of 4,6-dimethyldibenzothiophene over NiW catalyst by use of SiO2-Al2O3 support in combination with trans-1,2-diaminocyclohexane-N,N,N′,N′-tetraacetic acid. Appl. Catal. A Gen. 2010, 383, 79–88. [Google Scholar] [CrossRef]
- Mazoyer, P.; Geantet, C.; Diehl, F.; Loridant, S.; Lacroix, M. Role of chelating agent on the oxidic state of hydrotreating catalysts. Catal. Today 2008, 130, 75–79. [Google Scholar] [CrossRef]
- Li, H.; Li, M.; Chu, Y.; Liu, F.; Nie, H. Essential role of citric acid in preparation of efficient NiW/Al2O3 HDS catalysts. Appl. Catal. A Gen. 2011, 403, 75–82. [Google Scholar] [CrossRef]
- Gómez, E.; Flores, R.; Huerta, G.; Alvarez-Toledano, C.; Toscano, R.A.; Santes, V.; Nava, N.; Sharma, P. Dimethyltin(IV) 2,6-disubstituted pyridine complexes. J. Organomet. Chem. 2003, 672, 115–122. [Google Scholar] [CrossRef]
- Navarro, R.; Pawelec, B.; Fierro, J.L.G.; Vasudevan, P.T.; Cambra, J.F.; Arias, P.L. Deep hydrodesulfurization of DBT and diesel fuel on supported Pt and Ir catalysts. Appl. Catal. A Gen. 1996, 137, 269–286. [Google Scholar] [CrossRef]
- Sie, S.T. Miniaturization of hydroprocessing catalyst testing systems: Theory and practice. AIChE J. 1996, 42, 3498–3507. [Google Scholar] [CrossRef]
- Ramírez, L.F.; Escobar, J.; Galván, E.; Vaca, H.; Murrieta, F.R.; Luna, M.R.S. Evaluation of diluted and undiluted trickle-bed hydrotreating reactor with different catalyst volume. Petrol. Sci. Technol. 2004, 22, 157–175. [Google Scholar] [CrossRef]
- Samain, L.; Jaworski, A.; Edén, M.; Ladd, D.M.; Seo, D.-K.; Javier Garcia-Garcia, F.; Häussermann, U. Structural analysis of highly porous γ-Al2O3. J. Solid State Chem. 2014, 217, 1–8. [Google Scholar] [CrossRef]
- Lian, J.; Ma, J.; Duan, X.; Kim, T.; Li, H.; Zheng, W. One-step ionothermal synthesis of γ-Al2O3 mesoporous nanoflakes at low temperature. Chem. Commun. 2010, 46, 2650–2652. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Gattorno, G.; Martínez-Hernández, A.; Aleman-Vázquez, L.O.; Torres-García, E. Structural and thermal study of carbon-modified molybdenum sub-oxide catalysts. Appl. Catal. A Gen. 2007, 321, 117–124. [Google Scholar] [CrossRef]
- Baston, E.P.; França, A.B.; Neto, A.V.d.S.; Urquieta-González, E.A. Incorporation of the precursors of Mo and Ni oxides directly into the reaction mixture of sol-gel prepared γ-Al2O3-ZrO2 supports—Evaluation of the sulfided catalysts in the thiophene hydrodesulfurization. Catal. Today 2015, 246, 184–190. [Google Scholar] [CrossRef]
- Socrates, G. Infrared and Raman Characteristic Group Frequencies; John Wiley & Sons LTD: Hoboken, NJ, USA, 2001. [Google Scholar]
- Yale, H.L. Organometallic compounds of pyridine. In Chemistry of Heterocyclic Compounds; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2008; pp. 489–621. [Google Scholar]
- Mohan, S.; Ilangovan, V. Studied on 2-aminpyridine molecule by FTIR and laser Raman spectroscopy. Asian J. Chem. 1995, 7, 556–562. [Google Scholar]
- Escobar, J.; Barrera, M.C.; Toledo, J.A.; Cortés-Jácome, M.A.; Angeles-Chávez, C.; Núñez, S.; Santes, V.; Gómez, E.; Díaz, L.; Romero, E.; et al. Effect of ethyleneglycol addition on the properties of P-doped NiMo/Al2O3 HDS catalysts: Part I. Materials preparation and characterization. Appl. Catal. B Environ. 2009, 88, 564–575. [Google Scholar] [CrossRef]
- Radanović, D.J.; Ianelli, S.; Pelosi, G.; Matović, Z.D.; Tasić-Stojanović, S.; Douglas, B.E. Some hexadentate Ni(II)-edta-type complexes containing five-membered diamine rings. The molecular and crystal structure of the trans(O5) isomer of barium(ethylenediamine)-N,N′-diacetato-N,N′-di-3-propionato_)nicklate(II) hexahydrate, trans(O5)-Ba[Ni(eddadp)]·6H2O, and strain analysis of edta-type chelates in relation to their octahedral distortion. Inorg. Chim. Acta 1998, 278, 66–75. [Google Scholar]
- Ferwerda, R.; van der Maas, J.H.; van Duijneveldt, F.B. Pyridine adsorption onto metal oxides: An ab initio study of model systems. J. Mol. Catal. A Chem. 1996, 104, 319–328. [Google Scholar] [CrossRef]
- Hu, H.; Wachs, I.E.; Bare, S.R. Surface structures of supported molybdenum oxide catalysts: Characterization by raman and Mo L3-edge xanes. J. Phys. Chem. 1995, 99, 10897–10910. [Google Scholar] [CrossRef]
- Toledo-Antonio, J.A.; Cortes-Jacome, M.A.; Escobar-Aguilar, J.; Angeles-Chavez, C.; Navarrete-Bolaños, J.; López-Salinas, E. Upgrading HDS activity of MoS2 catalysts by chelating thioglycolic acid to MoOx supported on alumina. Appl. Catal. B Environ. 2017, 213, 106–117. [Google Scholar] [CrossRef]
- Yates, B.; Cooper, R.F.; Pojur, A.F. Thermal expansion at elevated temperatures. II. Aluminium oxide: Experimental data between 100 and 800 K and their analysis. J. Phys. C Solid State Phys. 1972, 5, 1046. [Google Scholar] [CrossRef]
- Williams, C.C.; Ekerdt, J.G.; Jehng, J.M.; Hardcastle, F.D.; Turek, A.M.; Wachs, I.E. A raman and ultraviolet diffuse reflectance spectroscopic investigation of silica-supported molybdenum oxide. J. Phys. Chem. 1991, 95, 8781–8791. [Google Scholar] [CrossRef]
- Díaz de León, J.N.; Picquart, M.; Villarroel, M.; Vrinat, M.; Gil Llambias, F.J.; Murrieta, F.; de los Reyes, J.A. Effect of gallium as an additive in hydrodesulfurization WS2/γ-Al2O3 catalysts. J. Mol. Catal. A Chem. 2010, 323, 1–6. [Google Scholar] [CrossRef]
- González-Cortés, S.L.; Xiao, T.-C.; Costa, P.M.F.J.; Fontal, B.; Green, M.L.H. Urea-organic matrix method: An alternative approach to prepare Co-MoS2/γ-Al2O3 HDS catalyst. Appl. Catal. A Gen. 2004, 270, 209–222. [Google Scholar] [CrossRef]
- González-Cortés, S.L.; Xiao, T.-C.; Green, M.L.H. Urea-matrix combustion method: A versatile tool for the preparation of HDS catalysts. Stud. Surf. Sci. Catal. 2006, 162, 817–824. [Google Scholar]
- Kaluža, L.; Zdražil, M. Preparation of zirconia-supported hydrodesulphurisation catalysts by water-assisted spreading. Appl. Catal. A Gen. 2007, 329, 58–67. [Google Scholar] [CrossRef]
- Garg, S.; Soni, K.; Kumaran, G.M.; Kumar, M.; Gupta, J.K.; Sharma, L.D.; Dhar, G.M. Effect of Zr-SBA-15 support on catalytic functionalities of Mo, CoMo, NiMo hydrotreating catalysts. Catal. Today 2008, 130, 302–308. [Google Scholar] [CrossRef]
- Barrientos, J.; Lualdi, M.; Boutonnet, M.; Järås, S. Deactivation of supported nickel catalysts during CO methanation. Appl. Catal. A Gen. 2014, 486, 143–149. [Google Scholar] [CrossRef]
- Wang, A.; Wang, Y.; Kabe, T.; Chen, Y.; Ishihara, A.; Qian, W.; Yao, P. Hydrodesulfurization of dibenzothiophene over siliceous MCM-41-supported catalysts: II. Sulfided Ni-Mo Catalysts. J. Catal. 2002, 210, 319–327. [Google Scholar] [CrossRef]
- Zepeda, T.A.; Halachev, T.; Pawelec, B.; Nava, R.; Klimova, T.; Fuentes, G.A.; Fierro, J.L.G. Hydrodesulfurization of dibenzothiophene over CoMo/HMS and CoMo/Ti-HMS catalysts. Catal. Commun. 2006, 7, 33–41. [Google Scholar] [CrossRef]
- Díaz-García, L.; Santes, V.; Viveros-García, T.; Sánchez-Trujillo, A.; Ramírez-Salgado, J.; Ornelas, C.; Rodríguez-Castellón, E. Electronic binding of sulfur sites into Al2O3-ZrO2 supports for NiMoS configuration and their application for hydrodesulfurization. Catal. Today 2017, 282, 230–239. [Google Scholar] [CrossRef]
- Scott, C.E.; Perez-Zurita, M.J.; Carbognani, L.A.; Molero, H.; Vitale, G.; Guzmán, H.J.; Pereira-Almao, P. Preparation of NiMoS nanoparticles for hydrotreating. Catal. Today 2015, 250, 21–27. [Google Scholar] [CrossRef]
- Zepeda, T.A.; Pawelec, B.; Obeso-Estrella, R.; Díaz de León, J.N.; Fuentes, S.; Alonso-Núñez, G.; Fierro, J.L.G. Competitive HDS and HDN reactions over NiMoS /HMS-Al catalysts: Diminishing of the inhibition of HDS reaction by support modification with P. Appl. Catal. B Environ. 2016, 180, 569–579. [Google Scholar] [CrossRef]
- Ninh, T.K.T.; Massin, L.; Laurenti, D.; Vrinat, M. A new approach in the evaluation of the support effect for NiMo hydrodesulfurization catalysts. Appl. Catal. A Gen. 2011, 407, 29–39. [Google Scholar] [CrossRef]
- Keliang, P.; Wenguo, X.; Changsui, Z. Investigation on pyrolysis characteristic of natural coke using thermogravimetric and fourier-transform infrared method. J. Anal. Appl. Pyrolysis 2007, 80, 77–84. [Google Scholar] [CrossRef]
- Sarbak, Z. Characterization and infrared study of the effect of Cr, Mo and W on carbon deposition on platinum/alumina. Appl. Catal. A Gen. 1999, 177, 85–97. [Google Scholar] [CrossRef]
- Datka, J.; Sarbak, Z.; Eischens, R.P. Infrared study of coke on alumina and zeolite. J. Catal. 1994, 145, 544–550. [Google Scholar] [CrossRef]
- Bourikas, K.; Kordulis, C.; Lycourghiotis, A. The role of the liquid-solid interface in the preparation of supported catalysts. Catal. Rev. 2006, 48, 363–444. [Google Scholar] [CrossRef]
- Ryczkowski, J. IR studies of EDTA alkaline salts interaction with the surface of inorganic oxides. Appl. Surf. Sci. 2005, 252, 813–822. [Google Scholar] [CrossRef]
- Sun, M.; Nelson, A.E.; Adjaye, J. Adsorption and dissociation of H2 and H2S on MoS2 and NiMoS catalysts. Catal. Today 2005, 105, 36–43. [Google Scholar] [CrossRef]
Sample Availability: Samples of the compounds CoMoP supported on alumina with the organic additive are not available from the authors. |
Catalyst | NiMoP (0.0) | NiMoP (0.5) | NiMoP (1.0) |
---|---|---|---|
Specific area (m2/g) | 136 | 156 | 164 |
Pore size (nm) | 9.7 | 9.8 | 9.9 |
Total volume (cm3/g) | 0.33 | 0.37 | 0.40 |
Catalyst | Synthesis Conditions | Ni 2p Core Level | Mo 3d Core Level | |||
---|---|---|---|---|---|---|
NiS | NiMoS | NiOx | MoS2(Mo4+) | MoOx(Mo6+) | ||
NiMoP (0.0) | BDPHP/Ni = 0.0 | 14 | 49 | 37 | 70 | 30 |
NiMoP (0.5) | BDPHP/Ni = 0.5 | 31 | 45 | 24 | 86 | 14 |
NiMoP (1.0) | BDPHP/Ni = 1.0 | 27 | 46 | 27 | 87 | 13 |
Sample | C/Al | Mo/Al | Ni/Al | S/Al | S/(Mo + Ni) | Ni + Mo/Al |
---|---|---|---|---|---|---|
NiMoP (0.0) | - | 0.07 | 0.076 | 0.08 | 1.07 | 0.07 |
NiMoP (0.5) | 0.63 | 0.07 | 0.020 | 0.13 | 1.31 | 0.09 |
NiMoP (1.0) | 1.00 | 0.12 | 0.020 | 0.15 | 1.08 | 0.13 |
Catalyst | Ratio (BDPHP/Ni) | Conversion (%) | Raman Ratio | khds (Sw %)−0.5 h−1 |
---|---|---|---|---|
NiMoP (0.0) | 0.0 | 94.1 | 0.49 | 6.8 |
NiMoP (0.5) | 0.5 | 96.7 | 0.75 | 9.6 |
NiMoP (1.0) | 1.0 | 94.5 | 0.61 | 7.0 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Santolalla-Vargas, C.E.; Santes, V.; Meneses-Domínguez, E.; Escamilla, V.; Hernández-Gordillo, A.; Gómez, E.; Sánchez-Minero, F.; Escobar, J.; Díaz, L.; Goiz, O. Effect of 2,6-Bis-(1-hydroxy-1,1-diphenyl-methyl) Pyridine as Organic Additive in Sulfide NiMoP/γ-Al2O3 Catalyst for Hydrodesulfurization of Straight-Run Gas Oil. Molecules 2017, 22, 1332. https://doi.org/10.3390/molecules22081332
Santolalla-Vargas CE, Santes V, Meneses-Domínguez E, Escamilla V, Hernández-Gordillo A, Gómez E, Sánchez-Minero F, Escobar J, Díaz L, Goiz O. Effect of 2,6-Bis-(1-hydroxy-1,1-diphenyl-methyl) Pyridine as Organic Additive in Sulfide NiMoP/γ-Al2O3 Catalyst for Hydrodesulfurization of Straight-Run Gas Oil. Molecules. 2017; 22(8):1332. https://doi.org/10.3390/molecules22081332
Chicago/Turabian StyleSantolalla-Vargas, Carlos Eduardo, Victor Santes, Erick Meneses-Domínguez, Vicente Escamilla, Agileo Hernández-Gordillo, Elizabeth Gómez, Felipe Sánchez-Minero, José Escobar, Leonardo Díaz, and Oscar Goiz. 2017. "Effect of 2,6-Bis-(1-hydroxy-1,1-diphenyl-methyl) Pyridine as Organic Additive in Sulfide NiMoP/γ-Al2O3 Catalyst for Hydrodesulfurization of Straight-Run Gas Oil" Molecules 22, no. 8: 1332. https://doi.org/10.3390/molecules22081332
APA StyleSantolalla-Vargas, C. E., Santes, V., Meneses-Domínguez, E., Escamilla, V., Hernández-Gordillo, A., Gómez, E., Sánchez-Minero, F., Escobar, J., Díaz, L., & Goiz, O. (2017). Effect of 2,6-Bis-(1-hydroxy-1,1-diphenyl-methyl) Pyridine as Organic Additive in Sulfide NiMoP/γ-Al2O3 Catalyst for Hydrodesulfurization of Straight-Run Gas Oil. Molecules, 22(8), 1332. https://doi.org/10.3390/molecules22081332