The Genus Alnus, A Comprehensive Outline of Its Chemical Constituents and Biological Activities
Abstract
:1. Introduction
2. Chemical Constituents
2.1. Diarylheptanoids
2.2. Polyphenols
2.3. Flavonoids
2.4. Triterpenoids and Steroids
2.5. Other Compounds
3. Biological Activities
3.1. Anticancer Activity
3.2. Antioxidant Activity
3.3. Anti-Inflammatory Activities
3.4. Antimicrobial and Antiviral Activities
3.5. Hepatoprotective Activity
3.6. DNA Damage Protection Activity
3.7. Anti-Adipogenic Activity
3.8. Anti-Atopic Activity
3.9. Insecticidal Activity
3.10. Other Activities
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Flora Reipublicae Popularis Sinicae. Available online: http://frps.eflora.cn/frps/Alnus (accessed on 23 June 2011).
- Sati, S.C.; Sati, N.; Sati, O.P. Bioactive constituents and medicinal importance of genus Alnus. Phcog. Rev. 2011, 5, 174–183. [Google Scholar] [CrossRef] [PubMed]
- Park, D.; Kim, H.J.; Jung, S.Y.; Yook, C.S.; Jin, C.; Lee, Y.S. A new diarylheptanoid glycoside from the stem bark of Alnus hirsuta and protective effects of diarylheptanoid derivatives in human HepG2 cells. Chem. Pharm. Bull. 2010, 58, 238–241. [Google Scholar] [CrossRef] [PubMed]
- Novaković, M.; Stanković, M.; Vučković, I.; Todorović, N.; Trifunović, S.; Tešević, V.; Vajs, V.; Milosavljević, S. Diarylheptanoids from Alnus glutinosa bark and their chemoprotective effect on human lymphocytes DNA. Planta Med. 2013, 79, 499–505. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.W.; Tanaka, T.; Nonaka, G.I.; Nishioka, I. Dimeric ellagitannins from Alnus japonica. Phytoehtmistry 1992, 31, 2835–2839. [Google Scholar] [CrossRef]
- Wollenweber, E. Flavonoids from Alnus crispa, A. japonica, A. koehnei and A. sinuata. Phytochemistry 1974, 13, 2318–2319. [Google Scholar]
- Suga, T.; Aoki, T.; Kawad, Y.; Ohta, S.; Ohta, E. C31-secodammarane-type triterpenoid saponins from the flowers of Alnus pendula. Phytochemistry 1984, 23, 1297–1299. [Google Scholar] [CrossRef]
- Phan, M.J.; Phan, T.S.; Truong, T.T.C.; Matsunami, K.; Otsuka, H. Mangiferonic acid, 22-hydroxyhopan-3-one, and physcion as specific chemical markers for Alnus nepalensis. Biochem. Syst. Ecol. 2010, 38, 1065–1068. [Google Scholar] [CrossRef]
- Lv, H.; She, G. Naturally occurring diarylheptanoids. Nat. Prod. Commun. 2010, 5, 1687–1708. [Google Scholar] [PubMed]
- Hu, W.C.; Wang, M.H. Antioxidative activity and anti-inflammatory effects of diarylheptanoids isolated from Alnus hirsuta. J. Wood Sci. 2011, 57, 323–330. [Google Scholar] [CrossRef]
- Novaković, M.; Pešić, M.; Trifunović, S.; Vučković, I.; Todorović, N.; Podolski-Renić, A.; Dinić, J.; Stojković, S.; Tešević, V.; Vajs, V.; et al. Diarylheptanoids from the bark of black alder inhibit the growth of sensitive and multi-drug resistant non-small cell lung carcinoma cells. Phytochemistry 2014, 97, 46–54. [Google Scholar] [CrossRef] [PubMed]
- Tung, N.H.; Kwon, H.J.; Kim, J.H.; Ra, J.C.; Kim, J.A.; Kim, Y.H. An anti-influenza component of the bark of Alnus japonica. Arch. Pharm. Res. 2010, 33, 363–367. [Google Scholar] [CrossRef] [PubMed]
- Ra, J.C.; Kim, Y.H.; Sohn, D.H. Antioxidative and Hepatoprotective Compositions Containing Diarylheptanoids from Alnus japonica. U.S. Patent 2011/0144039 A1, 16 June 2011. [Google Scholar]
- Cho, K.J. Method of Making Health Drink for Reducing Hangover Using Alnus japonica Extract and Green Tea Leaf Extract. Korea Patent KR 2006023093, 13 March 2006. [Google Scholar]
- Lim, S.S.; Lee, M.Y.; Ahn, H.R.; Choi, S.J.; Lee, J.Y.; Jung, S.H. Preparative isolation and purification of antioxidative diarylheptanoid derivatives from Alnus japonica by high-speed counter-current chromatography. J. Sep. Sci. 2011, 34, 3344–3352. [Google Scholar] [CrossRef] [PubMed]
- Tung, N.H.; Kim, S.K.; Ra, G.C.; Zhao, Y.Z.; Sohn, D.H.; Kim, Y.H. Antioxidative and hepatoprotective diarylheptanoids from the bark of Alnus japonica. Planta Med. 2010, 76, 626–629. [Google Scholar] [CrossRef] [PubMed]
- Abedini, A.; Chollet, S.; Angelis, A.; Borie, N.; Nuzillard, J.M.; Skaltsounis, A.L.; Reynaud, R.; Gangloff, S.C.; Renault, J.H.; Hubert, J. Bioactivity-guided identification of antimicrobial metabolites in Alnus glutinosa bark and optimization of oregonin purification by centrifugal partition chromatography. J. Chromatogr. B 2016, 1029, 121–127. [Google Scholar] [CrossRef] [PubMed]
- Dahija, S.; Čakar, J.; Vidic, D.; Maksimović, M.; Parić, A. Total phenolic and flavonoid contents, antioxidant and antimicrobial activities of Alnus glutinosa (L.) Gaertn., Alnus incana (L.) Moench and Alnus viridis (Chaix) DC. extracts. Nat. Prod. Res. 2014, 28, 2317–2320. [Google Scholar] [CrossRef] [PubMed]
- Dinić, J.; Ranđelović, T.; Stanković, T.; Dragoj, M.; Isaković, A.; Novaković, M.; Pešić, M. Chemo-protective and regenerative effects of diarylheptanoids from the bark of black alder (Alnus glutinosa) in human normal keratinocytes. Fitoterapia 2015, 105, 169–176. [Google Scholar] [CrossRef] [PubMed]
- Dinić, J.; Novaković, M.; Podolski-Renić, A.; Stojković, S.; Mandić, B.; Tešević, V.; Vajs, V.; Isaković, A.; Pešić, M. Antioxidative activity of diarylheptanoids from the bark of black alder (Alnus glutinosa) and their interaction with anticancer drugs. Planta Med. 2014, 80, 1088–1096. [Google Scholar] [CrossRef] [PubMed]
- León-Gonzalez, A.J.; Acero, N.; Munoz-Mingarro, D.; López-Lázaro, M.; Martín-Cordero, C. Cytotoxic activity of hirsutanone, a diarylheptanoid isolated from Alnus glutinosa leaves. Phytomedicine 2014, 21, 866–870. [Google Scholar] [CrossRef] [PubMed]
- Acero, N.; Mingarro, D.M. Effect on tumor necrosis factor-α production and antioxidant ability of black alder, as factors related to its anti-inflammatory properties. J. Med. Food 2012, 15, 542–548. [Google Scholar] [CrossRef] [PubMed]
- Park, J.Y.; Jeong, H.J.; Kim, J.H.; Kim, Y.M.; Park, S.J.; Kim, D.; Park, K.H.; Lee, W.S.; Ryu, Y.B. Diarylheptanoids from Alnus japonica inhibit papain-like protease of severe acute respiratory syndrome coronavirus. Biol. Pharm. Bull. 2012, 35, 2036–2042. [Google Scholar] [CrossRef] [PubMed]
- Farrand, L.; Kim, J.Y.; Byun, B.S.; Im-aram, A.; Lee, J.; Suh, J.Y.; Lee, K.W.; Lee, H.J.; Tsang, B.K. The diarylheptanoid hirsutenone sensitizes chemoresistant ovarian cancer cells to cisplatin via modulation of apoptosis-inducing factor and X-linked inhibitor of apoptosis. J. Biol. Chem. 2014, 289, 1723–1731. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Liao, H.B.; Guo, D.H.; Liu, P.; Wang, Y.Y.; Rahman, K. Antidepressant-like effects of 3, 60-disinapoyl sucrose on hippocampal neuronal plasticity and neurotrophic signal pathway in chronically mild stressed rats. Neurochem. Int. 2010, 56, 461–465. [Google Scholar] [CrossRef] [PubMed]
- Dong, X.Z.; Huang, C.L.; Yu, B.Y.; Hu, Y.; Mu, L.H.; Liu, P. Effect of Tenuifoliside A isolated from Polygala tenuifolia on the ERK and PI3K pathways in C6 glioma cells. Phytomedicine 2014, 21, 1178–1188. [Google Scholar] [CrossRef] [PubMed]
- Tu, H.H.; Liu, P.; Ma, L.; Liao, H.B.; Xie, T.T.; Mu, L.H.; Liu, Y.M. Study on antidepressant components of sucrose ester from Polygala tenuifolia. Chin. J. Chin. Mater. Med. 2008, 33, 1278–1280. [Google Scholar]
- Kuroyanagl, M.; Shimomae, M.; Nagashima, Y.; Muto, N.; Okuda, T.; Kawahara, N.; Nakane, T.; Sano, T. New diarylheptanoids from Alnus japonica and their antioxidative activity. Chem. Pham. Bull. 2005, 53, 1519–1523. [Google Scholar] [CrossRef]
- Lee, C.S.; Jang, E.R.; Kim, Y.J.; Lee, M.S.; Seo, S.J.; Lee, M.W. Hirsutenone inhibits lipopolysaccharide-activated NF-κB-induced inflammatory mediator production by suppressing Toll-like receptor 4 and ERK activation. Int. Immunopharmacol. 2010, 10, 520–525. [Google Scholar] [CrossRef] [PubMed]
- Jin, W.Y.; Cai, X.F.; Na, M.K.; Lee, J.J.; Bae, K.H. Triterpenoids and diarylheptanoids from Alnus hirsuta inhibit HIF-1 in AGS cells. Arch. Pharm. Res. 2007, 30, 412–418. [Google Scholar] [CrossRef] [PubMed]
- Phan, M.G.; Truong, T.T.C.; Phan, T.S.; Matsunami, K.; Otsuka, K. A new diarylheptanoid and a rare dammarane triterpenoid from Alnus nepalensis. Chem. Nat. Comp. 2011, 47, 735–737. [Google Scholar] [CrossRef]
- Yadav, D.; Kushwaha, V.; Saxena, K.; Verma, R.; Murthy, P.K.; Gupta, M.M. Diarylheptanoid compounds from Alnus nepalensis express in vitro and in vivo antifilarial activity. Acta Trop. 2013, 218, 509–517. [Google Scholar] [CrossRef] [PubMed]
- Jin, W.Y.; Cai, X.F.; Na, M.K.; Lee, J.J.; Bae, K.W. Diarylheptanoids from Alnus hirsuta inhibit the NF-kB activation and NO and TNF-α production. Biol. Pharm. Bul. 2007, 30, 810–813. [Google Scholar] [CrossRef]
- Kang, H.M.; Kim, J.Y.; Jeong, T.S.; Choi, S.G.; Ryu, Y.H.; Taeg Oh, G.; Baek, N.I.; Kwon, B.M. Cyclic diarylheptanoids inhibit cell mediated low-density lipoprotein oxidation. Nat. Prod. Res. 2006, 20, 139–143. [Google Scholar] [CrossRef] [PubMed]
- Nomura, M.; Tokoroyama, T.; Kubota, T. Biarylheptanoids and other constituents from wood of Alnus japonica. Phytochemistry 1981, 20, 1097–1104. [Google Scholar] [CrossRef]
- Lee, M.W.; Tanaka, T.; Nonaka, G.I.; Nishioka, I. Hirsunin, an ellagitannin with a diarylheptanoid moiety, from Alnus hirsuta var. microphylla. Phytochemistry 1992, 3, 967–970. [Google Scholar]
- Ishimatsu, M.; Tanaka, T.; Nonaka, G.I.; Nishioka, I. Alnusnins A and B from the leaves of Alnus sieboldiana. Phytochemistry 1989, 28, 3179–3184. [Google Scholar] [CrossRef]
- Ivanova, S.A.; Nomura, K.; Malfanova, I.L.; Ptitsyn, L.R. Glutinoin, a novel antioxidative ellagitannin from Alnus glutinosa cones with glutinoic acid dilactone moiety. Nat. Prod. Res. 2012, 26, 1806–1816. [Google Scholar] [CrossRef] [PubMed]
- Yoshida, T.; Yazaki, K.; Memon, M.U.; Maruyama, I.; Kurokawa, K.; Shingu, T.; Okuda, T. Structure of alnusiin and bicornin, new hydrolyzable tannins, having a monolactonized tergalloyl group. Chem. Pharm. Bull. 1989, 37, 2655–2660. [Google Scholar] [CrossRef]
- Lv, H.; She, G. Naturally occurring diarylheptanoids—A supplementary version. Rec. Nat. Prod. 2012, 6, 321–333. [Google Scholar]
- Lee, M.A.; Lee, H.K.; Kim, S.H.; Kim, Y.C.; Sung, S.H. Chemical constituents of Alnus firma and their inhibitory activity on lipopolysaccharide-induced nitric oxide production in BV2 microglia. Planta Med. 2010, 76, 1007–1010. [Google Scholar] [CrossRef] [PubMed]
- Novaković, M.; Stanković, M.; Vučković, I.; Todorović, N.; Trifunović, S.; Apostolović, D.; Mandić, B.; Veljić, M.; Marin, P.; Tešević, V.; et al. Diarylheptanoids from green alder bark and their potential for DNA protection. Chem. Biodivers. 2014, 11, 872–885. [Google Scholar] [CrossRef] [PubMed]
- Salama, A.M. Anti-inflammatory activity of δ-amyrone and apigenin-4′,7-dimethylether isolated from Alnus acuminata. Rev. Col. Cienc. Quim. Farm. 2005, 34, 117–121. [Google Scholar]
- Fujinori, H.; Neil, T.G.H. Flavones from Alnus rubra Bong. seed coat. Bull. FFPRI 2003, 2, 85–91. [Google Scholar]
- Asakawa, Y.; Genjida, F.; Suga, T. Four new flavonoids isolated from Alnus sieboldiana. Bull. Chem. Soc. Jpn. 1971, 44, 297. [Google Scholar] [CrossRef]
- Ohmoto, T.; Nikaido, T. Constituents of Pollen. IX. Pollen of Alnus sieboldiana Matsum. Shoyakugaku Zasshi 1980, 34, 316–320. [Google Scholar]
- Kumarasamy, Y.; Cox, P.J.; Jaspars, M.; Nahar, L.; Sarker, S.D. Bioactivity of hirsutanolol, oregonin and genkwanin isolated from the seeds of Alnus gultinosa (Betulaceae). Nat. Prod. Commun. 2006, 1, 641–644. [Google Scholar]
- Rashed, K.; Ćirić, A.; Glamočlija, J.; Calhelha, R.C.; Ferreira, I.C.F.R.; Soković, M. Antimicrobial and cytotoxic activities of Alnus rugosa L. aerial parts and identification of the bioactive components. Ind. Crop. Prod. 2014, 59, 189–196. [Google Scholar] [CrossRef]
- Asakawa, Y. Chemical constituents of Alnus sieboldiana (Betulaceae) II. The isolation and structure of flavonoids and stilbenes. Bull. Chem. Soc. Jpn. 1971, 44, 2761–2766. [Google Scholar] [CrossRef]
- Suga, T.; Iwata, N.; Asakawa, Y. Chemical constituents of the male flower of Alnus pendula (Betulaceae). Bull. Chem. Soc. Jpn. 1972, 45, 2058–2060. [Google Scholar] [CrossRef]
- Klischies, M.; Zenk, M.H. Stereochemistry of C-methylation in the biosynthesis of rhododendrin in Alnus and Betula. Phytochemistry 1978, 17, 1281–1284. [Google Scholar] [CrossRef] [Green Version]
- Yu, Y.B.; Miyashiro, H.; Nakamura, N.; Hattori, M.; Park, J.C. Effects of triterpenoids and flavonoids isolated from Alnus firma on HIV-1 viral enzymes. Arch. Pharm. Res. 2007, 30, 820–826. [Google Scholar] [CrossRef] [PubMed]
- Tori, M.; Hashimoto, A.; Hirose, K.; Asakawa, Y. Diarylheptanoids, flavonoids, stilbenoids, sesquiterpenoids and a phenanthrene from Alnus maximowiczii. Phytochemistry 1995, 40, 1263–1264. [Google Scholar] [CrossRef]
- Wollenweber, E. Flavonoid compounds from Alnus virids. Phytochemistry 1974, 13, 2618–2619. [Google Scholar] [CrossRef]
- Aoki, T.; Ohta, S.; Suga, T. Triterpenoids, diarylheptanoids and their glycosides in the flowers of Alnus species. Phytochemistry 1990, 11, 3611–3614. [Google Scholar] [CrossRef]
- Felföldi-Gáva, A.; Szarka, S.; Simándi, B.; Blazics, B.; Simon, B.; Kéry, A. Supercritical fluid extraction of Alnus glutinosa (L.) Gaertn. J. Supercrit. Fluids 2012, 61, 55–61. [Google Scholar] [CrossRef]
- Aguilar, M.I.; Rovelo, R.; Verjan, J.G.; Illescas, O.; Baeza, A.E.; Fuente, M.D.L.; Avila, I.; Navarrete, A. Anti-inflammatory activities, triterpenoids, and diarylheptanoids of Alnus acuminata ssp. arguta. Pharm. Biol. 2011, 49, 1052–1057. [Google Scholar] [CrossRef] [PubMed]
- Suga, T.; Hirata, T. New C31-secodammarane-type triterpenoids, alnuseric acid and alnuselide, in the male flowers of Alnus serrulatoides. Bull. Chem. Soc. Jpn. 1979, 52, 1153–1155. [Google Scholar] [CrossRef]
- Matyukhina, L.G.; Ryabinin, A.A.; Saltykova, I.A.; Shakhvorostova, T.B. Triterpenes in plants from the Soviet Far East. Chem. Nat. Comp. 1968, 4, 387–388. [Google Scholar] [CrossRef]
- Chung, M.Y.; Rho, M.C.; Lee, S.W.; Park, H.R.; Kim, K.; Lee, I.A.; Kim, D.H.; Jeune, K.H.; Lee, H.S.; Kim, Y.K. Inhibition of diacylglycerol acyltransferase by betulinic acid from Alnus hisuta. Planta Med. 2006, 72, 267–269. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.; Lee, M.K.; Kim, Y.C.; Sung, S.H. Antifibrotic constituents of Alnus firma on hepatic stellate cells. Bioorg. Med. Chem. Lett. 2011, 21, 2906–2910. [Google Scholar] [CrossRef] [PubMed]
- Plattner, R.; Taylo, S.L.; Grove, M.D. Detection of brassinolide and castasterone in Alnus glutinosa (European Alder) pollen by mass spectrometry/mass spectrometry. J. Nat. Prod. 1986, 49, 540–545. [Google Scholar] [CrossRef]
- Ibrahim, S.R.M.; Fouad, M.A.; Abdel-Lateff, A.; Okino, T.; Mohamed, G.A. Alnuheptanoid A: A new diarylheptanoid derivative from Alnus japonica. Nat. Prod. Res. 2014, 28, 1765–1771. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Li, L.J.; Zhang, J.G.; Wan, W.C.; Tu, X.F.; Lu, L.H.; Wu, Y.H.; Liu, W.Q.; Li, L. Analysis of chemical components from ethy acetate layer of Alnus nepalensis D. Don. Yunnan Chem. Tech. 2011, 38, 14–17. [Google Scholar]
- Favre-Bonvin, J.; Jay, M.; Wollenweber, E. A novel stilbene from bud excretion of Alnus viridis. Phytochemistry 1978, 17, 821–822. [Google Scholar] [CrossRef]
- Nomura, M.; Tokoroy, T. Further phenolic components from Alnus japonica Steud. JCS Chem. Comm. 1975, 131, 136–137. [Google Scholar] [CrossRef]
- Uvarova, N.I.; Oshitok, G.I.; Suprunov, N.I.; Elyakov, G.B. Triterpenoids and other constituents from the far-Eastern species of Alnus. Phytoclmnistry 1972, 11, 741–743. [Google Scholar] [CrossRef]
- Hashimoto, T.; Tori, M.; Asakawa, Y. Five new diarylheptanoids from the male flowers of Alnus sieboldiana. Chem. Pharm. Bull. 1986, 34, 1846–1849. [Google Scholar] [CrossRef]
- Lee, M.; Song, J.Y.; Chin, Y.W.; Sung, S.H. Anti-adipogenic diarylheptanoids from Alnus hirsuta f. sibirica on 3T3-L1 cells. Bioorg. Med. Chem. Lett. 2013, 23, 2069–2073. [Google Scholar] [CrossRef] [PubMed]
- Lai, Y.C.; Chen, C.K.; Lin, W.W.; Lee, S.S. A comprehensive investigation of anti-inflammatory diarylheptanoids from the leaves of Alnus formosana. Phytochemistry 2012, 73, 84–94. [Google Scholar] [CrossRef] [PubMed]
- Takashi, S. Diarylheptanoids of Alnus hirsuta Turcz. (Betulaceae); Research Bulletins of the College Experiment Forests Hokkaido University: Hokkaido, Japan, 1985; Volume 42, pp. 191–205. [Google Scholar]
- Chen, J. Diarylheptanoid Glycosides from Red Alder Bark. Ph.D. Thesis, Oregon State University, Corvallis, OR, USA, 1996. [Google Scholar]
- Choi, S.E.; Kim, K.H.; Kwon, J.H.; Kim, S.B.; Kim, H.W.; Lee, M.W. Cytotoxic activities of diarylheptanoids from Alnus japonica. Arch. Pharm. Res. 2008, 31, 1287–1289. [Google Scholar] [CrossRef] [PubMed]
- Telysheva, G.; Dizhbite, T.; Bikovens, O.; Ponomarenko, J.; Janceva, S.; Krasilnikova, J. Structure and antioxidant activity of diarylheptanoids extracted from bark of grey alder (Alnus incana) and potential of biorefinery-based bark processing of European trees. Holzforschung 2011, 65, 623–629. [Google Scholar] [CrossRef]
- Tung, N.H.; Suzuki, M.; Uto, T.; Morinaga, O.; Kwofie, K.D.; Ammah, N.; Koram, K.A.; Aboagye, F.; Edoh, D.; Yamashita, T.; et al. Anti-trypanosomal activity of diarylheptanoids isolated from the bark of Alnus japonica. Am. J. Chin. Med. 2014, 42, 1245–1260. [Google Scholar] [CrossRef] [PubMed]
- Dinić, J.; Novaković, M.; Renić, A.P.; Vajs, V.; Tešević, V.; Isaković, A.; Pešić, M. Structural differences in diarylheptanoids analogues from Alnus viridis and Alnus glutinosa influence their activity and selectivity towards cancer cells. Chem. Biol. Interact. 2016, 249, 36–45. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.W.; Kim, N.Y.; Park, M.S.; Ahn, K.H.; Toh, S.H.; Hahn, D.R.; Kim, Y.C.; Chung, H.T. Diarylheptanoids with in vitro inducible nitric oxide synthesis inhibitory activity from Alnus hisuta. Planta Med. 2000, 66, 551–553. [Google Scholar] [CrossRef] [PubMed]
- González-Laredo, R.F.; Helm, R.F.; Helm, R.F.; Chen, J.; Karchesy, J.J. Two acylated diarylheptanoid glycosides from red alder bark. J. Nat. Prod. 1998, 61, 1292–1294. [Google Scholar] [CrossRef] [PubMed]
- Ohta, S.; Aoki, T.; Hirata, T.; Suga, T. The structures of four diarylheptanoid glycosides from the female flowers of Alnus serrulatoides. J. Chem. Soc. Perkin Trans. 1984, 1635–1642. [Google Scholar] [CrossRef]
- Tunga, N.H.; Ra, J.C.; Sohnc, D.H.; Kima, Y.H. A new diarylheptanoid from the bark of Alnus japonica. J. Asian Nat. Prod. Res. 2010, 12, 921–924. [Google Scholar] [CrossRef] [PubMed]
- Han, J.M.; Lee, W.S.; Kim, J.R.; Son, J.; Nam, K.H.; Choi, S.C.; Lim, J.S.; Jeong, T.S. Effects of diarylheptanoids on the tumor necrosis factor-α-induced expression of adhesion molecules in human umbilical vein endothelial cells. J. Agric. Food Chem. 2007, 55, 9457–9464. [Google Scholar] [CrossRef] [PubMed]
- Martineau, L.C.; Hervé, J.; Muhammad, A.; Saleem, A.; Harris, C.S.; Arnsaon, J.T.; Haddad, P.S. Anti-adipogenic activities of Alnus incana and Populus balsamifera bark extracts, Part I: Sites and mechanisms of action. Planta Med. 2010, 76, 1439–1446. [Google Scholar] [CrossRef] [PubMed]
- Tung, N.H.; Kwon, N.J.; Kim, J.H.; Ra, J.C.; Ding, Y.; Kim, J.A.; Kim, Y.H. Anti-influenza diarylheptanoids from the bark of Alnus japonica. Bioorg. Med. Chem. Lett. 2010, 10, 1000–1003. [Google Scholar] [CrossRef] [PubMed]
- Chena, J.; González-Laredo, R.F.; Karchesy, J.J. Minor diarylheptanoid glycosides of Alnus rubra bark. Phytochemistry 2000, 53, 971–973. [Google Scholar] [CrossRef]
- Hu, W.C.; Wang, M.H. Diarylheotanoid from Alnus hirsuta improves glucose metabolism via insulin signal transduction in human hepatocarcinoma (HepG2) cells. Biotechnol. Bioproc. Eng. 2011, 16, 120–126. [Google Scholar] [CrossRef]
- Kim, H.J.; Kim, K.H.; Yeom, S.H.; Kim, M.K.; Shim, J.G.; Lim, H.W.; Lee, M.W. New diarylheptanoid from the barks of Alnus japonica Steudel. Chin. Chem. Lett. 2005, 16, 1337–1340. [Google Scholar]
- Choi, S.E.; Park, K.H.; Kim, M.H.; Song, J.H.; Jin, H.Y.; Lee, M.W. Diarylheptanoids from the bark of Alnus pendula Matsumura. Nat. Prod. Sci. 2012, 18, 106–110. [Google Scholar]
- Yadav, D.; Gupta, M.M. Simultaneous quantification of diarylheptanoids in Alnus nepalensis using a validated HPTLC method. J. Chromatogr. Sci. 2013, 52, 905–910. [Google Scholar] [CrossRef] [PubMed]
- Ko, E.K.; Choi, H. Oregonin from the stems and leaves of Korean Alnus species (Betulaceae). J. Chem. Pharm. Res. 2015, 7, 234–238. [Google Scholar]
- Ponomarenko, J.; Trouillas, P.; Martin, N.; Dizhbite, T.; Krasilnikova, J.; Telysheva, G. Elucidation of antioxidant properties of wood bark derived saturated diarylheptanoids: A comprehensive (DFT-supported) understanding. Phytochemistry 2014, 103, 178–187. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.S.; Chen, S.C.; Chen, C.K.; Chen, C.K.; Kuo, C.M. Chemical constituents from Alnus formosana burk. II. Polar constituents from the leaves. Nat. Prod. Commun. 2006, 1, 461–464. [Google Scholar]
- Wada, H.; Tachibana, H.; Fuchino, H.; Takana, N. Three new diarylheptanoid glycosides from Alnus japonica. Chem. Pharm. Bull. 1998, 46, 1054–1055. [Google Scholar] [CrossRef]
- Chen, J.; Karchesy, J.J.; González-Laredo, R.F. Phenolic diaryheptenones from Alnus rubra bark. Planta Med. 1998, 64, 74–75. [Google Scholar] [CrossRef] [PubMed]
- Siddiqui, I.N.; Ahmad, V.U.; Zahoor, A.; Ahmed, A.; Khan, S.S.; Khan, A.; Hassan, Z. The two diarylheptanoids from Alnus nitida. Nat. Prod. Commun. 2010, 5, 1787–1788. [Google Scholar] [PubMed]
- Asakawa, Y. Chemical constituents of Alnus sieboldiana (Betulaceae). Ш. The synthesis and stereochemistry of yashabushiketols. Bull. Chem. Soc. Jpn. 1972, 45, 1794–1797. [Google Scholar] [CrossRef]
- Asakawa, Y. Chemical contituents of Alnus firma (Betuaceae). I. Phenyl propane derivatives isolated from Alnus firma. Bull. Chem. Soc. Jpn. 1970, 43, 2223–2229. [Google Scholar] [CrossRef]
- Chiba, K.; Ichizawa, H.; Kawai, S.; Nishida, T. α-Glucosidase inhibition activity by cyclic diarylheptanoids from Alnus sieboldiana. J. Wood Chem. Technol. 2013, 33, 44–51. [Google Scholar] [CrossRef]
- Altınyay, C.; Süntar, I.; Altun, L.; Keleş, H.; Akkol, E.K. Phytochemical and biological studies on Alnus glutinosa subsp. glutinosa, A. orientalis var. orientalis and A. orientalis var. pubescens leaves. J. Ethnopharmacol. 2016, 192, 148–160. [Google Scholar]
- Sajida, M.; Khana, M.R.; Shah, S.A.; Majid, M.; Ismail, H.; Maryam, S.; Batool, R.; Younis, T. Investigations on anti-inflammatory and analgesic activities of Alnus nitida Spach (Endl). stem bark in Sprague Dawley rats. J. Ethnopharmacol. 2017, 198, 407–416. [Google Scholar] [CrossRef] [PubMed]
- Ludwiczuk, A.; Saha, A.; Kuzuhara, T.; Asakawa, Y. Bioactivity guided isolation of anticancer constituents from leaves of Alnus sieboldiana (Betulaceae). Phytomedicine 2011, 18, 491–498. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.B.; Park, J.S.; Lim, S.B. Antioxidant activity and cell toxicity of pressurised liquid extracts from 20 selected plant species in Jeju, Korea. Food Chem. 2010, 122, 546–552. [Google Scholar] [CrossRef]
- Han, H.K.; Choi, S.S.; Kim, Y.R.; Kim, H.J.; Kang, G.M.; Dong, M.S.; Na, C.S.; Chung, H.S. Diarylheptanoid and flavonoid with antioxidant activity from Alnus japonica Steud on DPPH free radical scavenging assay. J. Food Sci. Nutr. 2006, 11, 171–175. [Google Scholar] [CrossRef]
- Sakamura, F.; Ohta, S.; Aoki, T.; Suga, T. Triterpenoids from the female and male flowers of Alnus sieboldiana. Phytochemistry 1985, 24, 2744–2745. [Google Scholar] [CrossRef]
- Sheth, K.; Bianchi, E.; Wiedhopf, R.; Cole, J.R. Antitumor agents from Alnus oregona (Betulaceae). J. Pharm. Sci. 1973, 62, 139–140. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Webster, D.; Johnson, J.A.; Gray, C.A. Anti-mycobacterial triterpenes from the Canadian medicinal plant Alnus incana. J. Ethnopharmacol. 2015, 165, 148–151. [Google Scholar] [CrossRef] [PubMed]
- Felföldi-Gáva, A.; Simándi, B.; Plánder, S.; Szarka, É.; Kéry, Á. Betulaceae and Platanaceae plants as alternative sources of selected lupane-type triterpenes. Their composition profile and betulin content. Acta Chromatogr. 2009, 21, 671–681. [Google Scholar] [CrossRef]
- Vo, V.C. The Dictionary of Vietnamese Medicinal Plants; Publishing House Medicine: Ho Chi Minh City, Vietnam, 1997. [Google Scholar]
- Kim, D.S.; Park, S.Y.; Kim, J.K. Curcuminoids from Curcuma longa L. (Zingiberaceae) that protect PC12 rat pheochromocytoma and normal human umbilical vein endothelial cells from betaA(1–42) insult. Neurosci. Lett. 2001, 303, 57–61. [Google Scholar] [CrossRef]
- Liu, H.T.; Wang, L.L.; Liu, L.X. Advances in understanding mechanisms underlying the antitumor activity of curcumin analogue EF24. World Chin. J. Digesto. 2012, 20, 1853–1857. [Google Scholar] [CrossRef]
- Kim, J.H.; Lee, K.W.; Lee, M.W.; Lee, H.J.; Kimd, S.H.; Surha, Y.J. Hirsutenone inhibits phorbol ester-induced upregulation of COX-2 and MMP-9 in cultured human mammary epithelial cells: NF-κB as a potential molecular target. FEBS. Lett. 2006, 580, 385–392. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.S.; Jang, E.R.; Kim, Y.J.; Myung, S.C.; Kim, W.; Lee, M.W. Diarylheptanoid hirsutenone enhances apoptotic effect of TRAIL on epithelial ovarian carcinoma cell lines via activation of death receptor and mitochondrial pathway. Investig. New Drugs. 2012, 30, 548–557. [Google Scholar] [CrossRef] [PubMed]
- Kang, S.; Kim, J.E.; Li, Y.; Jung, S.K.; Song, N.Y.; Thimmegowda, N.R.; Kim, B.Y.; Lee, H.J.; Bode, A.M.; Dong, Z.; et al. Hirsutenone in Alnus extract inhibits Akt activity and suppresses prostate cancer cell proliferation. Mol. Carcinogen. 2015, 54, 1354–1362. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.W.; Kim, J.H.; Jeong, D.W.; Ahn, K.H.; Toh, S.H.; Surh, Y.J. Inhibition of clycooxygenase-2 expression by diarylheptanoids from the bark of Alnus hisuta var. sibirica. Biol. Pharm. Bull. 2000, 23, 517–518. [Google Scholar] [CrossRef] [PubMed]
- Joo, S.S.; Kim, M.S.; Oh, W.S.; Lee, D.I. Enhancement of NK cytotoxicity, antimetastasis and elongation effect of survival time in B16-F10 melanoma cells by oregonin. Arch. Pharm. Res. 2002, 25, 493–499. [Google Scholar] [CrossRef] [PubMed]
- Joo, S.S.; Kim, H.J.; Kwon, H.S.; Lee, D.I. Augmentation of macrophage antitumor activities and nitric oxide production by oregonin. Arch. Pharm. Res. 2002, 25, 457–462. [Google Scholar] [CrossRef] [PubMed]
- Stević, T.; Šavikin, K.; Zdunić, G.; Stanojković, T.; Juranić, Z.; Janković, T.; Menković, N. Antioxidant, cytotoxic, and antimicrobial activity of Alnus incana (L.) ssp. incana Moench and A. viridis (Chaix) DC ssp. viridis extracts. J. Med. Food 2010, 13, 700–704. [Google Scholar]
- Chang, J.H.; Cho, J.H.; Kim, H.H.; Lee, K.P.; Lee, M.W.; Han, S.S.; Lee, D.I. Antitumor activity of pedunculagin, one of the ellagitannin. Arch. Pharm. Res. 1995, 18, 396–401. [Google Scholar] [CrossRef]
- Poljsak, B.; Šuput, D.; Milisav, I. Achieving the balance between ROS and antioxidants: When to use the synthetic antioxidants. Oxid. Med. Cell. Longev. 2013, 2013, 956792. [Google Scholar] [CrossRef] [PubMed]
- Sajid, M.; Khan, M.R.; Shah, N.A.; Shah, S.A.; Ismail, H.; Younis, T.; Zahra, Z. Phytochemical, antioxidant and hepatoprotective effects of Alnus nitida bark in carbon tetrachloride challenged Sprague Dawley rats. BMC Complem. Altern. Med. 2016, 16, 268. [Google Scholar] [CrossRef] [PubMed]
- Lee, W.S.; kim, J.Y.; Im, K.R.; Cho, K.H.; Sok, D.E.; Jeong, T.S. Antioxidant effects of diarylheptanoid derivatives from Alnus japonica on human LDL oxidation. Planta Med. 2005, 71, 295–299. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.J.; Yeom, S.H.; Kim, M.K.; Paek, I.N.; Lee, M.W. Nitric oxide and prostaglandin E2 synthesis inhibitory activities of diarylheptanoids from the barks of Alnus japonica Steudel. Arch. Pharm. Res. 2005, 28, 177–179. [Google Scholar] [CrossRef] [PubMed]
- Saxena, A.; Yadav, D.; Maurya, A.K.; Kumar, A.; Mohanty, S.; Gupta, M.M.; Lingaraju, M.C.; Yatoo, M.I.; Thakur, U.S.; Bawankule, D.U. Diarylheptanoids from Alnus nepalensis attenuates LPS-induced inflammation in macrophages and endotoxic shock in mice. Int. Immunopharmacol. 2016, 30, 129–136. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.J.; Lee, S.S.; Chen, S.C.; Ho, F.M.; Lin, W.W. Oregonin inhibits lipopolysaccharide-induced iNOS gene transcription and upregulates HO-1 expression in macrophages and microglia. Br. J. Pharmacol. 2005, 146, 378–388. [Google Scholar] [CrossRef] [PubMed]
- Lundqvist, A.; Magnusson, L.U.; Ullstrom, C.; Krasilnikova, J.; Telysheva, T.; Dizhbite, T.; Hulten, L.M. Oregonin reduces lipid accumulation and proinflammatory responses in primary human macrophages. Biochem. Bioph. Res. Commun. 2015, 458, 693–699. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.C.; Ko, H.H.; Seo, S.J.; Choi, Y.W.; Lee, M.W.; Myung, S.C.; Bang, H. Diarylheptanoid hirsutenone prevents tumor necrosis factor-α-stimulated production of inflammatory mediators in human keratinocytes through NF-κB inhibition. Int. Immunopharmacol. 2009, 9, 1097–1104. [Google Scholar] [CrossRef] [PubMed]
- Choi, J.G.; Lee, M.W.; Choi, S.E.; Kim, M.H.; Kang, O.H.; Lee, Y.S.; Chae, H.S.; Obiang-Obounou, B.; OH, Y.C.; Kim, M.R.; et al. Antibacterial activity of bark of Alnus pendula against methicillin-resistant Staphylococcus aureus. Eur. Rev. Med. Pharmacol. 2012, 16, 853–859. [Google Scholar]
- Sang, T.K.; Jung, D.K.; Ahn, S.H.; Ahn, G.S.; Lee, Y.I.; Jeong, Y.S. Hepatoprotective and antioxidant effects of Alnus japonica extracts on acetaminophen induced hepatotoxicity in rats. Phytother. Res. 2004, 18, 971–975. [Google Scholar]
- Martineau, L.C.; Muhammad, A.; Saleem, A.; Hervé, J.; Harris, C.S.; Arnsaon, J.T.; Haddad, P.S. Anti-adipogenic activities of Alnus incana and Populus balsamifera bark extracts, Part II: bioassay-guided identification of actives salicortin and oregonin. Planta Med. 2010, 76, 1519–1524. [Google Scholar] [CrossRef] [PubMed]
- Choi, S.E.; Jeong, M.S.; Kang, M.J.; Lee, D.I.; Joo, S.S.; Lee, C.S.; Bang, H.; Lee, M.K.; Myung, S.C.; Choi, Y.W.; et al. Effect of topical application and intraperitoneal injection of oregonin on atopic dermatitis in NC/Nga mice. Exp. Dermatol. 2010, 19, 37–43. [Google Scholar] [CrossRef] [PubMed]
- Jeong, M.S.; Choi, S.E.; Kim, J.Y.; Kim, J.S.; Kim, E.J.; Park, K.H.; Lee, D.I.; Joo, S.S.; Lee, C.S.; Bang, H.; et al. Atopic dermatitis-like skin lesions reduced by topical application and intraperitoneal injection of hirsutenone in NC/Nga mice. Clin. Dev. Immunol. 2010, 2010, 618517. [Google Scholar] [CrossRef] [PubMed]
- Choi, S.E.; Park, K.H.; Jeong, M.S.; Kim, H.H.; Lee, D.I.; Joo, S.S.; Lee, C.S.; Bang, H.B.; Choi, Y.W.; Lee, M.K.; et al. Effect of Alnus japonica extract on a model of atopic dermatitis in NC/Nga mice. J. Ethnopharmacol. 2011, 136, 406–413. [Google Scholar] [CrossRef] [PubMed]
- Joo, S.S.; Kim, S.G.; Choi, S.E.; Kim, Y.B.; Park, H.Y.; Seo, S.J.; Choi, Y.W.; Lee, M.W.; Lee, D.I. Suppression of T cell activation by hirsutenone, isolated from the bark of Alnus japonica, and its therapeutic advantages for atopic dermatitis. Eur. J. Pharmacol. 2009, 614, 98–105. [Google Scholar] [CrossRef] [PubMed]
- Kang, M.J.; Eum, J.Y.; Jeong, M.S.; Park, S.H.; Moon, K.Y.; Kang, M.H.; Kim, M.S.; Choi, S.E.; Lee, MW.; Lee, D.I.; et al. Tat peptide-admixed elastic liposomal formulation of hirsutenone for the treatment of atopic dermatitis in NC/Nga mice. Int. J. Nanomed. 2011, 6, 2459–2467. [Google Scholar]
- Kang, M.J.; Eum, J.Y.; Jeong, M.S.; Choi, S.E.; Park, S.H.; Cho, H.I.; Cho, C.S.; Seo, S.J.; Lee, M.W.; Choi, Y.W. Facilitated skin permeation of oregonin by elastic liposomal formulations and suppression of atopic dermatitis in NC/Nga mice. Biol. Pharm. Bull. 2010, 33, 100–106. [Google Scholar] [CrossRef] [PubMed]
- Yadav, D.; Singh, S.C.; Verma, R.K.; Saxena, K.; Verma, R.; Murthy, P.K.; Gupta, M.M. Antifilarial diarylheptanoids from Alnus nepalensis leaves growing in high altitude areas of Uttarakhand, India. Phytomedicine 2013, 20, 124–132. [Google Scholar] [CrossRef] [PubMed]
- Cho, S.M.; Kwon, Y.M.; Cho, S.M.; Kwon, Y.M.; Lee, J.H.; Yon, K.H.; Lee, M.W. Melanogenesis inhibitory activities of diarylheptanoids from Alnus hirsuta Turcz in B16 mouse melanoma cell. Arch. Pharm. Res. 2002, 25, 885–888. [Google Scholar] [CrossRef] [PubMed]
- Jo, H.; Choi, S.J.; Jung, S.H. Protective effects of a compound isolated from Alnus japonica on oxidative stress-induced death in transformed retinal ganglion cells. Food Chem. Toxicol. 2013, 56, 425–435. [Google Scholar] [CrossRef] [PubMed]
- Rashed, K.; Sucupira, A.C.C.; Neto, J.M.M.; Feitosa, C.M. Evaluation of acetylcholinesterase inhibition by Alnus rugosa L. stems methanol extract and phytochemical content. IJBAR 2013, 4, 606–609. [Google Scholar] [CrossRef]
Compound | R1 | R2 | R3 | R4 | R5 | R6 | R7 |
---|---|---|---|---|---|---|---|
1 | H | H | H | OH (R) | OH (S) | H | H |
2 | H | H | H | OH (R) | OH (R) | H | H |
3 | H | H | OH (R) | OH (R) | OH (S) | H | H |
4 | OH | H | H | OH (R) | OH (R) | H | OH |
5 | OH | H | H | OH (R) | H | H | OH |
6 | OH | H | H | OH (R) | H | OH | OH |
7 | OH | OH | H | OH (R) | H | OH | OH |
8 | OH | OH | H | OH (R) | H | H | OH |
9 | OH | OH | H | OH (R) | O-xylp (S) | OH | OH |
10 | OH | H | H | OH (R) | O-apif(1→6)glcp | H | OH |
11 | OH | H | H | O-xylp (R) | H | H | OH |
12 | OH | OH | H | O-xylp (R) | H | OH | OH |
13 | OH | OH | H | O-xylp (R) | H | H | OH |
14 | OH | OH | H | O-glcp (R) | H | OH | OH |
15 | OH | H | H | O-glcp (R) | H | OH | OH |
16 | OH | OH | H | O-glcp (R) | H | H | OH |
17 | OH | H | H | O-glcp (R) | OH | H | OH |
18 | OH | H | H | O-glcp (R) | H | H | OH |
19 | OH | H | H | O-apif(1→6)glcp (R) | H | H | OH |
20 | OH | H | H | O-araf(1→6)glcp (S) | H | H | OH |
21 | OH | H | H | O-araf(1→6)glcp (R) | H | H | OH |
22 | OH | OH | H | O-glcp(1→3)xylp (R) | H | OH | OH |
23 | OH | OH | H | O-apip(1→6)glcp (R) | H | H | OH |
24 | OH | OH | H | O-rhap(1→6)glcp (R) | H | H | OH |
25 | OH | H | H | O-glcp(1→3)xylp (R) | H | H | OH |
26 | OH | OH | H | O-glcp-(E)-DMC (R) | H | OH | OH |
27 | OH | OH | H | O-glcp-(Z)-DMC (R) | H | OH | OH |
28 | OH | OH | H | O-glcp-(E)-TMC (R) | H | OH | OH |
Compound | R1 | R2 | R3 | R4 | R5 | R6 |
---|---|---|---|---|---|---|
29 | OH | H | H | H | H | OH |
30 | H | H | OH (S) | OH (S) | H | H |
31 | H | H | OH (R) | OH (S) | H | H |
32 | H | H | H | OH (S) | H | H |
33 | OH | OH | H | OH (S) | OH | OH |
34 | OH | OH | H | OH (S) | H | OH |
35 | OH | H | H | OH (S) | OH | OH |
36 | OH | H | H | OH (S) | H | OH |
37 | OH | OH | H | OH (R) | OH | OH |
38 | OH | OH | H | OCH3 (S) | OH | OH |
39 | OH | H | H | OCH3 (S) | OH | OH |
40 | OH | H | H | OCH3 (S) | H | OH |
41 | OH | OH | H | OCH3 (R) | OH | OH |
42 | OH | OH | H | O-nBu (S) | OH | OH |
43 | OH | OH | H | O-nBu (S) | OH | OH, △1(E) |
44 | OH | H | H | O-nBu (S) | H | OH |
45 | OH | H | H | O-xyl (S) | OH | OH |
46 | OH | OH | H | O-xyl (S) | H | OH |
47 | OH | H | H | O-xyl (S) | H | OH |
48 | OH | OH | H | O-xyl (S) | OH | OH |
49 | OH | OH | H | O-glc (S) | OH | OH |
50 | OH | H | H | O-glc (S) | H | OH |
51 | OH | H | H | O-glc (S) | OH | OH |
52 | OH | OH | H | O-glc (S) | H | OH |
53 | OH | H | H | O-apif(1→6)glcp (S) | H | OH |
54 | OH | H | H | O-galloyl-glcp (S) | H | OH |
55 | OH | OH | H | O-xylp-p-coumaroyl | OH | OH |
56 | OH | OH | H | O-xylp-feruloyl (S) | OH | OH |
57 | OH | OH | H | O-galloyl-glcp (S) | OH | OH |
58 | OH | OH | H | O-xylp-benzoyl (S) | OH | OH |
59 | OH | OH | H | O-xylp-cinnamoyl (S) | OH | OH |
60 | OH | OH | H | O-glcp-benzoyl (S) | OH | OH |
61 | OH | OH | H | O-glcp-vanilloyl (S) | OH | OH |
62 | OH | H | H | O-glcp-coumaroyl (S) | H | OH |
63 | OH | H | H | O-glcp-(E)-DMC (S) | H | OH |
64 | OH | H | H | O-glcp-(E)-DMC (S) | OH | OH |
65 | OH | H | H | O-glcp-(Z)-DMC (S) | H | OH |
66 | OH | OH | H | O-glcp-coumaroyl (S) | OH | OH |
67 | OH | OH | H | O-glcp-(Z)-DMC (S) | OH | OH |
68 | OH | OH | H | O-glcp-(E)-TMC (S) | OH | OH |
69 | OH | OH | H | O-glcp-(E)-DMC (S) | OH | OH |
70 | OH | OH | H | O-xylp-2-methyl-butanoyl (S) | OH | OH |
71 | OH | OH | H | O-R* (S) | OH | OH |
Compound | R1 | R2 | R3 | R4 |
---|---|---|---|---|
72 | H | H | H | H |
73 | OH | OH | OH | OH |
74 | OH | H | H | OH |
75 | OH | H | OCH3 | OH |
76 | OH | OH | H | OH |
77 | OH | H | OH | OH |
Compound | R1 | R2 | R3 | R4 | R5 |
---|---|---|---|---|---|
100 | OH | H | H | G | G |
101 | OG | H | H | G | H |
102 | OG | H | H | G | H |
103 | OG | G | H | H | H |
104 | A | H | H | H | H |
105 | OH | H | G | (S) HHDP | |
106 | OH | G | G | (S) HHDP | |
107 | OG | H | H | (S) HHDP | |
108 | OH | (S) HHDP | H | H | |
109 | OH | (S) HHDP | (S) HHDP | ||
110 | β-OG | (S) HHDP | (S) HHDP | ||
111 | OB | (S) HHDP | (S) HHDP |
Compound | R1 | R2 | R3 | R4 | R5 | R6 | R7 |
---|---|---|---|---|---|---|---|
121 | OH | (S) HHDP | G | G | (S) HHDP | ||
122 | β-OG | (S) HHDP | G | G | (S) HHDP | ||
123 | OH | (S) HHDP | H | H | (S) HHDP |
Compound | R1 | R2 | R3 | R4 |
---|---|---|---|---|
124 | (S) HHDP | (S) HHDP |
Compound | R1 | R2 | R3 |
---|---|---|---|
125 | H | H | OH |
126 | G | H | OH |
127 | G | OH | H |
128 | G | Ra | H |
Compound | R1 | R2 |
---|---|---|
129 | OCH3 | OCH3 |
130 | OCH3 | H |
131 | H | OCH3 |
132 | H | H |
Compound | R1 | R2 | R3 | R4 | R5 |
---|---|---|---|---|---|
138 | H | OH | H | H | H |
149 | H | OH | H | H | OH |
140 | H | OH | H | OH | OCH3 |
141 | H | OH | H | H | OCH3 |
142 | H | OCH3 | H | H | H |
143 | H | OCH3 | H | H | OH |
144 | H | OCH3 | H | OH | OCH3 |
145 | H | OCH3 | H | OCH3 | OH |
146 | OCH3 | OCH3 | OCH3 | H | H |
147 | H | OCH3 | OCH3 | H | OCH3 |
148 | H | O-glcp-glcp | H | H | OH |
149 | H | OH | H | H | O-glcp-glcp |
150 | H | OCH3 | H | H | OCH3 |
151 | H | OH | OCH3 | H | OCH3 |
152 | H | OH | H | OH | OH |
153 | H | O-glc | H | OH | OH |
Compound | R1 | R2 | R3 | R4 |
---|---|---|---|---|
154 | OH | H | H | H |
155 | OH | H | H | OH |
156 | OH | H | H | OCH3 |
157 | OH | H | OH | OH |
158 | OH | H | OCH3 | OH |
159 | OH | OCH3 | H | H |
160 | OH | OCH3 | H | OCH3 |
161 | OCH3 | H | H | H |
162 | OCH3 | H | OH | OH |
163 | OCH3 | H | OCH3 | OCH3 |
Compound | R1 | R2 | R3 | R4 |
---|---|---|---|---|
164 | OH | H | H | H |
165 | OH | H | OCH3 | OH |
166 | OH | OCH3 | H | OH |
167 | OH | OCH3 | H | OCH3 |
168 | OH | OCH3 | OH | OCH3 |
169 | OCH3 | H | H | OH |
170 | OCH3 | H | OH | OH |
171 | OCH3 | H | OH | OCH3 |
172 | OCH3 | OCH3 | H | H |
Compound | R1 | R2 | R3 | R4 | R5 |
---|---|---|---|---|---|
173 | OH | OH | OH | H | O-araf |
174 | OH | OH | OH | H | O-glcp |
175 | OH | H | OH | OH | O-glcp |
176 | OH | OH | OH | H | O-rhap |
177 | OH | OH | OH | H | O-glucuronide |
178 | OH | OH | OH | H | O-rhap(1→6)glcp |
179 | OH | OH | OH | H | O-cel |
180 | OH | OH | OH | H | O-mal |
181 | OH | H | OH | H | O-rha |
182 | OH | OH | OH | H | O-galf |
183 | OH | H | OH | H | O-rha-rha |
184 | OH | OH | OH | H | O-sop |
185 | OH | OH | OH | OH | O-galp |
186 | OCH3 | OH | OH | H | O-glcp-glcp |
187 | OH | OCH3 | OH | H | O-glc |
188 | O-rha | OCH3 | OH | H | O-glc |
Compound | R1 | R2 | R3 | R4 | R5 |
---|---|---|---|---|---|
189 | H | OH | H | OH | H |
190 | H | OH | H | OH | OH |
191 | H | OH | H | OCH3 | H |
192 | H | OH | CH3 | OH | H |
193 | H | OCH3 | H | OH | H |
194 | H | OH | OH | OH | OH |
195 | CH3 | OH | CH3 | OH | OH |
Compound | R |
---|---|
216 | H |
217 | OH |
218 | O-xylp |
219 | O-glcp |
220 | O-arap |
221 | O-(2′-OAc)-araf |
222 | O-(2′-OAc)-xylp |
223 | O-(2′-OAc)-glcp |
Compound | R1 | R2 | R3 |
---|---|---|---|
236 | H | OH | CH3 |
237 | H | OH | CH2OH |
238 | H | O | CH2OH |
239 | H | OH | COOH |
240 | H | OH | OH |
241 | H | OH | CHO |
242 | H | OCOCH3 | CHO |
243 | H | OCOCH3 | CH3 |
244 | H | O | CH3 |
245 | OH | O-caffeoyl | CH2OH |
Compound | R1 | R2 | R3 |
---|---|---|---|
255 | OH | H | OH |
256 | OH | H | OCH3 |
257 | OCH3 | OH | OH |
258 | H | H | H |
259 | OCH3 | H | OCH3 |
No. | Compound Class and Name | Source | Reference |
---|---|---|---|
Diarylheptanoids | |||
1 | yashabushidiol A | A. sieboldiana, Alnus fruticosa Rupr., Alnus mandshurica (Callier) Hand.-Mazz | [2,67,68] |
2 | yashabushidiol B | A. sieboldiana, A. fruticosa, A. mandshurica | [2,67,68] |
3 | yashabushitriol | A. sieboldiana | [2,68] |
4 | (+)-hannokinol | A. hirsuta, A. japonica | [35,69] |
5 | (−)-centrolobol | Alnus formosana Burk., A. nepalensis, A. acuminata, A. hirsuta | [31,57,70,71] |
6 | (±)-7-(3,4-dihydroxyphenyl)-1-(4-hydroxyphenyl)-3-heptanol | A. formosana | [70] |
7 | rubranol | A. hirsuta, A. japonica, A. rubra, A. formosana | [2,23,69,70,72] |
8 | 1-(3,4-dihydroxyphenyl)-7-(4-hydroxyphenyl)-3 (R)-heptanol | A. formosana | [70] |
9 | (3R,5S)-1,7-bis-(3,4-dihydroxyphenyl)-3-hydroxylheptane-5-O-β-d-xylopyranoside | A. japonica, A. glutinosa, A. incana | [11,73,74] |
10 | 5-hydroxy-1,7-bis(4-hydroxyphenyl)heptan-3-yl β-d-apiofuranosyl-(1→6)-β-d-glucopyranoside | A. viridis | [42] |
11 | 1,7-di(4-hydroxyphenyl)-3(R)-β-d-xylosyloxyheptane. | A. formosana | [70] |
12 | rubranoside B | A. hirsuta, A. rubra, A. japonica, A. formosana, A. glutinosa | [2,4,69,70] |
13 | alnuside C | A. japonica | [75] |
14 | rubranoside A | A. hirsuta, A. japonica, A. rubra, A. incana, A. formosana, A. glutinosa | [2,3,4,70,73,74] |
15 | 7-(3,4-dihydroxyphenyl)-1-(4-hydroxyphenyl)-3(R)-β-d-glucosyloxyheptane | A. formosana | [70] |
16 | 1-(3,4-dihydroxyphenyl)-7-(4-hydroxyphenyl)-3(R)-β-d-glucosyloxyheptane | A. formosana, A. japonica | [70,75] |
17 | (1S,3R)-3-hydroxy-5-(4-hydroxyphenyl)-1-[2-(4-hydroxyphenyl)ethyl]pentyl β-d-glucopyranoside | A. viridis | [76] |
18 | aceroside VII | A. hirsuta, A. formosana, A. glutinosa, A. viridis | [2,3,4,42,70] |
19 | aceroside VIII | A. hirsuta, A. viridis | [42,69] |
20 | (1S)-5-(4-hydroxyphenyl)-1-[2-(4-hydroxyphenyl)ethyl]pentyl 6-O-α-L-arabinofuranosyl-β-d-glucopyranoside | A. viridis | [76] |
21 | (3R)-1,7-bis(4-hydroxyphenyl)heptan-3-yl α-L-arabinofuranosyl-(1→6)-β-d-glucopyranoside | A. viridis | [42] |
22 | rubranoside C | A. japonica, A. hirsuta, A. rubra | [2,3,73] |
23 | rubranoside D | A. japonica. A. rubra | [2,73] |
24 | alnuside D | A. japonica | [75] |
25 | (3R)-1,7-bis-(4-dihydroxyphenyl)-3-heptanol-3-O-β-d-glucopyranosyl(1→3)-β-d-xylopyranoside | A. hirsuta | [2,3] |
26 | 3(R)-1,7-di(3,4-dihydroxyphenyl)-3-O-β-d-[6-(E-3,4-dimethoxycinnamoyl glucopyranosyl)] heptane | A. glutinosa | [11] |
27 | 3(R)-1,7-di(3,4-dihydroxyphenyl)-5-O-β-d-[6-(Z-3,4-dimethoxycinnamoyl glucopyranosyl)] heptane | A. glutinosa | [11] |
28 | 3(R)-1,7-di(3,4-dihydroxyphenyl)-5-O-β-d-[6-(E-3,4,5-trimethoxycinnamoyl glucopyranosyl)] heptane | A. glutinosa | [11] |
29 | 1,7-bis-(p-hydroxyphenyl)-3-heptanone | A. nepalensis | [11] |
30 | yashabushiketodiol B | A. sieboldiana | [2,68] |
31 | yashabushiketodiol A | A. sieboldiana | [2,68] |
32 | dihydroyashabushiketol | A. firma, A. sieboldiana, A. maximowiczii | [2,54] |
33 | hirsutanonol | A. hirsuta, A. japonica, A. rubra, A. glutinosa, A. formosana, A. acuminata, A. serrulatoides | [11,13,57,70,77,78,79] |
34 | 5(S)-1-(3,4-dihydroxyphenyl)-7-(4-hydroxyphenyl)-5-hydroxyheptane-3-one | A. japonica | [80] |
35 | 5(S)-1-(4-dihydroxyphenyl )-7-(3,4-dihydroxyphenyl)-5-hydroxyheptane-3-one | A. japonica, A. nepalensis, A. hirsuta | [32,69,80] |
36 | hannokinin | A. japonica, A. nepalensis, A. hirsuta, A. firma | [16,32,41,69] |
37 | epihirsutanonol | A. japonica | [80] |
38 | 5(S)-O-methylhirsutanonol | A. japonica, A. glutinosa, A. formosana, A. nepalensis | [11,32,70,81] |
39 | alunheptanoid A | A. japonica | [63] |
40 | 5(S)-O-methylplatyphyllonol | A. japonica | [63] |
41 | 5(R)-O-methylhirsutanonol | A. japonica | [63] |
42 | 5-O-butylhirusutanonol | A. formosana | [70] |
43 | 5(S)-butyloxy-1,7-di(3,4-dihydroxyphenyl)-1(E)-hepten-3-one | A. formosana | [70] |
44 | 5(S)-butyloxy-1,7-di(4-hydroxyphenyl)-3-heptanone | A. formosana | [70] |
45 | alnuside A | A. japonica, A. serrulatoides, A. hirsuta, A. formosana, A. glutinosa, A. incana | [2,11,28,70,79,82] |
46 | alnuside B | A. japonica, A. serrulatoides, A. hirsuta, A. formosana, A. glutinosa, A. incana | [2,11,28,70,79,82] |
47 | platyphyllonol-5-O-β-d-xylopyranoside | A. rubra, A. hirsuta, A. japonica, A. glutinosa | [11,69,83,84] |
48 | oregonin | A. japonica, A. hirsuta, A. rubra, A. nepalensis, A. glutinosa, A. firma, A. formosana, A. incana, A. serrulatoides, A. pendula, A. tinctoria Sarg. | [2,4,41,70,74,79,85,86,87,88,89] |
49 | 5(S)-hirsutanonol-5-O-β-d-glucopyranoside | A. hirsuta, A. japonica, A. rubra, A. incana, A. formosana, A. serrulatoides, A. acuminata, A. nepalensis, A. glutinosa | [2,3,11,57,70,74,79,84,86,88] |
50 | platyphylloside | A. japonica, A. hirsuta, A. glutinosa, A. formosana, A. pendula, A. firma, A. incana, A. nepalensis, A. rubra, A. viridis | [2,3,11,24,41,73,84,87,88,90,91] |
51 | (5S)-1-(4-hydroxyphenyl)-7-(3,4-dihydroxy-phenyl)-5-O-β-d-glucopyranosyl-heptan-3-one | A. glutinosa | [4] |
52 | 1-(3′,4′-dihydroxypheny1)-7-(4′′-hydroxypheny1)-5-O-β-d-glucopyranosylheptan-3-one | A. rubra | [72] |
53 | (5S)-5-hydroxy-1,7-bis-(4-hydroxyphenyl)-3-heptanone-5-O-β-d-apiofuranosyl-(1→6)-β-d-glucopyranoside | A. hirsuta, A. viridis | [42,69] |
54 | (3S)-1,7-bis(4-hydroxyphenyl)-5-oxoheptan-3-yl 6-O-galloyl-β-d-glucopyranoside | A. viridis | [42] |
55 | oregonoyl A | A. japonica, A. formosana | [2,70,83] |
56 | oregonoyl B | A. japonica | [2,83] |
57 | hirsutanonol 5-O-(6-O-galloyl)-β-d-glucopyranoside | A. japonica | [2,92] |
58 | 2′′′-O-benzoyl-oregonin | A. formosana | [70] |
59 | 2′′′-O-cinnamoyl-oregonin | A. formosana | [70] |
60 | oregonoside A | A. rubra | [78] |
61 | oregonoside B | A. rubra | [78] |
62 | 5(S)-1,7-di(4-hydroxyphenyl)-5-O-β-d-[6-(E-p-coumaroyl glucopyranosyl)]heptane-3-one | A. glutinosa | [11] |
63 | 5(S)-1,7-di(4-hydroxyphenyl)-5-O-β-d-[6-(E-3,4-dimethoxycinnamoyl glucopyranosyl)]heptane-3-one | A. glutinosa | [11] |
64 | 5(S)-1-(4-hydroxyphenyl)-7-(3,4-dihydroxyphenyl)-5-O-β-d-[6-(E-3,4-dimethoxycinnamoyl glucopyranosyl)]heptane-3-one | A. glutinosa | [11] |
65 | 5(S)-1-(3,4-dihydroxyphenyl)-7-(4-hydroxyphenyl)-5-O-β-d-[6-(Z-3,4-dimethoxycinnamoyl glucopyranosyl)]heptane-3-one | A. glutinosa | [11] |
66 | 5(S)-1,7-di(3,4-dihydroxyphenyl)-5-O-β-d-[6-(E-p-coumaroyl glucopyranosyl)]heptane-3-one | A. glutinosa | [11] |
67 | 5(S)-1,7-di(3,4-dihydroxyphenyl)-5-O-β-d-[6-(Z-3,4-dimethoxycinnamoyl glucopyranosyl)] heptane-3-one | A. glutinosa | [11] |
68 | 5(S)-1,7-di(3,4-dihydroxyphenyl)-5-O-β-d-[6-(E-3,4,5-trimethoxycinnamoyl glucopyranosyl)] heptane-3-one | A. glutinosa | [11] |
69 | 5(S)-1,7-di(3,4-dihydroxyphenyl)-5-O-β-d-[6-(E-3,4-dimethoxycinnamoyl glucopyranosyl)] heptane-3-one | A. glutinosa | [11] |
70 | 2′′′-O-(2-methylbutanoyl)-oregonin | A. formosana | [70] |
71 | 1,7-bis-(3,4-dihydroxyphenyl)-5-hydroxy-3-heptanone-5-O-[2-(2-methylbutenoyl)]-β-d-xylopyranoside | A. japonica | [2,28] |
72 | 1,7-diphenylhept-3-en-5-one | A. maximowiczii | [2] |
73 | hirsutenone | A. japonica, A. hirsuta, A. pendula, A. nepalensis, A. glutinosa, A. firma, A. formosana, A. acuminata | [2,8,11,28,41,57,69,70,87] |
74 | platyphyllenone | A. hirsuta, A. japonica, A. formosana, A. rubra A. acuminata, A. viridis | [2,3,16,42,57,70,93] |
75 | 1-(4-hydroxyphenyl)-7-(4-hydroxy-3-methoxyphenyl)-4-hepten-3-one | A. hirsuta | [2,30] |
76 | 1-(3′,4′-dihydroxyphenyl)-7-(4′′-hydroxyphenyl)-4-hepten-3-one | A. japonica, A. rubra | [2,16,93] |
77 | alusenone | A. japonica | [2,13] |
78 | nitidone A | Alnus nitida Endl. | [94] |
79 | nitidone B | Alnus nitida Endl. | [94] |
80 | yashabushiketol | A. firma, A. sieboldiana, A. hirsuta | [2,71,95,96] |
81 | (5S)-hydroxy-1-(3,4-dihydroxyphenyl)-7-(4-hydroxyphenyl)-hepta-1E-en-3-one | A. hirsuta | [69] |
82 | alnustone | A. pendula, A. japonica | [2,35] |
83 | 1,7-bis-(3,4-dihydroxyphenyl)-hepta-4E,6E-dien-3-one | A. hirsuta | [69] |
84 | 1,4-hepta-dien-3-one-1,7-bis(3,4-dihydroxyphenyl)-(1E,4E) | A. hirsuta | [69] |
85 | 1,7-diphenylheptane-3,5-dione | A. maximowiczii | [2,53] |
86 | 1,7-diphenylhept-1-ene-3,5-dione | A. maximowiczii | [2,53] |
87 | rhoiptelol B | A. hirsuta | [2,30] |
88 | 1,5-epoxy-1-(3′,4′-dihydroxyphenyl)-7-(4′′-hydroxyphenyl)heptane | A. nepalensis | [31] |
89 | alnus dimer | A. nepalensis | [32] |
90 | trans-rhoiptelol | A. hirsuta | [2,9,30] |
91 | myricatomentogenin | A. hirsuta | [2,9,30] |
92 | acerogenin L | A. japonica | [2,34] |
93 | garugamblin-3 | A. japonica | [2,34] |
94 | alnusoxide | A. japonica | [35] |
95 | alnusonol | A. japonica, A. hirsuta, A. sieboldiana | [35,71,97] |
96 | alnusdiol | A. japonica, A. hirsuta | [35,71] |
97 | trideoxysasadanin-8-ene | A. hirsuta | [71] |
98 | alnusone | A. japonica, A. hirsuta, A. sieboldiana | [35,71,90,97] |
99 | 3,17-dihydroxy-tricyclo[12.3.1.1 2,6]-nonadeca-1(18),2,4,6(19),14, 16-hexaen-9,11-dione | A. sieboldiana | [97] |
Polyphenols | |||
100 | 4,6-di-O-galloyl-d-glucose | A. japonica | [2,5] |
101 | 1,4-di-O-galloyl-β-d-glucose | A. japonica | [2,5] |
102 | 1,4,6-tri-O-galloyl-β-d-glucose | A. hirsuta | [2,36] |
103 | 1,2,6-tri-O-galloyl-β-d-glucose | A. hirsuta, A. sieboldiana | [2,36,37] |
104 | gentisic acid 5-O-β-d-(6′-O-galloyl) glucopyranoside | A. hirsuta | [2,36] |
105 | gemin D | A. japonica | [2,5] |
106 | tellimagrandin I | A. hirsuta, A. sieboldiana | [2,36,37] |
107 | strictinin | A. japonica, A. sieboldiana | [5,37] |
108 | 2,3-O-(S)-hexahydroxydiphenoyl-d-glucose | A. japonica, A. sieboldiana | [2,5] |
109 | pedunculagin | A. japonica, A. sieboldiana, A. hirsuta, A. glutinosa | [2,5,36,38,39] |
110 | 1(β)-O-galloylpendunculagin | A. japonica, A. sieboldiana | [2,37] |
111 | glutinoin | A. glutinosa | [38] |
112 | flosin A | A. japonica | [2,5] |
113 | 4,6-(S)-valoneoyl-d-glucose | A. japonica | [2,5] |
114 | praecoxin A | A. japonica, A. hirsuta | [2,5,36] |
115 | praecoxin D | A. glutinosa | [38] |
116 | alnusnins A | A. sieboldiana | [2,37] |
117 | alnusnins B | A. sieboldiana | [2,37] |
118 | alnusiin | A. sieboldiana | [2,39] |
119 | tergallin | A. sieboldiana | [37] |
120 | hirsunin | A. hirsuta | [2,36] |
121 | 1-desgalloylrugosin F | A. hirsuta | [2,36] |
122 | rugosin F | A. hirsuta | [2,36] |
123 | alnusjaponins A | A. japonica | [2,5] |
124 | alnusjaponins B | A. japonica | [2,5] |
125 | casuariin | A. sieboldiana | [2,39] |
126 | casuarinin | A. japonica, A. sieboldiana | [2,5,39] |
127 | stachyurin | A. japonica, A. sieboldiana | [2,5,37] |
128 | stenophyllanin A | A. sieboldiana | [2,37] |
129 | 4-hydroxy-2,6-dimethoxyphenyl-6′-O-syringoyl-β-d-glucopyranoside | A. firma | [2,41] |
130 | 4-hydroxy-2,6-dimethoxyphenyl-6′-O-vanilloyl-β-d-glucopyranoside | A. firma | [2,41] |
131 | 4-hydroxy-2-methoxyphenyl-6′-O-syringoyl-β-d-glucopyranoside | A. firma | [41] |
132 | 6′-O-vanilloylisotachioside | A. firma | [41] |
133 | methyl 3,4-dihydroxy-5-{[6-O-(3,4,5-trimethoxycinnamoyl) -β-d-glucopyranosyl]oxy}benzoate | A. viridis | [42] |
134 | shikimic acid | A. japonica | [98] |
135 | 5-O-galloyl-(−)-shikimic acid | A. japonica | [2,5] |
136 | gallic acid | A. nepalensis, A. nitida | [8,99] |
137 | methyl gallate | A. sieboldiana | [100] |
Flavonoids | |||
138 | chrysin | A. sieboldiana | [2,49] |
139 | apigenin | A. rubra, A. sieboldiana, A. rugosa | [2,44,46,48] |
140 | diosmetin | A. rugosa | [48] |
141 | acacetin | A. japonica, A. rubra, Alnus koehnei Call. | [2,6,44] |
142 | tectochrysin | A. sieboldiana | [2,49] |
143 | genkwanin | A. sinuata, A. glutinosa | [2,6,47] |
144 | 5,3′-dihydroxy-7,4′-dimethoxyflavone | A. japonica | [2,6] |
145 | rhamnazin | A. japonica | [2,6] |
146 | 5-hydroxy-6,7,8-tritmethoxyflavone | A. sieboldiana | [2,45,49] |
147 | salvigenin | A. japonica, A. rubra, A. koehnei | [2,6,44] |
148 | apigenin 7-β-cellobioside | A. sieboldiana | [46] |
149 | apigenin 4′-β-cellobioside | A. sieboldiana | [46] |
150 | 5-hydroxy-4′,7-dimethoxyflavone | A. japonica, A. acuminata, A. rubra | [2,6,43,44] |
151 | scutellarein-6,4′-dimethyl ether | A. japonica, A. rubra | [2,6,44] |
152 | luteolin | A. rugosa | [48] |
153 | luteolin 7-O-β-glucside | A. rugosa | [48] |
154 | galangin | A. sieboldiana, A. pendula, A. viridis | [2,50,54,100] |
155 | kaempferol | A. koehnei, A. sieboldiana | [6,46] |
156 | kaempferide | A. japonica, A. koehnei | [2,6] |
157 | quercetin | A. japonica, A. nepalensis, A. firma, A. formosana, A. sieboldiana | [2,8,91,100,101,102] |
158 | isorhamnetin | A. japonica, A. koehnei | [2,6] |
159 | alnusin | A. sieboldiana, A. pendula | [2,49,50] |
160 | the 6,4′-dimethyl ether of 6-hydroxykaempferol | A. koehnei | [2,6] |
161 | izalpinin | A. sieboldiana | [2,50] |
162 | rhamnetin | A. koehnei | [2,6] |
163 | quercetin-7,3′,4′-trimethyl ether | A. japonica, A. koehnei | [2,6] |
164 | galangin 3-methyl ether | A. viridis | [54] |
165 | quercetin-3,3′-dimethyl ether | A. koehnei | [2,6] |
166 | 3,6-dimethyl ether of 6-hydroxykaempferol | A. koehnei | [2,6] |
167 | 3,6,4′-trimethyl ether of 6-hydroxy-kaempferol | A. japonica, A. koehnei | [2,6] |
168 | quercetagetin-3,6,4′-trimethyl ether | A. koehnei | [2,6] |
169 | kumatakenin | Alnus crispa Pursh., Alnus sinuate Rydbg. | [2,6] |
170 | quercetin 3,7-dimethyl ether | A. crispa, A. koehnei, A. sinuata | [2,6] |
171 | quercetin-3,7,4′-trimethyl ether (ayanin) | A. crispa | [2,6] |
172 | 5-hydroxy-3,6,7-trimethoxyflavone | A. sieboldiana | [2,49] |
173 | quercetin-3-O-α-l-arabinofuranoside | A. firma | [2,52] |
174 | isoquercitrin | A. firma | [2,52,53] |
175 | quercetin-3-O-glucoside | A. formosana, A. nepalensis | [32,91] |
176 | quercitrin | A. firma, A. formosana, A. nepalensis, A. japonica | [2,8,28,52,91] |
177 | quercetin-3-O-β-d-glucuronide | A. sieboldiana | [2,37] |
178 | rutin | A. nitida | [99] |
179 | quercetin-3-β-cellobioside | A. sieboldiana | [46] |
180 | quercetin-3-β-maltoside | A, sieboldiana | [46] |
181 | kaempferol 3-O-rhamnoside | A. japonica, A. formosana | [28,91] |
182 | quercetin-3-O-galactoside | A. japonica, A. nepalensis | [8,28] |
183 | kaempferol-3-dirhamnoside | A. sieboldiana | [46] |
184 | quercetin-3-sophoroside | A. gultinosa, Alnus cordata Loisel. | [2,32] |
185 | myricetin-3-O-β-d-galactopyranoside | A. firma | [2] |
186 | rhamnetin-3-O-rhamnoside | A. formosana | [91] |
187 | isorhamnetin 3-O-β-glucoside | A. rugosa | [48] |
188 | isorhamnetin 3-β-O-glucoside-7-O-α-rhamnoside | A. rugosa | [48] |
189 | pinocembrin | A. sieboldiana, A. pendula, A. maximowiczii, A. firma | [50,52,53,100] |
190 | naringenin | A. sieboldiana | [2,49] |
191 | alpinetin | A. pendula, A. firma, A. sieboldiana | [2,49,50] |
192 | strobopinin | A. sieboldiana | [2,49] |
193 | pinostrobin | A. pendula, A. firma, A. sieboldiana | [2,49,50] |
194 | rhododendrin | A. glutinosa | [2,51] |
195 | pinobanksin | A. sieboldiana | [2,49] |
196 | alnustinol | A. maximowiczii, A. firma, A. sieboldiana, A. pendula | [2,49,50,53] |
197 | 3,5,8-trihydroxy-7-methoxyflavone | A. sieboldiana | [45] |
198 | (+)-catechin | A. firma, A. viridis | [2,42,52] |
199 | (−)-epicatechin | A. firma | [2,52] |
200 | 2′,4′-dihydroxy-6′-methoxychalcone | A. viridis | [54] |
Terpenoids | |||
201 | 24-(E)-3-oxodammara-20 (21),24-dien-27-oic acid | A. nepalensis | [32] |
202 | mangiferonic acid | A. nepalensis | [8] |
203 | alnuserrutriol | A. serrulatoides | [2,55] |
204 | alnuserrudiolone | A. sieboldiana, A. serrulatoides | [2,55,103] |
205 | alnincanone | A. serrulatoides | [2,55] |
206 | alnuserol | A. serrulatoides | [2,55] |
207 | alnuseric acid | A. serrulatoides, A. pendula | [2,55,58,104] |
208 | alnuselide | A. serrulatoides | [2,55,58] |
209 | alnustic acid methyl ester | A. firma | [2,52] |
210 | methyl(24E)-3,4-secodammara-4(28),20,24-trien-26-oic acid-3-oate | A. japonica | [2,55] |
211 | (24E)-3,4-secodammara-4 (28),20,24-trien-3,26-dioic acid | A. japonica | [2,55] |
212 | (20S,24S)-20,24-dihydroxy-3,4-secodammara-4 (28),25-dien-3-oic acid | A. japonica | [2,55] |
213 | (23E)-(20S)-20,25-dihydroxy-3,4-secodammara-4 (28),23-dien-3-oic acid | A. japonica | [2,55] |
214 | (23E)-(20S)-20,25,26-trihydroxy-3,4-secodammara-4 (28),23-dien-3-oic acid | A. japonica | [2,55] |
215 | (23E)-(12R,20S)-12,20,25-trihydroxy-3,4-secodammara-4 (28),23-dien-3-oic acid | A. japonica | [2,55] |
216 | (20S)-20-hydroxy-24-methylene-3,4-secodammar-4 (28)-en-3-oic acid | A. pendula | [2,55] |
217 | alnustic acid | A. serrulatoides, A. pendula, A. sieboldiana | [2,7,55,103] |
218 | alnustic acid-12-O-β-d-xylopyranoside | A. serrulatoides, A. pendula, A. sieboldiana | [2,7,55,103] |
219 | alnustic acid-12-O-β-d-glucopyranoside | A. serrulatoides, A. pendula, A. sieboldiana | [2,7,55,103]] |
220 | alnustic acid-12-O-α-l-arabinofuranoside | A. serrulatoides, A. pendula, A. sieboldiana | [2,7,55,103] |
221 | alnustic acid-12-O-(2′-O-acetyl)-α-l-arabinofuranoside | A. serrulatoides, A. pendula | [2,7,55] |
222 | alnustic acid-12-O-(2′-O-acetyl)-β-d-xylopyranoside | A. serrulatoides, A. pendula | [2,7,55] |
223 | alnustic acid-12-O-(2′-O-acetyl)-β-d-glucopyranosid | A. serrulatoides, A. pendula | [2,7,55] |
224 | taraxeryl acetate | A. japonica, A. hirsuta, A. nepalensis, A. acuminata | [2,8,30,57,92] |
225 | taraxerol | A. japonica, A. hirsuta, A. nepalensis, A. maximowiczii, A. acuminata, A. rubra | [2,8,30,57,59] |
226 | taraxerone | A. japonica, A. rubra, A. nepalensis, A. glutinosa, A. acuminata | [2,56,57] |
227 | glutenone | A. japonica, A. rubra, A. fruticosa, A. kamtschatica | [2,72] |
228 | glutinol | A. japonica | [2,92] |
229 | β-amyrin | A. japonica, A. fruticosa, A. kamtschatica, A. firma, A. glutinosa | [2,52,56] |
230 | 3-O-acetyl-β-amyrin | A. japonica, A. firma | [2,52] |
231 | 3β-acetoxy-olean-12-ene-28-al | A. acuminata | [57] |
232 | δ-amyrone | A. acuminata | [43] |
233 | ursolic acid | A. glutinosa | [56] |
234 | uvaol | A. glutinosa | [56] |
235 | α-amyrin | A. fruticosa, A. kamtschatica | [2] |
236 | lupeol | A. japonica, A. rubra, A. nepalensis, A. glutinosa, Alnus oregona Nutt., A. acuminata | [2,12,56,57,104] |
237 | betulin | A. hirsuta, A. rubra, A. nepalensis, A. japonica, A. glutinosa, A. maximowiczii, A. oregona | [2,7,8,12,30,56,59,104] |
238 | betulone | A. incana | [105] |
239 | betulinic acid | A. japonica, A. hirsuta, A. nepalensis | [2,8,30,63] |
240 | 3β,28-dihydroxy-lup-20(29)-ene | A. acuminata | [57] |
241 | betulinic aldehyde | A. japonica, A. glutinosa, A. acuminata | [12,56,57] |
242 | 3-acetoxybetulinic aldehyde | A. japonica | [12] |
243 | lupenylacetate | A. glutinosa | [56] |
244 | lupenone | A. japonica, A. rubra, A. fruticosa, A. kamtschatica, A. glutinosa | [2,56] |
245 | lup-20(29)en-2,28-diol-3-yl caffeate | A. firma | [61] |
246 | 22-hydroxyhopan-3-one | A. nepalensis | [8] |
247 | 2-hydroxydiploterol | A. nepalensis | [8] |
248 | simiarenol | A. glutinosa | [56] |
Steroids | |||
249 | β-sitosterol | A. japonica, A. fruticosa, A. rubra, A. nepalensis, A. kamtschatica, A. firma, A. glutinosa, A. acuminata, A. rugosa | [2,8,48,52,57,63,64,106] |
250 | β-sitosterol 3-O-β-d-glucopyranoside | A. japonica, A. nepalensis, A. acuminata, A. rugosa | [2,8,48,57,63,64] |
251 | β-rosasterol | A. nepalensis | [64] |
252 | stigmasterol | A. nepalensis | [64] |
253 | brassinolide | A. glutinosa | [62] |
254 | castasterone | A. glutinosa | [62] |
Others | |||
255 | pinosylvin | A. sieboldiana, A. pendula | [2,49,50] |
256 | pinosylvin monomethyl ether | A. sieboldiana, A. pendula, A. maximowiczii | [2,49,50,53] |
257 | 4′,5′-dihydroxy-3′-methoxy stilbene | A. viridis | [65] |
258 | trans-stilbene | A. firma, A. sieboldiana | [2,49,96] |
259 | pinosylvin dimethyl ether | A. sieboldiana, A. maximowiczii | [2,49,53] |
260 | cryptomeridiol 11-O-monoacetate | A. maximowiczii | [2,53] |
261 | β-eudesmol acetate | A. maximowiczii | [2,53] |
262 | elemol acetate | A. maximowiczii | [2,53] |
263 | eugenol | A. pendula | [2,50] |
264 | chavicol | A. pendula | [2,50] |
265 | vanillin | A. nepalensis | [64] |
266 | protocatechuic acid | A. firma, A. formosana | [91,101] |
267 | p-coumaric acid | A. firma | [101] |
268 | caffeic acid | A. firma | [101] |
269 | vanilic acid | A. japonica | [66] |
270 | chlorogenic acid | A. firma | [101] |
271 | 2,3,4-trimethoxyphenanthrene | A. maximowiczii | [2,53] |
272 | physcion | A. nepalensis | [8] |
273 | secoisolariciresinol diferulate | A. japonica | [66] |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ren, X.; He, T.; Chang, Y.; Zhao, Y.; Chen, X.; Bai, S.; Wang, L.; Shen, M.; She, G. The Genus Alnus, A Comprehensive Outline of Its Chemical Constituents and Biological Activities. Molecules 2017, 22, 1383. https://doi.org/10.3390/molecules22081383
Ren X, He T, Chang Y, Zhao Y, Chen X, Bai S, Wang L, Shen M, She G. The Genus Alnus, A Comprehensive Outline of Its Chemical Constituents and Biological Activities. Molecules. 2017; 22(8):1383. https://doi.org/10.3390/molecules22081383
Chicago/Turabian StyleRen, Xueyang, Ting He, Yanli Chang, Yicheng Zhao, Xiaoyi Chen, Shaojuan Bai, Le Wang, Meng Shen, and Gaimei She. 2017. "The Genus Alnus, A Comprehensive Outline of Its Chemical Constituents and Biological Activities" Molecules 22, no. 8: 1383. https://doi.org/10.3390/molecules22081383
APA StyleRen, X., He, T., Chang, Y., Zhao, Y., Chen, X., Bai, S., Wang, L., Shen, M., & She, G. (2017). The Genus Alnus, A Comprehensive Outline of Its Chemical Constituents and Biological Activities. Molecules, 22(8), 1383. https://doi.org/10.3390/molecules22081383