Structural Diversity and Biological Activities of Cyclic Depsipeptides from Fungi
Abstract
:1. Introduction
2. Cyclic Tridepsipeptides
3. Cyclic Tetradepsipeptides
4. Cyclic Pentadepsipeptides
5. Cyclic Hexadepsipeptides
6. Cyclic Heptadepsipeptides
7. Cyclic Octadepsipeptides
8. Cyclic Nonadepsipeptides
9. Cyclic Decadepsipeptides
10. Cyclic Tridecadepsipeptides
11. Conclusions and Future Perspectives
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Sivanathan, S.; Scherkenbeck, J. Cyclodepsipeptides: A rich source of biologically active compounds for drug research. Molecules 2014, 19, 12368–12420. [Google Scholar] [CrossRef] [PubMed]
- Taevernier, L.; Wynendaele, E.; De Vreese, L.; Burvenich, C.; De Spiegeleer, B. The mycotoxin definition reconsidered towards fungal cyclic depsipeptides. J. Environ. Sci. Health C 2016, 34, 114–135. [Google Scholar] [CrossRef] [PubMed]
- Taevernier, L.; Wynendaele, E.; Gevaert, B.; De Spiegeleer, B. Chemical classification of cyclic depsipeptides. Curr. Protein Pept. Sci. 2017, 18, 425–452. [Google Scholar] [CrossRef] [PubMed]
- Ye, X.; Anjum, K.; Song, T.; Wang, W.; Liang, Y.; Chen, M.; Huang, H.; Lian, X.-Y.; Zhang, Z. Antiproliferative cyclcodepsipeptides from the marine actinomycete Streptomyces sp. P11-23B downregulating the tumor metabolic enzymes of glycolysis, glutaminolysis, and lipogenesis. Phytochemistry 2017, 135, 151–159. [Google Scholar] [CrossRef] [PubMed]
- Fujioka, M.; Koda, S.; Morimoto, Y.; Biemann, K. Structure of FR900359, a cyclic depsipeptide from Ardisia crenata Sims. J. Org. Chem. 1988, 53, 2820–2825. [Google Scholar] [CrossRef]
- Yang, G.-Z.; Li, Y.-C. Cyclopeptide and terpenoids from Tripterygium wilfordii Hook. F. Helv. Chim. Acta 2002, 85, 168–174. [Google Scholar] [CrossRef]
- Dmitrenok, A.; Iwashita, T.; Nakajima, T.; Sakamoto, B.; Namikoshi, M.; Nagai, H. New cyclic depsipeptides from the green alga Bryopsis species; application of a carboxypeptidase hydrolysis reaction to the structure determination. Tetrahedron 2006, 62, 1301–1308. [Google Scholar] [CrossRef]
- Andavan, G.S.B.; Lemmens-Gruber, R. Cyclodepsipeptides from marine sponges: Natural agents for drug research. Mar. Drugs 2010, 8, 810–834. [Google Scholar] [CrossRef] [PubMed]
- Aneiros, A.; Garateix, A. Bioactive peptides from marine sources: Pharmacological properties and isolation procedures. J. Chromatogr. B 2004, 803, 41–53. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.; Phat, C.; Hong, S.-C. Structural diversity of marine cyclic peptides and their molecular mechanisms for anticancer, antibacterial, antifungal, and other clinical applications. Peptides 2017, 95, 94–105. [Google Scholar] [CrossRef] [PubMed]
- Rangel, M.; de Santana, C.J.C.; Pinheiro, A.; Anjos, L.; Barth, T.; Junior, O.R.P.; Fontes, W.; Catro, M.S. Marine depsipeptides as promising pharmacotherapeutic agents. Curr. Protein Pept. Sci. 2017, 18, 72–91. [Google Scholar] [CrossRef] [PubMed]
- Suarez-Jimenez, G.-M.; Burgos-Hernandez, A.; Ezquerra-Brauer, J.-M. Bioactive peptides and depsipeptides with anticancer potential: Sources from marine animals. Mar. Drugs 2012, 10, 963–986. [Google Scholar] [CrossRef] [PubMed]
- Gogineni, V.; Hamann, M.T. Marine natural product peptides with therapeutic potential: Chemistry, biosynthesis, and pharmacology. BBA-Gener. Subj. 2018, 1862, 81–196. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Li, Y.; Zhang, X.; Lai, D.; Zhou, L. Structural diversity and biological activities of the cyclodipeptides from fungi. Molecules 2017, 22, 2026. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Lin, M.; Xu, D.; Lai, D.; Zhou, L. Structural diversity and biological activities of fungal cyclic peptides, excluding cyclodipeptides. Molecules 2017, 22, 2069. [Google Scholar] [CrossRef] [PubMed]
- Pedras, M.S.C.; Zaharia, L.I.; Ward, D.E. The destruxins: Synthesis, biosynthesis, biotransformation, and biological activity. Phytochemistry 2002, 59, 579–596. [Google Scholar] [CrossRef]
- Jestoi, M. Emerging Fusarium-mycotoxins fusaproliferin, beauvericin, enniatins, and moniliformin—A review. Crit. Rev. Food Sci. Nutr. 2008, 48, 21–49. [Google Scholar] [CrossRef] [PubMed]
- Sy-Cordero, A.A.; Pearce, C.J.; Oberlies, N.H. Revisiting the enniatins: A review of their isolation, biosynthesis, structure dertermination and biological activities. J. Antibiot. 2012, 65, 541–549. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.-L.; Tzeng, Y.-M. Development and applicatons of destruxins: A review. Biotechnol. Adv. 2012, 30, 1242–1254. [Google Scholar] [CrossRef] [PubMed]
- Kries, H. Biosynthetic engineering of nonribosomal peptide synthetases. J. Pept. Sci. 2016, 22, 564–570. [Google Scholar] [CrossRef] [PubMed]
- Lemmens-Gruber, R.; Kamyar, M.R.; Dornetshuber, R. Cyclodepsipeptides-potential drugs and lead compounds in the drug development process. Curr. Med. Chem. 2009, 16, 1122–1137. [Google Scholar] [CrossRef] [PubMed]
- Dang, T.; Suessmuth, R.D. Bioactive peptide natural products as lead structures for medicinal use. Acc. Chem. Res. 2017, 50, 1566–1576. [Google Scholar] [CrossRef] [PubMed]
- Ratnayake, R.; Fremlin, L.J.; Lacey, E.; Gill, J.H.; Capon, R.J. Acremolides A–D, lipodepsipeptides from an Australian marine-derived fungus, Acremonium sp. J. Nat. Prod. 2008, 71, 403–408. [Google Scholar] [CrossRef] [PubMed]
- Silber, J.; Ohlendorf, B.; Labes, A.; Nather, C.; Imhoff, F. Calcaripeptides A–C, cyclodepsipeptides from a Calcarisporium strain. J. Nat. Prod. 2013, 76, 1461–1467. [Google Scholar] [CrossRef] [PubMed]
- Feng, Y.; Blunt, J.W.; Cole, A.L.J.; Munro, M.H.G. A novel cyclodepsipeptide, HA23, from a Fusarium sp. Org. Lett. 2002, 4, 2095–2096. [Google Scholar] [CrossRef] [PubMed]
- Verekar, S.A.; Mishra, P.D.; Sreekumar, E.S.; Deshmukh, S.K.; Fiebig, H.-H.; Kelter, G.; Maier, A. Anticancer acitivity of new depsipeptide compound isolated from an endophytic fungus. J. Antibiot. 2014, 67, 697–701. [Google Scholar] [CrossRef] [PubMed]
- Seo, C.; Yim, J.H.; Lee, H.K.; Park, S.M.; Sohn, J.-H.; Oh, H. Stereocalpin A, a bioactive cyclic depsipeptide from the Antarctic lichn Stereocaulon alpinum. Tetrahedron Lett. 2008, 49, 29–31. [Google Scholar] [CrossRef]
- Byeon, H.-E.; Park, B.-K.; Yim, J.H.; Lee, H.K.; Moon, E.-Y.; Rhee, D.-K.; Pyo, S. Stereocalpin A inhibits the expression of adhesion molecules in activated vascular smooth muscle cells. Int. Immunopharmacol. 2012, 12, 315–325. [Google Scholar] [CrossRef] [PubMed]
- Abbanat, D.; Leighton, M.; Maiese, W.; Jones, E.B.G.; Pearce, C.; Greenstein, M. Cell wall active antifungal compounds produced by the marine fungus Hypoxylon oceanicum LL-15G256. I. Taxonomy and fermentation. J. Antibiot. 1998, 51, 296–302. [Google Scholar] [CrossRef] [PubMed]
- Schlingmann, G.; Milne, L.; Williams, D.R.; Carter, G.T. Cell wall active antifungal compounds produced by the marine fungus Hypoxylon oceanicum LL-15G256. II. Isolation and structure determination. J. Antibiot. 1998, 51, 303–316. [Google Scholar] [CrossRef] [PubMed]
- Albaugh, D.; Albert, G.; Bradford, P.; Cotter, V.; Froyd, J.; Gaughran, J.; Kirsch, D.R.; Lai, M.; Rehnig, A.; Sieverding, E.; et al. Cell wall active antifungal compounds produced by the marine fungus Hypoxylon oceanicum LL-15G256. III. Biological properties of 15G256γ. J. Antibiot. 1998, 51, 317–322. [Google Scholar] [CrossRef] [PubMed]
- Ueno, T.; Nakashima, T.; Hayashi, Y.; Fukami, H. Structures of AM-toxin I and II, host specific phytotoxic metabolites produced by Alternaria mali. Agric. Biol. Chem. 1975, 39, 1115–1122. [Google Scholar] [CrossRef]
- Ueno, T.; Nakashima, T.; Hayashi, Y.; Fukami, H. Isolation and structure of AM-toxin III, a host specific phytotoxic metabolite produced by Alternaria mali. Agric. Biol. Chem. 1975, 39, 2081–2082. [Google Scholar] [CrossRef]
- Miyashita, M.; Nakamori, T.; Miyagawa, H.; Akamatsu, M.; Ueno, T. Inhibitor activity of analogs of AM-toxin, a host-specific phytotoxin from the Alternaria alternata apple pathotype, on photosynthetic O2 evolution in apple leaves. Biosci. Biotechnol. Biochem. 2003, 67, 635–638. [Google Scholar] [CrossRef] [PubMed]
- Bao, J.; Zhang, X.-Y.; Xu, X.-Y.; He, F.; Nong, X.-H.; Qi, S.-H. New cyclic tetrapeptides and asteltoxins from gorgonian-derived fungus Aspergillus sp. SCSAF 0076. Tetrahedron 2013, 69, 2113–2117. [Google Scholar] [CrossRef]
- Mochizuki, K.; Ohmori, K.; Tamura, H.; Shizuri, Y.; Nichiyama, S.; Miyoshi, E.; Yamamura, S. The structures of biactive cyclodepsipeptides, beauveriolides I and II, metabolites of entomopathogenic fungi Beauveria sp. Bull. Chem. Soc. Jpn. 1993, 66, 3041–3046. [Google Scholar] [CrossRef]
- Namatame, I.; Tomoda, H.; Tabata, N.; Si, S.; Omura, S. Structure elucidation of fungal beauveriolide III, a novel inhibitor of lipid droplet formation in mouse macrophages. J. Antibiot. 1999, 52, 7–12. [Google Scholar] [CrossRef] [PubMed]
- Matsuda, D.; Namatame, I.; Tomoda, H.; Kobayashi, S.; Zocher, R.; Kleinkauf, H.; Omura, S. New beauveriolides produced by amino acid-supplemented fermentation of Beauveria sp. FO-6979. J. Antibiot. 2004, 57, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Ohshiro, T.; Kobayashi, K.; Ohba, M.; Matsuda, D.; Rudel, L.L.; Takahashi, T.; Doi, T.; Tomoda, H. Selective inhibition of sterol O-acyltransferase 1 isozyme by beauveriolide III in intact cells. Sci. Rep. 2017, 7, 4163. [Google Scholar] [CrossRef] [PubMed]
- Jiang, W.; Ye, P.; Chen, C.-T.A.; Wang, K.; Liu, P.; He, S.; Wu, X.; Gan, L.; Ye, Y.; Wu, B. Two novel hepatocellular carcinoma cycle inhibitory cyclodepsipeptides from a hydrothermal vent carab-associated fungus Aspergillus clavatus C2WU. Mar. Drugs 2013, 11, 4761–4772. [Google Scholar] [CrossRef] [PubMed]
- Ye, P.; Shen, L.; Jiang, W.; Ye, L.; Chen, C.A.; Wu, X.; Wang, K.; Wu, B. Zn-driven discovery of a hydrothermal vent fungal metabolite clavatustide C, and an experimental study of the anti-cancer mechanism of c.avatustide B. Mar. Drugs 2014, 12, 3203–3217. [Google Scholar] [CrossRef] [PubMed]
- Shiono, Y.; Tsuchinari, M.; Shimanuki, K.; Miyajima, T.; Murayama, T.; Koseki, T.; Laatsch, H.; Funakoshi, T.; Takanami, K.; Suzuki, K. Fusarstatins A and B, two new cyclic lipopeptides from an endophytic Fusarium sp. J. Antibiot. 2007, 60, 309–316. [Google Scholar] [CrossRef] [PubMed]
- Li, G.; Kusari, S.; Christopher, G.; Strohmann, C.; Spiteller, M. Three cyclic pentapeptides and a cyclic lipopeptide produced by endophytic Fusarium decemcellulare LG53. RSC Adv. 2016, 6, 54092–54098. [Google Scholar] [CrossRef]
- Morino, T.; Masuda, A.; Yamada, M.; Nishimoto, M.; Nishikiori, T.; Saito, S.; Shimada, N. Stevastelins, novel immunosuppressants produced by Penicillium. J. Antibiot. 1994, 47, 1341–1343. [Google Scholar] [CrossRef] [PubMed]
- Morino, T.; Shimada, K.; Masuda, A.; Yamashita, N.; Nishimoto, M.; Nishikiori, T.; Saito, S. Structural determination of stevastelins, novel depsipeptides from Penicillium sp. J. Antibiot. 1996, 49, 564–568. [Google Scholar] [CrossRef] [PubMed]
- Morino, T.; Shimada, K.; Masuda, A.; Nishimoto, M.; Saito, S. Stevastelin A3, D3 and E3, novel congeners from a high producing mutant of Penicillium sp. J. Antibiot. 1996, 49, 1049–1051. [Google Scholar] [CrossRef] [PubMed]
- Hamaguchi, T.; Masuda, A.; Morino, T.; Osada, H. Stevastelins, a novel of immunosuppressants, inhibit dual-specificity protein phosphatases. Chem. Biol. 1997, 4, 279–286. [Google Scholar] [CrossRef]
- Russell, D.W. Angolide, a naturally-occurng cyclotetradepsipeptide with twelve-membered ring. J. Chem. Soc. 1965, 1965, 4664–4668. [Google Scholar] [CrossRef]
- Elsworth, J.F.; Grove, J.F. Cyclodepsipeptides from Beauveria bassiana. Part 2. Beauverolides A to F and their relationship to isarolide. J. Chem. Soc. Perkin Trans. 1 1980, 8, 1795–1799. [Google Scholar] [CrossRef]
- Grove, J.F. Cyclodepsipeptides from Beauveria bassiana. Part 3. The isolation of beauverolides Ba, Ca, Ja, and Ka. J. Chem. Soc. Perkin Trans. 1 1980, 12, 2878–2880. [Google Scholar] [CrossRef]
- Isogai, A.; Kanaoka, M.; Matsuda, H.; Hori, Y.; Suzuki, A. Structure of a new cyclodepsipeptide, beauverilide A from Beauveria bassiana. Agric. Biol. Chem. 1978, 42, 1797–1798. [Google Scholar] [CrossRef]
- Nakaya, S.; Mizuno, S.; Ishigami, H.; Yamakawa, Y.; Kawagishi, H.; Ushimaru, T. New rapid screening method for anti-aging compounds using budding yeast and identification of beauveriolide I as a potent active compound. Bsiosci. Biotechnol. Biochem. 2012, 76, 1226–1228. [Google Scholar] [CrossRef] [PubMed]
- Elsworth, J.F.; Grove, J.F. Cyclodepsipeptides from Beauveria bassiana. Part 1. Beauverolides H and I. J. Chem. Soc. Perkin Trans. 1 1977, 3, 270–273. [Google Scholar] [CrossRef]
- Jegorov, A.; Sedmera, P.; Matha, V.; Simek, P.; Zhradnickova, H.; Landa, Z.; Eyal, J. Beauverolides L and La from Beauveria tenella and Paecilomyces fumosoroseus. Phytochemistry 1994, 37, 1301–1303. [Google Scholar] [CrossRef]
- Kuzma, M.; Jegorov, A.; Kacer, P.; Havlicek, V. Sequencing of new beauverolides by high-performance liquid chromatography and mass spectrometry. J. Mass Spectrom. 2001, 36, 1108–1115. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Jiang, J.; Hu, S.; Ma, H.; Zhu, H.; Tong, Q.; Cheng, L.; Hao, X.; Zhang, G.; Zhang, Y. Secondary metabolites form endophytic fungus Chaetomium sp. induce colon cancer cell apoptotic death. Fitoterapia 2017, 121, 86–93. [Google Scholar] [CrossRef] [PubMed]
- Shimada, K.; Morino, T.; Masuda, A.; Sato, M.; Kitagawa, M.; Saito, S. Absolute structural determination of stevastelin B. J. Antibiot. 1996, 49, 569–574. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.; Sohn, J.; Ahn, J.; Oh, H. Alternaramide, a cyclic depsipeptide from the marine-derived fungus Alternaria sp. SF-5016. J. Nat. Prod. 2009, 72, 2065–2068. [Google Scholar] [CrossRef] [PubMed]
- Ko, W.; Sohn, J.H.; Jang, J.-H.; Ahn, J.S.; Kang, D.G.; Lee, H.S.; Kim, J.-S.; Kim, Y.-C.; Oh, H. Inhibitory effects of alternaramide on inflammatory mediator expression through TLR4-MyD88-mediated inhibition of NF-κB and MAPK pathway signaling in lipopolysaccharide-stimulated RAW264.7 and BV2 cells. Chem.-Biol. Interact. 2016, 244, 16–26. [Google Scholar] [CrossRef] [PubMed]
- Jackson, M.; Burres, N.S.; Karwowski, J.P.; Alder, L.A.; Humphrey, P.E.; Hohl, W.L.; McAlpine, J.B. Aselacins, novel compounds that inhibit binding of endothelin to its receptor. I. The production organism, fermentation and biological activity. J. Antibiot. 1994, 47, 523–527. [Google Scholar] [CrossRef] [PubMed]
- Hochlowski, J.E.; Hill, P.; Whittern, D.N.; Scherr, M.H.; Rasmussen, R.R.; Dorwin, S.A.; McAlpine, J.B. Aselacins, novel compounds that inhibit binding of endothelin to its receptor. II. Isolation and elucidation of structures. J. Antibiot. 1994, 47, 528–535. [Google Scholar] [CrossRef] [PubMed]
- Vervoort, H.C.; Draskovic, M.; Crews, P. Histone deacetylase inhibitors as a tool to up-regulate new fungal biosynthetic products: Isolation of EGM-556, a cyclodepsipeptide, from Microascus sp. Org. Lett. 2011, 13, 410–413. [Google Scholar] [CrossRef] [PubMed]
- Fukuda, T.; Sudoh, Y.; Tsuchiya, Y.; Okuda, T.; Matsuura, N.; Motojima, A.; Oikawa, T.; Igarashi, Y. Hikiamides A–C, cyclic pentadepsipeptides from Fusairum sp. TAMA 456. J. Nat. Prod. 2015, 78, 797–802. [Google Scholar] [CrossRef] [PubMed]
- Kawahara, T.; Takagi, M.; Shin-ya, K. Three new depsipeptides, JBIR-113, JBIR-114 and JRIR-115, isolated from a marine sponge-derived Penicillium sp. fS36. J. Antibiot. 2012, 65, 147–150. [Google Scholar] [CrossRef] [PubMed]
- Fill, T.P.; Pallini, H.F.; Amaral, L.S.; Silva, J.V.; Bidoia, D.L.; Peron, F.; Garcia, F.P.; Nakamura, C.V.; Rodgigues-Filho, E. Copper and manganese cations alter seconcary metabolism in the fungus Penicillium brasilianum. J. Braz. Chem. Soc. 2016, 27, 1444–1451. [Google Scholar]
- Hamano, K.; Kinoshita, M.; Furuya, K.; Miyamoto, M.; Takamatsu, Y.; Hemmi, A.; Tanzawa, K. Leualacin, a novel calcium blocker from Hapsidospora irregularis. I. Taxonomy, fermentation, isolation, physio-chemical and biological properties. J. Antibiot. 1992, 45, 899–905. [Google Scholar] [CrossRef] [PubMed]
- Hamano, K.; Kinoshita, M.; Tanzawa, K.; Yoda, K.; Ohki, Y.; Nakamura, T.; Kinoshita, T. Leualacin, a novel calcium blocker from Hapsidospora irregularis. II. Structure determination. J. Antibiot. 1992, 45, 906–913. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Qiu, Y.; Kakule, T.B.; Lu, Z.; Xu, F.; Lamb, J.G.; Reilly, C.A.; Zheng, Y.; Sham, S.W.S.; Xuan, L.; et al. Identification of cyclic depsipeptides and their dedicated synthetase from Hapsidospora irregularis. J. Nat. Prod. 2017, 80, 363–370. [Google Scholar] [CrossRef] [PubMed]
- Ward, D.E.; Vazquez, A.; Pedtras, M.S.C. Probing host-selective phytotoxity: Synthesis and biological activity of phomalide, isophomalide, and dihydrophomalide. J. Org. Chem. 1999, 64, 1657–1666. [Google Scholar] [CrossRef] [PubMed]
- Pedras, M.S.C.; Biesenthal, C.J. Vital staining of plant cell suspension cultures: Evaluation of the phytotoxic activity of the phytotoxins phomalide and destruxin B. Plant Cell Rep. 2000, 19, 1135–1138. [Google Scholar] [CrossRef]
- Belofsky, G.N.; Jensen, P.R.; Fenical, W. Sansalvamide: A new cytotoxic cyclic depsipeptide produced by a marine fungus of the genus Fusarium. Tetrahedron Lett. 1999, 40, 2913–2916. [Google Scholar] [CrossRef]
- Hwang, Y.; Rowley, D.; Rhodes, D.; Gertsch, J.; Fenical, W.; Bushman, F. Mechanism of inhibition of a poxvirus topoisomerase by the marine natural product sansalvamide A. Mol. Pharmacol. 1999, 55, 1049–1053. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Gu, W.; Lo, D.; Ding, X.-Z.; Ujiki, M.; Adrian, T.E.; Soff, G.A.; Silverman, R.B. N-Methylsansalvamide A peptide analogues. Potent new antitumor agents. J. Med. Chem. 2005, 48, 3630–3638. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.; Liu, S.; Liu, Y.; Wang, F.; Ren, J.; Gu, J.; Zhou, K.; Shan, B. A novel cyclic pentapeptide, H-10, inhibits B16 cancer cell growth and induces cell apoptosis. Oncol. Lett. 2014, 8, 248–252. [Google Scholar] [CrossRef] [PubMed]
- Oh, D.; Jensen, P.R.; Fenical, W. Zygosporamide, a cytotoxic cyclic depsipeptide from the marine-derived fungus Zygosporium masonii. Tetrahedron Lett. 2006, 47, 8625–8628. [Google Scholar] [CrossRef]
- McCorkindale, N.J.; Baxter, R.L. Brevigellin, a benzoylated cyclodepsipeptide from Penicillium brevicompactum. Tetrahedron 1981, 37, 1795–1801. [Google Scholar] [CrossRef]
- Ortíz-López, F.J.; Monteiro, M.C.; González-Menéndez, V.; Tormo, J.R.; Genilloud, O.; Bills, G.F.; Vicente, F.; Zhang, C.; Roemer, T.; Singh, S.B.; et al. Cyclic colisporifungin and linear cavinafungins, antifungal lipopeptides isolated from Colispora cavincola. J. Nat. Prod. 2015, 78, 468–475. [Google Scholar] [CrossRef] [PubMed]
- Kawahara, T.; Itoh, M.; Kozone, I.; Izumikawa, M.; Sakata, N.; Tsuchida, T.; Shin-ya, K. MBJ-0110, a novel cyclopeptide isolated from the fungus Penicillium sp. f25267. J. Antibiot. 2016, 69, 66–68. [Google Scholar] [CrossRef] [PubMed]
- Song, H.; Lee, H.; Lee, C. A new cytotoxic cyclic pentadepsipeptide, neo-N-methylsansalvamide produced by Fusarium solani KCCM90040, isolated from potato. Food Chem. 2011, 126, 472–478. [Google Scholar] [CrossRef]
- Cueto, M.; Jensen, P.R.; Fenical, W. N-methylsansalvamide, a cytotoxic cyclic depsipeptide from a marine fungus of the genus Fusarium. Phytochemistry 2000, 55, 223–226. [Google Scholar] [CrossRef]
- Bringmann, G.; Lang, G.; Steffens, S.; Schaumann, K. Petrosifungins A and B, novel cyclodepsipeptides from a sponge-derived strain of Penicillium brevicompactum. J. Nat. Prod. 2004, 67, 311–315. [Google Scholar] [CrossRef] [PubMed]
- Rahman, R.; Taylor, A.; Das, B.C.; Verpoorte, J.A. A new depsipeptide from Pithomyces chartarum. Can. J. Chem. 1976, 54, 1360–1364. [Google Scholar] [CrossRef]
- Capon, R.J.; Skene, C.; Stewart, M.; Ford, J.; O’Hair, R.A.J.; Williams, L.; Lacey, E.; Gill, J.H.; Friedel, T. Aspergillicins A–E: Five novel depsipeptides from the marine-drived fungus Aspergillus carneus. Org. Biomol. Chem. 2003, 2013, 1856–1862. [Google Scholar] [CrossRef]
- Kikuchi, H.; Hoshikawa, T.; Fujimura, S.; Sakata, N.; Kurata, S.; Katou, Y.; Oshima, Y. Isolation of a cyclic depsipeptide, aspergillicin F, and synthesis of aspergillicins with innate immune-modulating activity. J. Nat. Prod. 2015, 78, 1949–1956. [Google Scholar] [CrossRef] [PubMed]
- Isaka, M.; Yangchum, A.; Sappan, M.; Suvannakad, R.; Srikitikulchai, P. Cyclohexadepsipeptides from Acremonium sp. BCC 28424. Tetrahedron 2011, 67, 7929–7935. [Google Scholar] [CrossRef]
- Tian, J.; Han, J.-J.; Zhang, X.; He, L.-W.; Zhang, Y.-J.; Bao, L.; Liu, H.-W. New cyclohexadepsipeptides from an entomogenous fungus Fusarium proliferatum and their cytotoxicity and autophagy-inducing activity. Chem. Biodivrs. 2016, 13, 852–860. [Google Scholar] [CrossRef] [PubMed]
- Bunyapaiboonsri, T.; Vongvilai, P.; Auncharoen, P.; Isaka, M. Cyclohexadepsipeptides from the filamentous fungus Acremonium sp. BCC 2629. Helv. Chim. Acta 2012, 95, 963–972. [Google Scholar] [CrossRef]
- Hamill, R.L.; Higgens, C.E.; Boaz, H.E.; Gorman, M. The structure of beauvericin, a new depsipeptide antibiotic toxic to Artemia salina. Tetrahedron Lett. 1969, 49, 4255–4258. [Google Scholar] [CrossRef]
- Luangsa-Ard, J.J.; Berkaew, P.; Ridkaew, R.; Hywel-Jones, N.L.; Isaka, M. A beauvericin hot spot in the genus Isaria. Mycol. Res. 2009, 113, 1389–1395. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Hu, W.; Xiao, M.; Ou, S.; Hu, Q. Destruxin A induces and binds HSPs in Bombyx mori Bm12 cells. J. Agric. Food Chem. 2017, 65, 9849–9853. [Google Scholar] [CrossRef] [PubMed]
- Tomoda, H.; Nishida, H.; Huang, X.-H.; Masuma, R.; Kim, Y.K.; Omura, S. New cyclodepsipeptides, enniatins D, E and F produced by Fusarium sp. FO-1305. J. Antibiot. 1992, 45, 1207–1215. [Google Scholar] [CrossRef] [PubMed]
- Tomoda, H.; Huang, X.-H.; Cao, J.; Nishida, H.; Nagao, R.; Okuda, S.; Tanaka, H.; Omura, S.; Arai, H.; Inoue, K. Inhibition of acyl-CoA:cholesterol acyltransferase activity by cyclodepsipeptide antibiotics. J. Antibiot. 1992, 45, 1626–1632. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.-S.; Song, H.-H.; Jeong, J.-H.; Shin, C.-G.; Choi, S.-U.; Lee, C. Cytotoxicities of enniatins H, I, and MK1688 from Fusarium oxysporum KFCC 11363P. Toxicon 2008, 51, 1178–1185. [Google Scholar] [CrossRef] [PubMed]
- Vongvanich, N.; Kittakoop, P.; Isaka, M.; Trakulnaleamsai, S.; Vimuttipong, S.; Tanticharoen, M.; Thebtaranonth, Y. Hirsutellide A, a new antimycobacterial cyclohexadepsipeptide from the entomopathogenic fungus Hirsutella kobayasii. J. Nat. Prod. 2002, 65, 1346–1348. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.X.; Liu, Q.H.; Ng, T.B.; Wang, H.X. Isarfelin, a peptide with antifungal and insecticidal activities from Isaria felina. Peptides 2005, 26, 2384–2391. [Google Scholar] [CrossRef] [PubMed]
- Langenfeld, A.; Blond, A.; Gueye, S.; Herson, P.; Nay, B.; Dupont, J.; Prado, S. Insecticidal cyclodepsipeptides from Beauveria felina. J. Nat. Prod. 2011, 74, 825–830. [Google Scholar] [CrossRef] [PubMed]
- Deffieux, G.; Merlet, D.; Baute, R.; Bourgeois, G.; Baute, M.A.; Neveu, A. New insecticidal cyclodepsipeptides from the fungus Isaria felina. II. Structure elucidation of isariins B, C and D. J. Antibiot. 1981, 34, 1266–1270. [Google Scholar] [CrossRef] [PubMed]
- Sabareesh, V.; Ranganayaki, R.S.; Raghothama, S.; Bopanna, M.P.; Balaram, H.; Srinivasan, M.C.; Balaram, P. Identification and characterization of a library of microheterogeneous cyclohexadepsipeptides from the fungus Isaria. J. Nat. Prod. 2007, 70, 715–729. [Google Scholar] [CrossRef] [PubMed]
- Du, F.-Y.; Zhang, P.; Li, X.-M.; Li, C.-S.; Cui, C.-M.; Wang, B.-G. Cyclohexadepsipeptides of the isaridin class from the marine-derived fungus Beauveria felina EN-135. J. Nat. Prod. 2014, 77, 1164–1169. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.M.; Lin, L.P.; Xu, Q.L.; Han, W.B.; Zhang, S.; Liu, Z.W.; Mei, Y.N.; Yao, Z.J.; Tan, R.X. Nodupetide, a potent insecticide and antimicrobial from Nodulisporium sp. associated with Riptortus pedestris. Tetrahedron Lett. 2017, 58, 663–665. [Google Scholar] [CrossRef]
- Lang, G.; Mitova, M.I.; Ellis, G.; van der Sar, S.; Phipps, R.K.; Blunt, J.W.; Cummings, N.J.; Cole, A.L.J.; Munro, M.H.G. Bioactivity profiling using HPLC/microtiter-plate analysis: Application to a New Zealand marine alga-derived fungus, Gliocladium sp. J. Nat. Prod. 2006, 69, 621–624. [Google Scholar] [CrossRef] [PubMed]
- Isaka, M.; Palasarn, S.; Lapanun, S.; Striklung, K. Peacilodepsipeptide A, an antimalarial and antitumor cyclohexadepsipeptide from the insect pathogenic fungus Peacilomyces cinnamomeus BCC 9616. J. Nat. Prod. 2007, 70, 675–678. [Google Scholar] [CrossRef] [PubMed]
- Che, Y.; Swenson, D.C.; Gloer, J.B.; Koster, B.; Malloch, D. Pseudodestruxins A and B: New cyclic depsipeptides from the coprophilous fungus Nigrosabulum globosum. J. Nat. Prod. 2001, 64, 555–558. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Hu, C.; Wu, X.; Wang, S.; Zhang, A.; Chen, W.; Shen, Y.; Tan, R.; Wu, X.; Sun, Y.; et al. Anti-inflammatory mechanism involving excessive activation of autophagy in activated T lymphocytes. J. Investig. Dermatol. 2016, 136, 1636–1646. [Google Scholar] [CrossRef] [PubMed]
- Sy-Cordero, A.A.; Graf, T.N.; Adcock, A.F.; Kroll, D.J.; Shen, Q.; Swanson, S.M.; Wani, M.C.; Pearce, C.J.; Oberlies, N.H. Cyclodepsipeptides, sesquiterpenoids, and other cytotoxic metabolites from the filamentous fungus Trichothecium sp. (MSX 51320). J. Nat. Prod. 2011, 74, 2137–2142. [Google Scholar] [CrossRef] [PubMed]
- Amagata, T.; Morinaka, B.I.; Amagata, A.; Tenney, K.; Valeriote, F.A.; Lobkovsky, E.; Clardy, J.; Crews, P. A chemical study of cyclic depsipeptides produced by a sponge-derived fungus. J. Nat. Prod. 2006, 69, 1560–1565. [Google Scholar] [CrossRef] [PubMed]
- Zhang, A.H.; Wang, X.Q.; Han, W.B.; Sun, Y.; Guo, Y.; Wu, Q.; Ge, H.M.; Song, Y.C.; Ng, S.W.; Xu, Q.; et al. Discovery of a new class of immunosuppressants from Trichothecium roseum co-inspired by cross-kindom similarity in innate immunity and pharmacophore motif. Chem. Asian J. 2013, 8, 3101–3107. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.; She, Z.; Lin, Y.; Vrijmoed, L.L.P.; Lin, W. Cyclic peptides from an endophytic fungus obtained from a mangrove leaf (Kandelia candel). J. Nat. Prod. 2007, 70, 1696–1699. [Google Scholar] [CrossRef] [PubMed]
- Nilanonta, C.; Isaka, M.; Kittakoop, P.; Trakulnaleamsai, S.; Tanticharoen, M.; Thebtaranonth, Y. Precursor-directed biosynthesis of beauvericin analogs by the insect pathogenic fungus Paecilomyces tenuipes BCC 1614. Tetrahedron 2002, 58, 3355–3360. [Google Scholar] [CrossRef]
- Deng, C.-M.; Liu, S.-X.; Huang, C.-H.; Pang, J.-Y.; Lin, Y.-C. Secondary metabolites of a mangrove endophytic fungus Aspergillus terreus (No. GX7-3B) from the South China Sea. Mar. Drugs 2013, 11, 2616–2624. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Zhan, J.; Wijeratne, E.M.K.; Burns, A.M.; Gunatilaka, A.A.L.; Molnar, I. Cytotoxic and antihaptotactic beauvericin analogues from precursor-directed biosynthesis with the insect pathogen Beauveria bassiana ATCC 7159. J. Nat. Prod. 2007, 70, 1467–1471. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Zhang, D.-M.; Jia, J.-F.; Peng, Q.-L.; Tian, H.-Y.; Wang, L.; Ye, W.-C. Cyclodepsipeptides from the ascocarps and insect-body portions of fungus Cordyceps cicadae. Fitoterapia 2014, 97, 23–27. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Wang, J.; Zhao, J.; Li, P.; Shan, T.; Wang, J.; Li, X.; Zhou, L. Beauvericin from the endophytic fungus, Fusarium redolens, isolated from Dioscorea zingiberensis and its antibacterial activity. Nat. Prod. Commun. 2010, 5, 811–814. [Google Scholar] [CrossRef] [PubMed]
- Nilanonta, C.; Isaka, M.; Kittakoop, P.; Palittapongarnpim, P.; Kamchonwongpaisan, S.; Pittayakhajonwut, D.; Tanticharoen, M.; Thebtaranonth, Y. Antimycobacterial and antiplasmodial cyclodepsipeptides from the insect pathogenic fungus Paecilomyces tenuipes BCC 1614. Planta Med. 2000, 66, 756–758. [Google Scholar] [CrossRef] [PubMed]
- Fukuda, T.; Arai, M.; Tomoda, H.; Omura, S. New beauvericins, potentiators of antifungal miconazole activity, produced by Beauveria sp. FKI-1366. II. Structure elucidation. J. Antibiot. 2004, 57, 117–124. [Google Scholar] [CrossRef] [PubMed]
- Kawazu, K.; Murakami, T.; Ono, Y.; Kanzaki, H.; Kobayashi, A.; Mikawa, T.; Yoshikawa, N. Isolation and characterization of two novel nematicidal depsipeptides from an imperfect fungus, strain D1084. Biosci. Biotechnol. Biochem. 1993, 57, 98–101. [Google Scholar] [CrossRef] [PubMed]
- Umeyama, A.; Takahashi, K.; Grudniewska, A.; Shimizu, M.; Hayashi, S.; Kato, M.; Okamoto, Y.; Suenaga, M.; Ban, S.; Kumada, T.; et al. In vitro antitrypanosomal activity of the cyclodepsipeptides, cardinalisamides A–C, from the insect pathogenic fungus Cordyceps cardinalis NBRC 103832. J. Antibiot. 2014, 67, 163–166. [Google Scholar] [CrossRef] [PubMed]
- Isaka, M.; Palasarn, S.; Supothina, S.; Komwijit, S.; Luangsa-ard, J. Bioactive compounds from the scale insect pathogenic fungus Conoideocrella tenius BCC 18627. J. Nat. Prod. 2011, 74, 782–789. [Google Scholar] [CrossRef] [PubMed]
- Wahlman, M.; Davidson, B.S. New destruxins from the entomophathogenic fungus Metarhizium anisopliae. J. Nat. Prod. 1993, 56, 643–647. [Google Scholar] [CrossRef]
- Suzuki, A.; Taguchi, H.; Tamura, S. Isolation and structure elucidation of three new insecticidal cyclodepsipeptides, destruxins C and D and desmethyldestruxin B, produced by Metarrhizium anisopliae. Agric. Biol. Chem. 1970, 34, 813–816. [Google Scholar] [CrossRef]
- Ayer, W.A.; Pena-Rodriguez, L.M. Metabolites produced by Alternaria brassicae, the black spot pathogen of canola. Part 1, the phytotoxic components. J. Nat. Prod. 1987, 50, 400–407. [Google Scholar] [CrossRef]
- Chen, H.C.; Yeh, S.F.; Ong, G.-T.; Wu, S.-H.; Sun, C.-M.; Chou, C.-K. The novel desmethyldestruxin B2, from Metarhizium anisopliae, that suppresses hepatitis B virus surface antigen production in human hepatoma cells. J. Nat. Prod. 1995, 58, 527–531. [Google Scholar] [CrossRef] [PubMed]
- Chung, Y.-M.; El-Shazly, M.; Chuang, D.-W.; Hwang, T.-L.; Asai, T.; Oshima, Y.; Ashour, M.L.; Wu, Y.-C.; Chang, F.-R. Suberoylanilide hydroxamic acid, a histone deacetylase inhibitor, induces the production of anti-inflammatory cyclodepsipeptides from Beauveria felina. J. Nat. Prod. 2013, 76, 1260–1266. [Google Scholar] [CrossRef] [PubMed]
- Evans, N.; Mcroberts, N.; Hill, R.A.; Marshall, G. Phytotoxin production by Alternaria linicola and phytoalexin production by the linseed host. Ann. Appl. Boil. 1996, 129, 415–431. [Google Scholar] [CrossRef]
- Du, F.-Y.; Li, X.-M.; Zhang, P.; Li, C.-S.; Wang, B.-G. Cyclodepsipeptides and other O-containing heterocyclic metabolites from Beauveria felina EN-135, a marine-derived entomophathogenic fungus. Mar. Drugs 2014, 12, 2816–2826. [Google Scholar] [CrossRef] [PubMed]
- Pais, M.; Das, B.C.; Ferron, P. Depsipeptides from Metarhizium anisopliae. Phytochemistry 1981, 20, 715–723. [Google Scholar] [CrossRef]
- Gupta, S.; Roberts, D.W.; Renwick, J.A.A. Insecticidal cyclodepsipeptides from Metarhizium anisopliae. J. Chem. Soc. Perkin Trans. 1 1989, 12, 2347–2357. [Google Scholar] [CrossRef]
- Ganaha, M.; Yoshii, K.; Otsuki, Y.; Iguchi, M.; Okamoto, Y.; Iseki, K.; Ban, S.; Ishiyama, A.; Hokari, R.; Iwatsuki, M. In vitro antitrypanosomal activity of the secondary metabolites from the mutant strain IU-3 of the insect pathogenic fungus Ophiocordyceps coccidiicola NBRC 100683. Chem. Pharmceut. Bull. 2016, 64, 988–990. [Google Scholar] [CrossRef] [PubMed]
- Krasnoff, S.B.; Gibson, D.M. New destruxins from the entomopathogenic fungus Aschersonia sp. J. Nat. Prod. 1996, 59, 485–489. [Google Scholar] [CrossRef]
- Cai, P.; Smith, D.; Katz, B.; Pearce, C.; Venables, D.; Houck, D. Dextruxin-A4 chlorohydrin, a novel destruxin from fungus OS-F68576: Isolation, structure determination, and biological activity as an inducer of erythropoietin. J. Nat. Prod. 1998, 61, 290–293. [Google Scholar] [CrossRef] [PubMed]
- Kao, M.-C.; Rao, Y.K.; Hsieh, Y.-W.; Weng, S.-H.; Lu, T.-L.; Tzeng, D.T.W.; Liu, J.-J.; Lin, C.-J.; Lai, C.-H.; Tzeng, Y.-M. A cyclohexadepsipeptide from entomogenous fungi Metarhizium anisopliae inhibits the Helicobacter pylori induced pathogenesis through attenuation of vacuolating cytotoxin-A activity. Process. Biochem. 2015, 50, 134–139. [Google Scholar] [CrossRef]
- Kim, H.S.; Jung, M.H.; Ahn, S.; Lee, C.W.; Kim, S.N.; Ok, J.H. Structure elucidation of a new cyclic hexadepsipeptide from Beauveria felina. J. Antibiot. 2002, 55, 598–601. [Google Scholar] [CrossRef] [PubMed]
- Buchwaldt, L.; Jensen, J.S. HPLC purification of destruxins produced by Alternaria brassicae in culture and leaves of Brassica napus. Phytochemistry 1991, 30, 2311–2316. [Google Scholar] [CrossRef]
- Arroyo-Manzanares, N.; Di Mavungu, J.D.; Carrido-Jurado, I.; Arce, L.; Vanhaecke, L.; Quesada-Moraga, E.; De Saeger, S. Analytical strategy for determination of known and unknown destruxins using hybrid quadrupole-orbitrap high-resolution mass spectrometry. Anal. Bioanal. Chem. 2017, 409, 3349–3357. [Google Scholar] [CrossRef] [PubMed]
- Lira, S.P.; Vita-Marques, A.M.; Seleghim, M.H.R.; Bugni, T.S.; LaBarbera, D.V.; Sette, L.D.; Sponchiado, S.R.P.; Ireland, C.M.; Berlinck, R.G.S. New destruxins from the marine-derived fungus Beauveria felina. J. Antibiot. 2006, 59, 553–563. [Google Scholar] [CrossRef] [PubMed]
- Yeh, S.F.; Pan, W.; Ong, G.; Chiou, A.; Chuang, C.; Chiou, S.; Wu, S. Study of structure-activity correlation in destruxins, a class of cyclodepsipeptides possessing suppressive effect on the generation of hepatitis B virus surface antigen in human hepatoma cells. Biochem. Biophys. Res. Commun. 1996, 229, 65–72. [Google Scholar] [CrossRef] [PubMed]
- Jegorov, A.; Sedmera, P.; Havlicek, V.; Mat’haa, V. Destruxin Ed1 a cyclopeptide from the fungus Metarhizium anisopliae. Phytochemistry 1998, 49, 1815–1817. [Google Scholar] [CrossRef]
- Chiang, Y.-M.; Szewczyk, E.; Nayak, T.; Davidson, A.D.; Sanchez, J.F.; Lo, H.-C.; Wen-Yueh, H.; Simityan, H.; Kuo, E.; Praseuth, A.; et al. Molecular genetic mining of the Aspergillus secondary metabolome: Discovery of the emericellamide biosynthetic pathway. Chem. Biol. 2008, 15, 527–532. [Google Scholar] [CrossRef] [PubMed]
- Oh, D.; Kauffmann, C.A.; Jensen, P.R.; Fenical, W. Induced production of emericellamides A and B from the marine-derived fungus Emericella sp. in competing co-culture. J. Nat. Prod. 2007, 70, 515–520. [Google Scholar] [CrossRef] [PubMed]
- Visconti, A.; Blais, L.A.; ApSimon, J.W.; Greenhalgh, R.; Miller, J.D. Production of enniatins by Fusarium acuminatum and Fusarium compactum in liquid culture: Isolation and characterization of three new enniatins, B2, B3, and B4. J. Agric. Food Chem. 1992, 40, 1076–1082. [Google Scholar] [CrossRef]
- Zaher, A.M.; Makboul, M.A.; Moharram, A.M.; Tekwani, B.L.; Calderon, A.I. A new enniatin antibiotic from the endophyte Fusarium tricinctum Corda. J. Antibit. 2015, 68, 197–200. [Google Scholar] [CrossRef] [PubMed]
- Cuomo, V.; Randazzo, A.; Meca, G.; Moretti, A.; Cascone, A.; Eriksson, O.; Novellino, E.; Ritieni, A. Production of enniatins A, A1, B, B1, B4, J1 by Fusarium tricinctum in solid corn culture: Structural analysis and effects on mitochondrial respiration. Food Chem. 2013, 140, 784–793. [Google Scholar] [CrossRef] [PubMed]
- Meca, G.; Font, G.; Ruiz, M.J. Comparative cytotoxicity study of enniatins A, A1, A2, B, B1, B4 and J3 on Caoco-2 cells, Hep-G2 and HT-29. Food Chem. Toxicol. 2011, 49, 2464–2469. [Google Scholar] [CrossRef] [PubMed]
- Juan-Garcia, A.; Manyes, L.; Ruiz, M.-J.; Font, G. Involvement of enniatins-induced cytotoxicity in human HepG2 cells. Toxicol. Lett. 2013, 218, 166–173. [Google Scholar] [CrossRef] [PubMed]
- Blais, L.A.; Apsimon, J.W.; Blackwell, B.A.; Greenhalgh, R.; Miller, J.D. Isolation and characterization of enniatins from Fusarium avenaceum DAOM 196490. Can. J. Chem. 1992, 70, 1281–1287. [Google Scholar] [CrossRef]
- Pohanka, A.; Capieau, K.; Broberg, A.; Stenlid, J.; Kenne, L. Enniatins of Fusarium sp. strain F31 and their inhibition of Botrytis cinerea spore germination. J. Nat. Prod. 2004, 67, 851–857. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.; Wang, J.; Wu, X.; Zhou, S.; Vrijmoed, L.L.P.; Jones, E.B.G. A novel compound, enniatin G, from the mangrove fungus Halosarpheia sp. (strain 732) form the South China Sea. Aust. J. Chem. 2002, 55, 225–227. [Google Scholar] [CrossRef]
- Nilanonta, C.; Isaka, M.; Chanphen, R.; Thong-orn, N.; Tanticharoen, M.; Thebtaranonth, Y. Unusual enniatins produced by the insect pathogenic fungus Verticillium hemipterigenum: Isolation and studies on precursor-directed biosynthesis. Tetrahedron 2003, 59, 1015–1020. [Google Scholar] [CrossRef]
- Sebastia, N.; Meca, G.; Soriano, J.M.; Manes, J. Antibacterial effects of enniatins J1 and J3 on pathogenic and lactic acid bacteria. Food Chem. Toxicol. 2011, 49, 2710–2717. [Google Scholar] [CrossRef] [PubMed]
- Vongvilai, P.; Isaka, M.; Kittakoop, P.; Srikitikulchai, P.; Kongsaeree, P.; Prabpai, S.; Thebtaranonth, Y. Isolation and structure elucidation of enniatins L, M1, M2, and N: Novel hydroxy analogs. Helv. Chim. Acta 2004, 87, 2066–2073. [Google Scholar] [CrossRef]
- Hyun, U.; Lee, D.-H.; Lee, C.; Shin, C.-G. Apoptosis induced by enniatins H and MK 1688 isolated from Fusarium oxysporum FB1501. Toxicon 2009, 53, 723–728. [Google Scholar] [CrossRef] [PubMed]
- Song, H.; Lee, H.; Jeong, J.; Park, H.; Lee, C. Diversity in beauvericin and enniatins H, I, and MK1688 by Fusarium oxysporum isolated from potato. Int. J. Food Microbiol. 2008, 122, 296–301. [Google Scholar] [CrossRef] [PubMed]
- Supothina, S.; Isaka, M.; Kirtikara, K.; Tanticharoen, M.; Thebtaranonth, Y. Enniatin production by the entomopathogenic fungus Verticillium hemipterigenum BCC 1449. J. Antibiot. 2004, 57, 732–738. [Google Scholar] [CrossRef] [PubMed]
- Uhlig, S.; Ivanova, L.; Petersen, D.; Kristensen, R. Structural studies on minor enniatins from Fusarium sp. VI03441: Novel N-methyl-threonine containing enniatins. Toxicon 2009, 53, 734–742. [Google Scholar] [CrossRef] [PubMed]
- Jenkins, K.M.; Renner, M.K.; Jensen, P.R.; Fenical, W. Exumolides A and B: Antimicroalgal cyclic depsipeptides produced by a marine fungus of the genus Scytalidium. Tetrahedron Lett. 1998, 39, 2463–2466. [Google Scholar] [CrossRef]
- Rukachaisirikul, V.; Rodglin, A.; Sukpondma, Y.; Phongpaichit, S.; Buatong, J.; Sakayaroj, J. Phthalide and isocoumarin derivatives produced by an Acremonium sp. isolated from a mangrove, Rhizophora apiculata. J. Nat. Prod. 2012, 75, 853–858. [Google Scholar] [CrossRef] [PubMed]
- Isaka, M.; Palasarn, S.; Sriklung, K.; Kocharin, K. Cyclohexadepsipeptides from the insect pathogenic fungus Hirsutella nivea BCC 2594. J. Nat. Prod. 2005, 68, 1680–1682. [Google Scholar] [CrossRef] [PubMed]
- Pedras, M.S.C.; Zaharia, I.L.; Gai, Y.; Smith, K.C.; Ward, D.E. Metabolism of the hsot-selective toxins destruxin B and homodestruxin B: Probing a plant disease resistance trait. Org. Lett. 1999, 1, 1655–1658. [Google Scholar] [CrossRef]
- Cruz, L.J.; Insua, M.M.; Baz, J.P.; Trujillo, M.; Rodriguez-Mias, R.A.; Oliveira, E.; Giralt, E.; Albericio, F.; Cañedo, L.M. IB-01212, a new cytotoxic cyclodepsipeptide isolated from the marine fungus Clonostachys sp. ESNA-A009. J. Org. Chem. 2006, 71, 3335–3338. [Google Scholar] [CrossRef] [PubMed]
- Luque-Ortega, J.R.; Cruz, L.J.; Albericio, F.; Rivas, L. The antitumoral depsipeptide IB-01212 kills leishmania through an apoptosis-like process involving intracellular targets. Mol. Pharm. 2010, 7, 1608–1617. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Fu, X.; Zeng, Y.; Wang, Q.; Zhao, P. Two cyclopeptides from endophytic fungus Beauveria sp. Lr89 isolated from Maytenus hookeri. Nat. Prod. Res. Dev. 2011, 23, 667–669. [Google Scholar]
- Ravindra, G.; Ranganayaki, R.S.; Raghothama, S.; Srinivasan, M.C.; Gilardi, R.D.; Karle, I.L.; Balaram, P. Two novel hexadepsipeptides with several modified amino acid residues isolated from the fungus Isaria. Chem. Biodivers. 2004, 1, 489–504. [Google Scholar] [CrossRef] [PubMed]
- Yurchenko, A.N.; Smetanina, O.F.; Kalinovsky, A.I.; Pushilin, M.A.; Glazunov, V.P.; Khudyakova, Y.V.; Kirichuk, N.N.; Ermakova, S.P.; Dyshlovoy, S.A.; Yurchenko, E.A.; et al. Oxirapentyns F-K from the marine-sediment-derived fungus Isaria felina KMM 4639. J. Nat. Prod. 2014, 77, 1321–1328. [Google Scholar] [CrossRef] [PubMed]
- Ding, L.-J.; Yuan, W.; Liao, X.-J.; Han, B.-N.; Wang, S.-P.; Li, Z.-Y.; Xu, S.-H.; Zhang, W.; Lin, H.-W. Oryzamides A-E, cyclodepsipeptides from the sponge-derived fungus Nigrospora oryzae PF18. J. Nat. Prod. 2016, 79, 2045–2052. [Google Scholar] [CrossRef] [PubMed]
- Isaka, M.; Berkaew, P.; Intereya, K.; Komwijit, S.; Sathitkunanon, T. Antiplasmodial and antiviral cyclohexadepsipeptides from the endophytic fungus Pullularia sp. BCC 8613. Tetrahedron 2007, 63, 6855–6860. [Google Scholar] [CrossRef]
- Ebrahim, W.; Kjer, J.; El Amrani, M.; Wray, V.; Lin, W.; Ebel, R.; Lai, D.; Proksch, P. Pullularins E and F, two new peptides from the endophytic fungus Bionecteria ochroleuca isolated from the mangrove plant Sonneratia caseolaris. Mar. Drugs 2012, 10, 1081–1091. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Ke, A.; Wang, F.; Zhang, X.; Fan, Y.; Lu, X.; Zheng, Z.; Jiang, Q.; Zhang, H.; Zhao, B. F04W2166A, a proteasome inhibitor from fungal metabolites. Chin. J. Antibiot. 2011, 9, 662–666. [Google Scholar]
- Ni, X.; Zhang, A.; Zhao, Z.; Shi, Q. Inhibitory effect of cyclic hexadepsipeptides on the proliferation activity on human PC-3 cells. Chin. Pharmacol. Bull. 2012, 28, 1527–1530. [Google Scholar]
- Tsunoo, A.; Kamijo, M.; Taketomo, N.; Sato, Y.; Ajisaka, K. Roseocardin, a novel cardiotonic cyclodepsipeptide from Trichothecium roseum TT103. J. Antibiot. 1997, 50, 1007–1013. [Google Scholar] [CrossRef] [PubMed]
- Jegorov, A.; Paizs, B.; Zabka, M.; Kuzma, M.; Havlicek, V.; Giannakopulos, A.E.; Derrick, P.J. Profiling of cyclic hexadepsipeptides roseotoxins synthesized in vitro and in vivo: A combined tandem mass spectrometry and quantum chemical study. Eur. J. Mass Spectrom. 2003, 9, 105–116. [Google Scholar] [CrossRef] [PubMed]
- Engstorm, G.; Delance, J.; Richard, J.; Baetz, A. Purification and characterization of roseotoxin b, a toxic cyclodepsipeptide from Trichothecium roseum. J. Agric. Food Chem. 1975, 23, 244–253. [Google Scholar] [CrossRef]
- Zabka, M.; Drastichova, K.; Jegorov, A.; Soukupova, J.; Nedbal, L. Direct evidence of plant-pathogenic activity of fungal metabolites of Trichothecium roseum on apple. Mycopathologia 2006, 162, 65–68. [Google Scholar] [CrossRef] [PubMed]
- Yu, Z.; Liang, G.; Kajahn, I.; Schmaljohann, R.; Imhoff, J.F. Scopularides A and B, cyclodepsipeptides from a mrine sponge-derived fungus Scopulariopsis brevicaulis. J. Nat. Prod. 2008, 71, 1052–1054. [Google Scholar] [CrossRef] [PubMed]
- Kralj, A.; Kehraus, S.; Krick, A.; van Echten-Deckert, G.; Konig, G.M. Two new depsipeptides from the marine fungus Spicellum roseum. Planta Med. 2007, 73, 366–371. [Google Scholar] [CrossRef] [PubMed]
- Russell, D.W. Effect of stereoisomeric isoleucines on sporidesmolide biosynthesis by Pithomyces chartarum. J. Gen. Microbiol. 1967, 47, 335–346. [Google Scholar] [CrossRef] [PubMed]
- Bishop, E.; Russell, D.W. Isolation and structure of sporidesmolide IV, a cyclohexadepsipeptide from Pithomyces myadicus. J. Chem. Soc. 1967, 0, 634–638. [Google Scholar]
- Gillis, H.A.; Russell, D.W.; Taylor, A.; Walter, J.A. Isolation and structure of sporidesmolide V from cultures of Pithomyces chartarum. Can. J. Chem. 1990, 68, 19–21. [Google Scholar] [CrossRef]
- Feng, Y.; Blunt, J.W.; Cole, A.L.J.; Cannon, J.F.; Robinson, W.T.; Munro, M.H.G. Two novel cytotoxic cyclodepsipeptides from a mycoparasitic Cladobotryum sp. J. Org. Chem. 2003, 68, 2002–2005. [Google Scholar] [CrossRef] [PubMed]
- Ohshiro, T.; Matsudo, D.; Kazuhiro, T.; Uchida, R.; Nonaka, K.; Masuma, R.; Tomada, H. New verticilides, inhibitors of acyl-CoA: Cholesterol acyltransferase, produced by Verticillium sp. FKI-2679. J. Antibiot. 2012, 65, 255–262. [Google Scholar] [CrossRef] [PubMed]
- Haritakun, R.; Sappan, M.; Suvannakad, R.; Tasanathai, K.; Isaka, M. An antimycobacterial cyclodepsipeptide from the entomopathogenic fungus Ophiocordyceps communis BCC 16475. J. Nat. Prod. 2010, 73, 75–78. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, S.R.M.; Adbdallah, H.M.; Elkhayat, E.S.; Al Musayeib, N.M.; Asfour, H.Z.; Zayed, M.F.; Mohamed, G.A. Fusaripeptode A: New antifungal and anti-malarial cyclodepsipeptide from the endophytic fungus Fusarium sp. J. Asian Nat. Prod. Res. 2017, 20, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Liang, X.; Nong, X.-H.; Huang, Z.-H.; Qi, S.-H. Antifungal and antiviral cyclic peptides from the deep-sea-derived fungus Simplicillium obclavatum EIODSF 020. J. Agric. Food Chem. 2017, 65, 5114–5121. [Google Scholar] [CrossRef] [PubMed]
- Ishidoh, K.; Kinoshita, H.; Igarashi, Y.; Ihara, F.; Nihira, T. Cyclic lipodepsipeptides verlamelin A and B, isolated from entomopathogenic fungus Lecanicillium sp. J. Antibiot. 2014, 67, 459–463. [Google Scholar] [CrossRef] [PubMed]
- Lu, F.; Daletos, G.; Lin, W.; Proksch, P. Two new cyclic depsipeptides from the endophytic fungus Fusarium sp. Nat. Prod. Commun. 2015, 10, 1667–1670. [Google Scholar]
- Nihei, K.; Itoh, H.; Hashimoto, K.; Miyairi, K.; Okuno, T. Antifungal cyclodepsipeptides, W493 A and B, from Fusarium sp.: Isolation and structural determination. Biosci. Biotechnol. Biochem. 1998, 62, 858–863. [Google Scholar] [CrossRef] [PubMed]
- Hommel, U.; Weber, H.-P.; Oberer, L.; Naegeli, H.U.; Oberhauser, B.; Foster, C.A. The 3D-strucuture of a natural inhibitor of cell adhesion molecule expression. FEBS Lett. 1996, 379, 69–73. [Google Scholar] [CrossRef]
- Kanaoka, M.; Isogai, A.; Murakoshi, S.; Ichinoe, M.; Suzuki, A.; Tamura, S. Bassianolide, a new insecticidal cyclodepsipeptide from Beauveria bassiana and Verticillium lecanii. Agric. Biol. Chem. 1978, 42, 629–635. [Google Scholar] [CrossRef]
- Nakajyo, S.; Shimizu, K.; Kometani, A.; Suzuki, A.; Ozaki, H.; Urakawa, N. On the inhibitory mechanism of bassianolide, a cyclodepsipeptide, in acetylcholine-induced contraction in guinea-pig taenia coli. Jpn. J. Pharmacol. 1983, 33, 573–582. [Google Scholar] [CrossRef] [PubMed]
- Jirakkakul, J.; Punya, J.; Pongpattanakitshote, S.; Paungmoung, P.; Vorapreeda, N.; Tachaleat, A.; Klomnara, C.; Tanticharoen, M.; Cheevadhanarak, S. Identification of the nonribosomal peptide synthetase gene responsible for bassianolide synthesis in wood-decaying fungus Xylaria sp. BCC1067. Microbiology 2008, 154, 995–1006. [Google Scholar] [CrossRef] [PubMed]
- Mun, B.; Park, Y.J.; Sung, G.H.; Lee, Y.; Kim, K.H. Synthesis and antitumor activity of (−)-bassianolide in MDA-MB 231 breast cancer cells through cell cycle arrest. Bioorg. Chem. 2016, 69, 64–70. [Google Scholar] [CrossRef] [PubMed]
- Sasaki, T.; Takagi, M.; Yaguchi, T.; Miyadoh, S.; Okada, T.; Koyama, M. A new anthelmintic cyclodepsipeptide, PF1022A. J. Antibiot. 1992, 45, 692–697. [Google Scholar] [CrossRef] [PubMed]
- Ohyama, M.; Okada, Y.; Takahashi, M.; Sakanaka, O.; Matsumoto, M.; Atsumi, K. Structure-activity relationship of anthelmintic cyclooctadepsipeptides. Biosci. Biotechnol. Biochem. 2011, 75, 1354–1363. [Google Scholar] [CrossRef] [PubMed]
- Kruecken, J.; Harder, A.; Jeschke, P.; Holden-Dye, L.; O’Connor, V.; Welz, C.; Von Samson-Himmelstjerna, G. Anthelmintic cyclooctadepsipeptides: Complex in structure and mode of action. Trends Parasitol. 2012, 28, 385–394. [Google Scholar] [CrossRef] [PubMed]
- Scherkenbeck, J.; Plant, A.; Harder, A.; Mencke, N. A highly efficient synthsis of the anthelmintic cyclooctadepsipeptide PF1022A. Tetrahedron 1995, 51, 8459–8470. [Google Scholar] [CrossRef]
- Weckwerth, W.; Miyamoto, K.; Iinuma, K.; Krause, M.; Glinski, M.; Storm, T.; Bonse, G.; Kleinkauf, H.; Zocher, R. Biosynthesis of PF1022A and related cyclooctadepsipeptide. J. Biol. Chem. 2000, 275, 17909–17915. [Google Scholar] [CrossRef] [PubMed]
- Singh, S.B.; Ondeyka, J.; Harris, G.; Herath, K.; Zink, D.; Vicente, F.; Bills, G.; Collado, J.; Platas, G.; Val, A.G.; et al. Isolation, structure, and biological activity of phaeofungin, a cyclic lipodepsipeptide from a Phaeosphaeria sp. using the genome-wide Candida albicans fitness test. J. Nat. Prod. 2013, 76, 334–345. [Google Scholar] [CrossRef] [PubMed]
- Ueda, K.; Xiao, J.; Doke, N.; Nakatsuka, S. Isolation and structure of BZR-cotoxin IV produced by Bipolaris zeicola race 3, the cause of leaf spot disease in corn. Tetrahedron Lett. 1995, 36, 741–744. [Google Scholar] [CrossRef]
- Ali, L.; Khan, A.L.; Hussain, J.; Al-Harrasi, A.; Waqas, M.; Kang, S.-M.; Al-Rawahi, A.; Lee, I.-J. Sorokiniol: A new enzymes inhibitory metabolite from fungal endophyte Bipolaris sorokiniana LK12. BMC Microbiol. 2016, 16, 103. [Google Scholar] [CrossRef] [PubMed]
- Ishiyama, D.; Sato, T.; Honda, R.; Senda, H.; Konno, H.; Kanazawa, S. Glomosporin, a novel antifungal cyclic depsipeptide from Glomospora sp. II. Structure elucidation. J. Antibiot. 2000, 53, 525–531. [Google Scholar] [CrossRef] [PubMed]
- Sato, T.; Ishiyama, D.; Honda, R.; Senda, H.; Konno, H.; Tokumasu, S.; Kanazawa, S. Glomosporin, a novel antifungal cyclic depsipeptide from Glomospora sp. I. Production, isolation, physicochemical properties and biological activities. J. Antibiot. 2000, 53, 597–602. [Google Scholar] [CrossRef] [PubMed]
- Ding, G.; Chen, A.J.; Lan, J.; Zhang, H.; Chen, X.; Liu, X.; Zou, Z. Sesquiterpenes and cyclopeptides from the endophytic fungus Trichoderma asperellum Samuels, Lieckf & Nirenberg. Chem. Biodivers. 2012, 9, 1205–1212. [Google Scholar] [PubMed]
- Shiomi, K.; Matsui, R.; Kakei, A.; Yamaguchi, Y.; Masuma, R.; Hatano, H.; Arai, N.; Isozaki, M.; Tanaka, H.; Kobayashi, S.; et al. Verticilide, a new ryanodine-binding inhibitor, produced by Verticilium sp. FKI-1033. J. Antibiot. 2010, 63, 77–82. [Google Scholar] [CrossRef] [PubMed]
- Ikai, K.; Takesako, K.; Shiomi, K.; Moriguchi, M.; Umeda, Y.; Yamamoto, J.; Kato, I. Structure of aureobasidin A. J. Antibiot. 1991, 44, 925–933. [Google Scholar] [CrossRef] [PubMed]
- Ikai, K.; Shiomi, K.; Takesako, K.; Mizutani, S.; Yamamoto, J.; Ogawa, Y.; Ueno, M.; Kato, I. Structures of aureobasidins B to R. J. Antibiot. 1991, 44, 1187–1198. [Google Scholar] [CrossRef] [PubMed]
- Yoshikawa, Y.; Ikai, K.; Umeda, Y.; Ogawa, A.; Takesako, K.; Kato, I. Isolation, structures, and antifungal activities of new aureobasidins. J. Antibiot. 1993, 45, 1347–1354. [Google Scholar] [CrossRef]
- Awazu, N.; Ikai, K.; Yamamoto, J.; Nishimura, K.; Mizutani, S.; Takesako, K.; Kato, I. Structures and antifungal activities of new aureobasidins. J. Antibiot. 1995, 48, 525–527. [Google Scholar] [CrossRef] [PubMed]
- Aeed, P.A.; Young, C.L.; Nagiec, M.M.; Elhammer, A.P. Inhibition of inositol phosphrylceramide synthase by the cyclic peptide aureobasidin A. Antimicrob. Agents Chemother. 2009, 53, 496–504. [Google Scholar] [CrossRef] [PubMed]
- Ueda, K.; Xiao, J.; Doke, N.; Nakatsuka, S. Structure of BZR-cotoxin I produced by Bipolaris zeicola race 3, the cause of leaf spot disease in corn. Tetrahedron Lett. 1994, 35, 7033–7036. [Google Scholar] [CrossRef]
- Aoyagi, A.; Yano, T.; Kozuma, S.; Takatsu, T. Pleofungins, novel inositol phosphorylceramide synthase inhibitors, from Phoma sp. SANK 13899. II. Structure elucidaton. J. Antibiot. 2007, 60, 143–152. [Google Scholar] [CrossRef] [PubMed]
- Yano, T.; Aoyagi, A.; Kozuma, S.; Kawamura, Y.; Tanaka, I.; Suzuki, Y.; Takamatsu, Y.; Takatsu, T.; Inukai, M. Pleofungins, novel inositol phosphorylceramide synthase inhibitors, from Phoma sp. SANK 13899. I. Taxonomy, fermentation, isolation, and biological activities. J. Antibiot. 2007, 60, 136–142. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Wang, J.; Guo, P.; Mao, C.; Zhu, Z.; Li, H. In vitro inhibition of postharvest pathogens of fruit and control of gray mold of strawberry and green mold of citrus by aureobasidin A. Int. J. Food Microbiol. 2007, 119, 223–229. [Google Scholar] [CrossRef] [PubMed]
- Tan, H.W.; Tay, S.T. The inhibitory effects of aureobasidin A on Candida planktonic and biofilm cells. Mycoses 2013, 56, 150–156. [Google Scholar] [CrossRef] [PubMed]
- Takesako, K.; Ikai, K.; Haruna, F.; Endo, M.; Shimanaka, K.; Sono, E.; Nakamura, T.; Kato, I.; Yamaguchi, H. Aureobasidins, new antifungal antibiotics. Taxonomy, fermentation, isolation, and properties. J. Antibiot. 1991, 44, 919–924. [Google Scholar] [CrossRef] [PubMed]
- Ueda, K.; Xiao, J.; Doke, N.; Nakatsuka, S. Structure of BZR-cotoxin II produced by Bipolaris zeicola race 3, the cause of leaf spot disease in corn. Tetrahedron Lett. 1992, 33, 5377–5380. [Google Scholar] [CrossRef]
- Ueda, K.; Xiao, J.; Doke, N.; Nakatsuka, S. Structure of BZR-cotoxin III produced by Bipolaris zeicola race 3, the cause of leaf spot desease in corn. Nat. Prod. Lett. 1995, 6, 43–48. [Google Scholar] [CrossRef]
- Herath, K.; Harris, G.; Jayasuriya, H.; Zink, D.; Smith, S.; Vicente, F.; Gills, G.; Collado, J.; Gonzalez, A.; Jiang, B.; et al. Isolation, structure and biological activity of phomafungin, a cyclic lipodepsipeptide from a widespread tropical Phoma sp. Bioorg. Med. Chem. 2009, 17, 1361–1369. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, Y.; Ojika, M.; Sakagami, Y.; Kajda, K.; Fudou, R.; Kameyama, T. New cyclic depsipeptide antibiotics, clavariopsin A and B, produced by an aquatic hyphomycetes, Clavariopsis aquatica. 2. Structure analysis. J. Antibiot. 2001, 54, 22–28. [Google Scholar] [CrossRef] [PubMed]
- Kaida, K.; Fudou, R.; Kameyama, T.; Tubaki, K.; Suzuki, Y.; Ojika, M.; Sakagami, Y. New cyclic depsipeptide antibiotics, clavariopsins A and B, produced by an aquatic hyphomycetes, Clavariopsis aquatica. 1. Taxonomy, fermentation, isolation, and biological properties. J. Antibiot. 2001, 54, 17–21. [Google Scholar] [CrossRef] [PubMed]
- Hedge, V.R.; Puar, M.S.; Dai, P.; Pu, H.; Patel, M.; Anthes, J.C.; Richard, C.; Terracciano, J.; Das, P.R.; Gullo, V. A family of depsi-pepitde fungal metabolites, as selective and competitive human tachykinin receptor (NK2) antagonists: Fermentation, isolation, physico-chemical properties, and biological activity. J. Antibiot. 2001, 54, 125–135. [Google Scholar] [PubMed]
- El-Elimat, T.; Raja, H.A.; Day, C.S.; McFeeters, H.; McFeeters, R.L.; Oberlies, N.H. α-Pyrone derivatives, tetra/hexahydroxanthones, and cyclodepsipeptides from two freshwater fungi. Bioorgan. Med. Chem. 2017, 25, 795–804. [Google Scholar] [CrossRef] [PubMed]
- Nakadate, S.; Nozawa, K.; Sato, H.; Horie, H.; Fujii, Y.; Nagai, M.; Hosoe, T.; Kawai, K.; Yaguchi, T. Antifungal cyclic depsipeptide, eujavanicin A, isolated from Eupenicillium javanicum. J. Nat. Prod. 2008, 71, 1640–1642. [Google Scholar] [CrossRef] [PubMed]
- Isaka, M.; Palasarn, S.; Komwijit, S.; Somrithipol, S.; Sommai, S. Pleosportin A, an antimalarial cyclodepsipeptide from an elephant dung fungus (BCC 7069). Tetrahedron Lett. 2014, 55, 469–471. [Google Scholar] [CrossRef]
- Hedge, V.R.; Puar, M.S.; Chan, T.M.; Dai, P.; Das, P.R.; Patel, M. Sch 217048: A novel cyclodepsipeptide with neurokinin antagonist activity. J. Org. Chem. 1998, 63, 9584–9586. [Google Scholar]
- Fujie, A.; Iwamoto, T.; Muramatsu, H.; Okudaira, T.; Nitta, K.; Tomoko, N.; Sakamoto, K.; Hori, Y.; Hino, M.; Hashimoto, S.; et al. FR901469, a novel antifungal antibiotic from an unidentified fungus No. 11243. I. Taxonomy, fermentation, isolation, physico-chemical properties and biological properties. J. Antibiot. 2000, 53, 912–919. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.K.; Gloer, J.B. Petriellin A: A novel antifungal depsipeptide from the coprophilous fungus Petriella sordida. J. Org. Chem. 1995, 60, 5384–5385. [Google Scholar] [CrossRef]
- Abdalla, M.A.; Matasyoh, J.C. Endophytes as producers of peptides: An overview about the recently discovered peptides from endophytic microbes. Nat. Prod. Bioprospect. 2014, 4, 257–270. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Shan, T.; Mou, Y.; Zhou, L. Plant-derived bioactive compounds produced by endophytic fungi. Mini-Rev. Med. Chem. 2011, 11, 159–168. [Google Scholar] [CrossRef] [PubMed]
- El-Hossary, E.M.; Cheng, C.; Hamed, M.M.; Hamed, A.N.E.; Ohlsen, K.; Hentschel, U.; Abdelmohsen, U.R. Antifungal potential of marine natural products. Eur. J. Med. Chem. 2017, 126, 631–651. [Google Scholar] [CrossRef] [PubMed]
- Faulkner, D.J. Highlights of marine natural products chemistry (1972–1999). Nat. Prod. Rep. 2000, 17, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Renaud, J.B.; Kelman, M.J.; McMullin, D.R.; Yeung, K.K.-C.; Sumarah, M.W. Application of C8 liquid chromatography-tandem mass spectrometry for the analysis of enniatins and bassianolides. J. Chromatogr. A. 2017, 1508, 65–72. [Google Scholar] [CrossRef] [PubMed]
- Sussmuth, R.; Muller, J.; von Dohen, H.; Monar, I. Fungal cyclooligomer depsipeptides: From classical biochemistry to combinatorial biosynthesis. Nat. Prod. Rep. 2011, 28, 99–124. [Google Scholar] [CrossRef] [PubMed]
- Zobel, S.; Boecker, S.; Kulke, D.; Heibach, D.; Meyer, V.; Suessmuth, R.D. Reprogramming the biosynthesis of cyclodepsipeptide synthetases to obtain new enniatins and beauvericins. ChemBioChem 2016, 17, 283–287. [Google Scholar] [CrossRef] [PubMed]
- Cavelier, F.; Verducci, J.; Andre, F.; Haraux, F.; Sigalat, C.; Traris, M.; Vey, A. Natural cyclopeptides as leads for novel pesticides: Tentoxin and destruxin. Pestic. Sci. 1998, 52, 81–89. [Google Scholar] [CrossRef]
- Kitagaki, J.; Shi, G.; Miyauchi, S.; Murakami, S.; Yang, Y. Cyclic depsipeptides as potential cancer therapeutics. Anti-Cancer Drug 2015, 26, 259–271. [Google Scholar] [CrossRef] [PubMed]
- Hershenhorn, J.; Casella, F.; Vurro, M. Weed bioconrol with fungi: Past, present and future. Biocontrol Sci. Technol. 2016, 26, 1313–1328. [Google Scholar] [CrossRef]
- Hu, D.X.; Bielitza, M.; Koos, P.; Ley, V.S. A total synthesis of the ammonium ionophore, (−)-enniatin B. Tetrahedron Lett. 2012, 53, 4077–4079. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, F.; Zhang, Y.; Liu, J.O.; Ma, D. Synthesis and antitumor activity of cyclodepsipeptide zygosporamide and its analogues. Bioorg. Med. Chem. Lett. 2008, 18, 4385–4387. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Orozco, R.; Wijeratne, E.M.K.; Gunatilaka, A.A.L.; Stock, S.P.; Molnar, I. Biosynthesis of the cyclooligomer depsipeptide beauvericin, a virulence factor of the entomopathogenic fungus Beauveria bassiana. Chem. Biol. 2008, 15, 898–907. [Google Scholar] [CrossRef] [PubMed]
- Hornbogen, T.; Glinski, M.; Zocher, R. Biosynthesis of depsipeptide mycotoxins in Fusarium. Eur. J. Plant Pathol. 2002, 108, 713–718. [Google Scholar] [CrossRef]
- Soerensen, J.L.; Sondergaard, T.E.; Covarelli, L.; Fuertes, P.R.; Hansen, F.T.; Frandsen, R.J.N.; Saei, W.; Lukassen, M.B.; Wimmer, R.; Nielsen, K.F.; et al. Identification of the biosynthetic gene clusters for the lipopeptides fusaristatin A and W493 B in Fusarium graminearum and F. pseudograminearum. J. Nat. Prod. 2014, 77, 2619–2625. [Google Scholar] [CrossRef] [PubMed]
- Ishidoh, K.; Kinoshita, H.; Nihira, T. Identification of a gene cluster responsible for the biosynthesis of cyclic lipopeptide verlamelin. Appl. Microbiol. Biotechnol. 2014, 98, 7501–7510. [Google Scholar] [CrossRef] [PubMed]
- Harder, A.; Holden-Dye, L.; Walker, R.; Wunderlich, F. Mechanisms of action of emodepside. Parasitol. Res. 2005, 97, S1–S10. [Google Scholar] [CrossRef] [PubMed]
- Kolf-Clauw, M.; Sassahara, M.; Lucioli, J.; Rubira-Gerez, J.; Alassan-Kpembi, I.; Lyazhri, F.; Borin, C.; Oswald, I.P. The emerging mycotoxin, enniatin B1, down-modulates the gastrointestinal toxicity of T-2 toxin in vitro on intestinal epithelial cells and ex vivo on intestinal explants. Arch. Toxicol. 2013, 87, 2233–2241. [Google Scholar] [CrossRef] [PubMed]
- Devreese, M.; Broekaert, N.; De Mil, T.; Fraeyman, S.; De Backer, P.; Croubels, S. Pilot toxicokinetic study and absolute oral bioavailability of the Fusarium mycotoxin enniatin B1 in pigs. Food Chem. Toxicol. 2014, 63, 161–165. [Google Scholar] [CrossRef] [PubMed]
- Taevernier, L.; Detroyer, S.; Veryser, L.; De Spiegeleer, B. Enniatin-containing solutions for oromucosal use: Quality-by-design ex-vivo transmucosal risk assessment of composition variability. Int. J. Pharm. 2015, 491, 144–151. [Google Scholar] [CrossRef] [PubMed]
- Baltz, R.H. Combinatorial biosynthesis of cyclic lipopeptide antibiotics: A mode for synthetic biology to accelerate the evolution of secondary metabolite biosynthetic pathways. ACS Synth. Biol. 2014, 3, 748–758. [Google Scholar] [CrossRef] [PubMed]
Name | Fungus and Its Origin | Biological Activity | References |
---|---|---|---|
Acremolide A (1) | Marine-derived fungus Acremonium sp. MST-MF588a from an estuarine sediment sample | - | [23] |
Acremolide B (2) | Marine-derived fungus Acremonium sp. MST-MF588a from an estuarine sediment sample | - | [23] |
Acremolide C (3) | Marine-derived fungus Acremonium sp. MST-MF588a from an estuarine sediment sample | - | [23] |
Acremolide D (4) | Marine-derived fungus Acremonium sp. MST-MF588a from an estuarine sediment sample | - | [23] |
Calcaripeptide A (5) | Marine-derived fungus Calcarisporium sp. KF525 from a water sample collected in the German Wadden Sea | - | [24] |
Calcaripeptide B (6) | Marine-derived fungus Calcarisporium sp. KF525 from a water sample collected in the German Wadden Sea | - | [24] |
Calcaripeptide C (7) | Marine-derived fungus Calcarisporium sp. KF525 from a water sample collected in the German Wadden Sea | - | [24] |
HA 23 (8) | Fusarium sp. CANU-HA23 | - | [25] |
PM181110 (9) | Endophytic fungus Phomopsis glabrae from the leaves of Pongamia pinnata | Cytotoxic activity | [26] |
Stereocalpin A (10) | Endophytic fngus Ramalina terebrata from the Antarctic lichen Stereocaulon alpinum | Cytotoxic activity | [27] |
Name | Fungus and Its Origin | Biological Activity | References |
---|---|---|---|
15G256γ (11) | Hypoxylon oceanicum LL-15G256 | Antifungal activity | [29,30] |
15G256δ (12) | Hypoxylon oceanicum LL-15G256 | Antifungal activity | [29,30] |
15G256ε (13) | Hypoxylon oceanicum LL-15G256 | Antifungal activity | [29,30] |
AM-toxin I (14) | Alternaria mali | Phytotoxic activity | [32,34] |
AM-toxin II (15) | Alternaria mali | Phytotoxic activity | [33,34] |
AM-toxin III (16) | Alternaria mali | Phytotoxic activity | [32,33,34] |
Angolide (17) | Pithomyces sp. IMI 101184 | - | [48] |
Aspergillipeptide A (18) | Aspergillus sp. SCSGAF 0076 from China South Sea gorgonian Melitodes squamata | - | [35] |
Aspergillipeptide B (19) | Aspergillus sp. SCSGAF 0076 from China South Sea gorgonian Melitodes squamata | - | [35] |
Aspergillipeptide C (20) | Aspergillus sp. SCSGAF 0076 from China South Sea gorgonian Melitodes squamata | Antifouling activity against Bugula neritina larvae settlement | [35] |
Beauveriolide I (21) | Beauveria sp. | Insecticidal activity on Spodoptera litura and Callosobruchus chinensis | [36] |
Beauveriolide II (22) | Beauveria sp. | - | [36] |
Beauveriolide III (23) | Beauveria sp. FO-6979 | - | [37] |
- | Selective inhibition of sterol O-acyltransferase 1 | [39] | |
Beauveriolide IV (24) | Beauveria sp. FO-6979 | - | [38] |
Beauveriolide V (25) | Beauveria sp. FO-6979 | - | [38] |
Beauveriolide VI (26) | Beauveria sp. FO-6979 | - | [38] |
Beauveriolide VII (27) | Beauveria sp. FO-6979 | - | [38] |
Beauveriolide VIII (28) | Beauveria sp. FO-6979 | - | [38] |
Beauverolide A (29) | Entomopathogenic fungus Beauveria bassiana from a pupa of the Gum Emperor moth Antheraea eucalypti | Insecticidal activity | [49] |
Beauverolide B (30) | Entomopathogenic fungus Beauveria bassiana from a pupa of the Gum Emperor moth Antheraea eucalypti | Insecticidal activity | [49] |
Beauverolide Ba = Beauverilide A (31) | Beauveria bassiana | - | [50] |
Entomopathogenic fungus Beauveria bassiana from a pupa of the Gum Emperor moth Antheraea eucalypti | Anti-aging activity; Insecticidal activity | [51,52] | |
Beauverolide C (32) | Entomopathogenic fungus Beauveria bassiana from a pupa of the Gum Emperor moth Antheraea eucalypti | Insecticidal activity | [49] |
Beauverolide Ca (33) | Beauveria bassiana | - | [50] |
Beauverolide D (34) | Entomopathogenic fungus Beauveria bassiana from a pupa of the Gum Emperor moth Antheraea eucalypti | Insecticidal activity | [49] |
Beauverolide E (35) | Entomopathogenic fungus Beauveria bassiana from a pupa of the Gum Emperor moth Antheraea eucalypti | Insecticidal activity | [49] |
Beauverolide Ea (36) | Beauveria bassiana | - | [49] |
Beauverolide F (37) | Entomopathogenic fungus Beauveria bassiana from a pupa of the Gum Emperor moth Antheraea eucalypti | Insecticidal activity | [49] |
Beauverolide Fa = Beauveriolide IX (38) | Beauveria bassiana | - | [49] |
Beauveria sp. FO-6979 | - | [38] | |
Beauverolide H (39) | Beauveria bassiana | - | [53] |
Beauverolide I (40) | Beauveria bassiana | - | [53] |
Beauverolide Ja (41) | Beauveria bassiana | - | [50] |
Beauverolide Ka (42) | Beauveria bassiana | - | [50] |
Beauverolide L (43) | Beauveria tenella and Paecilomyces fumosoroseus | - | [54] |
Beauverolide La (44) | Beauveria tenella and Paecilomyces fumosoroseus | - | [54] |
Beauverolide M (45) | Beauveria bassiana | - | [55] |
Beauverolide N (46) | Beauveria bassiana | - | [55] |
Beauverolide P (47) | Beauveria bassiana | - | [55] |
Chaetomiamide A (48) | Endophytic fungus Chaetomium sp. from the roots of Cymbidium goeringii | - | [56] |
Clavatustide A (49) | Aspergillus clavatus | Cytotoxic activity | [40] |
Clavatustide B (50) | Aspergillus clavatus | Cytotoxic activity | [40,41] |
Fusaristatin A (51) | Endophytic fungus Fusarium sp. YG-45 | Cytotoxic activity | [42] |
Endophytic fungus Fusarium decemcellulare LG53 | Antifungal activity | [43] | |
Fusaristatin B (52) | Endophytic fungus Fusarium sp. YG-45 | Weak activity against topoisomerases I and II; Cytotoxic activity | [42] |
Stevastelin A (53) | Penicillium sp. NK374186 from the soil collected in Niigata of Japan | Immunosuppressant by inhibiting dual-specificity protein phosphatase | [44,45,46] |
Stevastelin A3 (54) | Penicillium sp. NK374186 from the soil collected in Niigata of Japan | Immunosuppressant by inhibiting dual-specificity protein phosphatase | [46] |
Stevastelin B (55) | Penicillium sp. NK374186 from the soil collected in Niigata of Japan | Immunosuppressant by inhibiting dual-specificity protein phosphatase | [44,45,57] |
Stevastelin B3 (56) | Penicillium sp. NK374186 from the soil collected in Niigata of Japan | Immunosuppressant by inhibiting dual-specificity protein phosphatase | [44,45] |
Stevastelin C3 (57) | Penicillium sp. NK374186 from the soil collected in Niigata of Japan | Immunosuppressant by inhibiting dual-specificity protein phosphatase | [44] |
Stevastelin D3 (58) | Penicillium sp. NK374186 from the soil collected in Niigata of Japan | Immunosuppressant by inhibiting dual-specificity protein phosphatase | [46] |
Stevastelin E3 (59) | Penicillium sp. NK374186 from the soil collected in Niigata of Japan | Immunosuppressant by inhibiting dual-specificity protein phosphatase | [46] |
Name | Fungus and Its Origin | Biological Activity | References |
---|---|---|---|
Alternaramide (60) | Marine-derived Alternaria sp. SF-5016 | Weak antibiotic activity | [58] |
- | Anti-inflammatory activity | [59] | |
Aselacin A (61) | Acremonium sp. | Inhibitory activity on binding of endothelin to its receptor | [60,61] |
Aselacin B (62) | Acremonium sp. | Inhibitory activity on binding of endothelin to its receptor | [60,61] |
Aselacin C (63) | Acremonium sp. | Inhibitory activity on binding of endothelin to its receptor | [60,61] |
Brevigellin (64) | Penicillium brevicompactum | - | [76] |
Colisporifungin (65) | Colispora cavincola | Antifungal activity | [77] |
EGM-556 (66) | Microascus sp. | Histone deacetylase inhibitor | [62] |
Hikiamide A (67) | Fusarium sp. TAMA 456 from a rotten wood sample | Induction of adipocyte differentiation and mRNA expression | [63] |
Hikiamide B (68) | Fusarium sp. TAMA 456 from a rotten wood sample | Induction of adipocyte differentiation and mRNA expression | [63] |
Hikiamide C (69) | Fusarium sp. TAMA 456 from a rotten wood sample | Induction of adipocyte differentiation and mRNA expression | [63] |
JBIR-113 (70) | Sponge-derived Penicillium sp. fS36 | - | [64] |
Endophytic fungus Penicillium brasilianum | Weak antiparasitic activity | [65] | |
JBIR-114 (71) | Sponge-derived Penicillium sp. fS36 | - | [64] |
JBIR-115 (72) | Sponge-derived Penicillium sp. fS36 | - | [64] |
Leualacin (73) | Hapsidospora irregularis | Calcium channel blocker | [66,67] |
Leualacin B (74) | Hapsidospora irregularis | - | [68] |
Leualacin C (75) | Hapsidospora irregularis | - | [68] |
Leualacin D (76) | Hapsidospora irregularis | - | [68] |
Leualacin E (77) | Hapsidospora irregularis | - | [68] |
Leualacin F (78) | Hapsidospora irregularis | Elicitation of calcium influx | [68] |
Leualacin G (79) | Hapsidospora irregularis | - | [68] |
MBJ-0110 (80) | Penicillium sp. f25267 | - | [78] |
Neo-N-methylsansalvamide A (81) | Fusarium solani KCCM90040 | Cytotoxic activity | [79] |
N-methylsansalvamide (82) | Marine-derived fungus Fusarium sp. CNL-619. | Cytotoxic activity | [80] |
Petrosifungin A (83) | Marine-derived Penicillium brevicompactum | - | [81] |
Petrosifungin B (84) | Marine-derived Penicillium brevicompactum | - | [81] |
Phomalide (85) | Phoma lingam | Phytotoxic activity | [70] |
Pithomycolide (86) | Pithomyces chatatum | - | [82] |
Sansalvamide A (87) | Marine-derived fungus Fusarium sp. | Cytotoxic, topoisomerase I inhibitory, and antitumor activities | [71,72] |
Zygosporamide (88) | Marine-derived fungus Zygosporium masonii | Cytotoxic activity against SF-268 and RXF 393 cell lines | [75] |
Name | Fungus and Its Origin | Biological Activity | References |
---|---|---|---|
1962A (89) | Unidentified fungus from Kandelia candel leaf | Weak activity against human breast cancer MCF-7 cells | [108] |
1962B (90) | Unidentified fungus from Kandelia candel leaf | - | [108] |
Allobeauvericin A (91) | Peacilomyces tenuipes BCC 1614 | - | [109] |
Allobeauvericin B (92) | Peacilomyces tenuipes BCC 1614 | - | [109] |
Allobeauvericin C (93) | Peacilomyces tenuipes BCC 1614 | - | [109] |
Aspergillicin A (94) | Aspergillus carneus from an estuarine sediment | - | [83] |
Aspergillicin B (95) | Aspergillus carneus from an estuarine sediment | - | [83] |
Aspergillicin C (96) | Aspergillus carneus from an estuarine sediment | - | [83] |
Aspergillicin D (97) | Aspergillus carneus from an estuarine sediment | - | [83] |
Aspergillicin E (98) | Aspergillus carneus from an estuarine sediment | - | [83] |
Aspergillicin F (99) | Aspergillus sp. | Innate immune-modulating activity | [84] |
Beauvenniatin A (100) | Acremonium sp. BCC 28424 | Antimalaria, antituberculosis and cytotoxic activities | [85] |
Beauvenniatin B (101) | Acremonium sp. BCC 28424 | Antimalaria, antituberculosis and cytotoxic activities | [85] |
Entomogenous fungus Fusarium proliferatum from the cadaver of an unidentified insect collected in Tibet | - | [86] | |
Beauvenniatin C (102) | Acremonium sp. BCC 28424 | Antimalaria, antituberculosis and cytotoxic activities | [85] |
Beauvenniatin D (103) | Acremonium sp. BCC 28424 | - | [85] |
Beauvenniatin E (104) | Acremonium sp. BCC 28424 | Antimalaria, antituberculosis and cytotoxic activities | [85] |
Beauvenniatin F (105) | Acremonium sp. BCC 2629 | Antituberculosis, anti-human malaria, and cytotoxic activities | [87] |
Entomogenous fungus Fusarium proliferatum | Cytotoxic and autophagy-inducing activities | [86] | |
Beauvenniatin G1 (106) | Acremonium sp. BCC 2629 | Antituberculosis, anti-human malaria, and cytotoxic activities | [87] |
Beauvenniatin G2 (107) | Acremonium sp. BCC 2629 | Antituberculosis, anti-human malaria, and cytotoxic activities | [87] |
Beauvenniatin G3 (108) | Acremonium sp. BCC 2629 | Antituberculosis, anti-human malaria, and cytotoxic activities | [87] |
Beauvenniatin H1 (109) | Acremonium sp. BCC 2629 | Antituberculosis, anti-human malaria, and cytotoxic activities | [87] |
Beauvenniatin H2 (110) | Acremonium sp. BCC 2629 | Antituberculosis, anti-human malaria, and cytotoxic activities | [87] |
Beauvenniatin H3 (111) | Acremonium sp. BCC 2629 | Antituberculosis, anti-human malaria, and cytotoxic activities | [87] |
Beauvericin (112) | Acremonium sp. BCC 28424 | Antimalaria, antituberculosis and cytotoxic activities | [85] |
Aspergillus terreus No. GX7-3B | In vitro acetylcholinesterase inhibitory activity with an IC50 value of 3.09 μM | [110] | |
Beauverina bassiana | - | [88] | |
Beauveria bassiana ATCC 7159 | - | [111] | |
Parasitic fungus Cordyceps cicadae on the larvae of Cicada flammat | Anti-hepatoma activity | [112] | |
Endophytic fungus Fusarium redolens from the rhizomes of Dioscorea zingziberensis | Antibacterial activity | [113] | |
Beauvericin A (113) | Insect pathogenic fungus Peacilomyces tenuipes BCC 1614 | Antimycobacterial and antiplasmodial activities | [109,114] |
Parasitic fungus Cordyceps cicadae on the larvae of Cicada flammat | Anti-hepatoma activity | [112] | |
Beauvericin B (114) | Peacilomyces tenuipes BCC 1614 | - | [109] |
Beauvericin C (115) | Peacilomyces tenuipes BCC 1614 | - | [109] |
Beauvericin D (116) | Beauveria sp. FKI-1366 | Antifungal activity | [115] |
Beauvericin E (117) | Parasitic fungus Cordyceps cicadae on the larvae of Cicada flammat | Anti-hepatoma activity | [112] |
Beauveria sp. FKI-1366 | Antifungal activity | [115] | |
Beauvericin F (118) | Beauveria sp. FKI-1366 | Antifungal activity | [115] |
Beauvericin G1 (119) | Beauveria bassiana ATCC 7159 | Cytotoxic and antihaptotactic activities | [111] |
Beauvericin G2 (120) | Beauveria bassiana ATCC 7159 | Cytotoxic and antihaptotactic activities | [111] |
Beauvericin G3 (121) | Beauveria bassiana ATCC 7159 | Cytotoxic and antihaptotactic activities | [111] |
Beauvericin H1 (122) | Beauveria bassiana ATCC 7159 | Cytotoxic and antihaptotactic activities | [111] |
Beauvericin H2 (123) | Beauveria bassiana ATCC 7159 | Cytotoxic and antiapoptotic activities | [111] |
Beauvericin H3 (124) | Beauveria bassiana ATCC 7159 | Cytotoxic and antiapoptotic activities | [111] |
Beauvericin J (125) | Acremonium sp. BCC 28424 | - | [85] |
Parasitic fungus Cordyceps cicadae on the larvae of Cicada flammat | Anti-hepatoma activity | [112] | |
Bursaphelocide A (126) | Unidentified fungus strain D1084 | Nematicidal activity | [116] |
Bursaphelocide B (127) | Unidentified fungus strain D1084 | Nematicidal activity | [116] |
Cardinalisamide A (128) | Insect pathogenic fungus Cordyceps cardinalis NBRC 103832 | Antitrypanosomal activity | [117] |
Cardinalisamide B (129) | Insect pathogenic fungus Cordyceps cardinalis NBRC 103832 | Antitrypanosomal activity | [117] |
Cardinalisamide C (130) | Insect pathogenic fungus Cordyceps cardinalis NBRC 103832 | Antitrypanosomal activity | [117] |
Conoideocrellide A (131) | Insect pathogenic fungus Conoideocrella tenuis BCC 18627 | - | [118] |
Cordycecin A (132) | Parasitic fungus Cordyceps cicadae on the larvae of Cicada flammat | - | [112] |
Desmethyldestruxin A (133) | Entomopathogenic fungus Metarhizium anisopliae | Insecticidal activity | [119] |
Desmethyldestruxin B (134) | Entomopathogenic fungus Metarhizium anisopliae | Insecticidal activity | [120] |
Alternaria brassice | - | [121] | |
Desmethyldestruxin B2 (135) | Entomopathogenic fungus Metarhizium anisopliae | Suppressing hepatitis B virus surface antigen production in human hepatoma cells | [122] |
Desmethyldestruxin C (136) | Entomopathogenic fungus Metarhizium anisopliae | Insecticidal activity | [119] |
Desmethylisaridin C1 (137) | Beauveria felina EN-135 | Antibacterial activity on Escherichia coli with an MIC value of 8 μg/mL | [99] |
Desmethylisaridin C2 (138) | Beauveria felina | Anti-inflammatory activity | [123] |
Desmethylisaridin E (139) | Beauveria felina | Anti-inflammatory activity | [123] |
Desmethylisaridin G (140) | Beauveria felina EN-135 | - | [99] |
Destruxin A (141) | Alternaria linicola | Phytotoxic activity | [124] |
Beauveria felina | - | [123] | |
Beauveria felina EN-135 | - | [125] | |
Entomopathogenic fungus Metarhizium anisopliae | - | [126,127] | |
Insect pathogenic fungus Ophiocordyceps coccidiicola NBRC 100683 | Antitrypanosomal activity on Trypanosoma brucei with an IC50 value of 0.33 μg/mL | [128] | |
Destruxin A1 (142) | Entomopathogenic fungus Metarhizium anisopliae | - | [126] |
Destruxin A2 (143) | Entomopathogenic fungus Metarhizium anisopliae | - | [126] |
Destruxin A3 (144) | Entomopathogenic fungus Metarhizium anisopliae | Insecticidal activity | [119] |
Destruxin A4 (145) | Aschersonis sp. | Insecticial activity | [129] |
Destruxin A4 chlorohydrin (146) | Unidentified fungus OS-F68576 | Induction of erythropoietin gene expression | [130] |
Destruxin A5 (147) | Aschersonis sp. | Insecticial activity | [129] |
Destruxin B (148) | Entomopathogenic fungus Metarhizium anisopliae | Insecticidal activity | [127] |
- | Inhibitory on Helicobacter pylori | [131] | |
Entomopathogenic fungus Metarhizium anisopliae | - | [126] | |
Insect pathogenic fungus Ophiocordyceps coccidiicola | Antitrypanosomal activity on Trypanosoma brucei with an IC50 value of 0.16 μg/mL | [128] | |
[Phe3, N-MeVal5] Destruxin B (149) | Beauveria felina | - | [132] |
Destruxin B1 (150) | Entomopathogenic fungus Metarhizium anisopliae | - | [126] |
Destruxin B2 (151) | Entomopathogenic fungus Metarhizium anisopliae | - | [126] |
Alternaria brassicae | - | [133] | |
Dextruxin B4 = Homodestruxin B (152) | Alternaria brassice | - | [121] |
Aschersonis sp. | - | [129] | |
Destruxin C (153) | Entomopathogenic fungus Metarhizium anisopliae | Insecticidal activity | [120,126] |
Destruxin C1 (154) | Metarhizium brunneum | - | [134] |
Destruxin C2 (155) | Entomopathogenic fungus Metarhizium anisopliae | - | [126] |
Destruxin D (156) | Entomopathogenic fungus Metarhizium anisopliae | Insecticidal activity | [120,126] |
Destruxin D1 (157) | Entomopathogenic fungus Metarhizium anisopliae | - | [126] |
Destruxin D2 (158) | Entomopathogenic fungus Metarhizium anisopliae | - | [126] |
Destruxin E (159) | Entomopathogenic fungus Metarhizium anisopliae | Insecticidal activity | [126] |
Destruxin E chlorohydrin (160) | Beauveria felina EN-135 | - | [125] |
Entomopathogenic fungus Metarhizium anisopliae | Insecticidal activity | [127] | |
Insect pathogenic fungus Ophiocordyceps coccidiicola | Antitrypanosomal activity on Trypanosoma brucei with an IC50 value of 0.061 μg/mL | [128] | |
[β-Me-Pro] Destruxin E chlorohydrin (161) | Marine-derived fungus Beauveria felina | - | [135] |
Beauveria felina EN-135 | - | [125] | |
Destruxin E1 (162) | Entomopathogenic fungus Metarhizium anisopliae | - | [126] |
Destruxin E2 (163) | Entomopathogenic fungus Metarhizium anisopliae | Insecticidal activity | [127] |
Destruxin E2 chlorohydrin (164) | Metarrhzium anisopliae | Weak suppressive activity on the production of hepatitis B virus antigen | [136] |
Destruxin Ed (165) | Metarhizium anisopliae | Insecticidal activity | [119] |
Destruxin Ed1 (166) | Entomopathogenic fungus Metarhizium anisopliae | Insecticidal activity | [137] |
Destruxin Ed2 (167) | Metarhizium brunneum | - | [134] |
Destruxin F (168) | Entomopathogenic fungus Metarhizium anisopliae | Insecticidal activity | [119] |
Destruxin G (169) | Metarhizium brunneum | - | [134] |
Destruxin G1 (170) | Metarhizium brunneum | - | [134] |
Emericellamide A (171) | Aspergillus nidulans | - | [138] |
Marine-derived fungus Emericella sp. From the surface of a green alga of the genus Hamlima | Antibacterial activity | [139] | |
Emericellamide B (172) | Marine-derived fungus Emericella sp. from the surface of a green alga of the genus Hamlima | Antibacterial activity | [139] |
Emericellamide C (173) | Aspergillus nidulans | - | [138] |
Emericellamide D (174) | Aspergillus nidulans | - | [138] |
Emericellamide E (175) | Aspergillus nidulans | - | [138] |
Emericellamide F (176) | Aspergillus nidulans | - | [138] |
Enniatin A (177) | Fusarium acuminatum | - | [140] |
Endophytic fungus Fusarium tricinctum isolated from the fruits of Hordeum sativm | Insecticidal activity | [141] | |
Fusarium tricinctum | Inducing an increase in the mitochondrial respiration | [142] | |
- | Cytotoxicity on Caco-2 cells, Hep-G2 and HT-29 | [143] | |
- | Cytotoxicity in human hepatocarcinoma cell line HepG2 | [144] | |
Enniatin A1 (178) | Fusarium tricinctum | Inducing an increase in the mitochondrial respiration | [142] |
- | Cytotoxicity on Caco-2 cells, Hep-G2 and HT-29 | [143] | |
Endophytic fungus Fusarium tricinctum isolated from the fruits of Hordeum sativm | Insecticidal activity | [141] | |
Enniatin A2 (179) | Fusarium avenaceum DAOM 196490 | Cytotoxicity on Caco-2 cells, Hep-G2 and HT-29 | [143,145] |
Enniatin B (180) | Acremonium sp. BCC 28424 | Antimalaria, antituberculosis and cytotoxic activities | [85] |
Endophytic fungus Fusarium sp. strain F31 from the needles of Pinus sylvestris | Inhibition on Botrytis cinerea spore germination | [146] | |
Fusarium tricinctum | Inducing an increase in the mitochondrial respiration | [142] | |
- | Cytotoxicity on Caco-2 cells, Hep-G2 and HT-29 | [143] | |
- | Cytotoxicity in human hepatocarcinoma cell line HepG2 | [144] | |
Halosarpheia sp. strain 732 | - | [147] | |
Fusarium acuminatum | - | [140] | |
Entomogenous fungus Fusarium proliferatum from the cadaver of an unidentified insect collected in Tibet | - | [86] | |
Endophytic fungus Fusarium tricinctum isolated from the fruits of Hordeum sativm | Insecticidal activity | [141] | |
Verticillium hemipterigenum | - | [148] | |
Enniatin B1 (181) | Fusarium acuminatum | - | [140] |
Endophytic fungus Fusarium sp. strain F31 from the needles of Pinus sylvestris | Inhibition on Botrytis cinerea spore germination | [146] | |
- | Cytotoxicity on Caco-2 cells, Hep-G2 and HT-29 | [143] | |
Fusarium tricinctum | Inducing an increase in the mitochondrial respiration | [142] | |
Endophytic fungus Fusarium tricinctum isolated from the fruits of Hordeum sativm | Insecticidal activity | [141] | |
Enniatin B2 (182) | Fusarium acuminatum | - | [140] |
Endophytic fungus Fusarium sp. strain F31 from the needles of Pinus sylvestris | Inhibition on Botrytis cinerea spore germination | [146] | |
Endophytic fungus Fusarium tricinctum isolated from the fruits of Hordeum sativm | Insecticidal activity | [141] | |
Enniatin B3 (183) | Fusarium acuminatum | - | [140] |
Enniatin B4 = Enniatin D(184) | Fusarium acuminatum | - | [140] |
Fusarium sp. FO-1305 | ACAT inhibition | [91] | |
Fusarium tricinctum | Inducing an increase in the mitochondrial respiration | [142] | |
Endophytic fungus Fusarium sp. strain F31 from the needles of Pinus sylvestris | Inhibition on Botrytis cinerea spore germination | [146] | |
- | Cytotoxicity on Caco-2 cells, Hep-G2 and HT-29 | [143] | |
Halosarpheia sp. strain 732 | - | [147] | |
Verticillium hemipterigenum | - | [148] | |
Enniatin C (185) | Verticillium hemipterigenum | - | [148] |
Enniatin E1 (186) | Fusarium sp. FO-1305 | ACAT inhibition | [91] |
Enniatin E2 (187) | Fusarium sp. FO-1305 | ACAT inhibition | [91] |
Enniatin F (188) | Fusarium sp. FO-1305 | ACAT inhibition | [91] |
Enniatin G (189) | Halosarpheia sp. strain 732 | Cyctotoxic activity on Heps 7402, with an ED50 of 12 μg/mL | [147] |
Verticillium hemipterigenum | - | [148] | |
Enniatin H (190) | Fusarium oxysporum KFCC 11363P | Cytotoxic activity | [93] |
Verticillium hemipterigenum | - | [148] | |
Enniatin I (191) | Fusarium oxysporum KFCC 11363P | Cytotoxic activity | [93] |
Verticillium hemipterigenum | - | [148] | |
Entomogenous fungus Fusarium proliferatum from the cadaver of an unidentified insect collected in Tibet | - | [86] | |
Enniatin J1 (192) | Endophytic fungus Fusarium sp. strain F31 from the needles of Pinus sylvestris | Inhibition on Botrytis cinerea spore germination | [146] |
Fusarium solani | Antibacterial effects on pathogenic and lactic acid bacteria | [149] | |
Fusarium tricinctum | Inducing an increase in the mitochondrial respiration | [142] | |
Enniatin J2 (193) | Endophytic fungus Fusarium sp. strain F31 from the needles of Pinus sylvestris | Inhibition on Botrytis cinerea spore germination | [146] |
Enniatin J3 (194) | Fusarium solani | Antibacterial effects on pathogenic and lactic acid bacteria | [149] |
Endophytic fungus Fusarium sp. strain F31 from the needles of Pinus sylvestris | Inhibition on Botrytis cinerea spore germination | [146] | |
- | Cytotoxicity on Caco-2 cells, Hep-G2 and HT-29 | [143] | |
Enniatin K1 (195) | Endophytic fungus Fusarium sp. strain F31 from the needles of Pinus sylvestris | Inhibition on Botrytis cinerea spore germination | [146] |
Entomogenous fungus Fusarium proliferatum from the cadaver of an unidentified insect collected in Tibet | - | [86] | |
Enniatin L (196) | Entomogenous fungus Fusarium proliferatum from the cadaver of an unidentified insect collected in Tibet | Antimalarial, antituberculous and cytotoxic activities | [86] |
Acremonium sp. BCC 2629 | - | [150] | |
Enniatin M1 (197) | Acremonium sp. BCC 2629 | Antimalarial, antituberculous and cytotoxic activities | [150] |
Enniatin M2 (198) | Acremonium sp. BCC 26299 | Antimalarial, antituberculous and cytotoxic activities | [150] |
Enniatin MK1688 (199) | Fusarium oxysporum KFCC 11363P | Cytotoxic activity | [93] |
Fusarium oxysporum FB1501 | Cytotoxic effects on several adenocarcinoma cell lines | [151] | |
Fusarium oxysporum | - | [152] | |
Verticillium hemipterigenum | - | [148] | |
Enniatin N (200) | Acremonium sp. BCC 2629 | Antimalarial, antituberculous and cytotoxic activities | [150] |
Enniatin O1 (201) | Verticillium hemipterigenum BCC 1449 | Antimalarial, antituberculous and cytotoxic activities | [153] |
Enniatin O2 (202) | Verticillium hemipterigenum BCC 1449 | Antimalarial, antituberculous and cytotoxic activities | [153] |
Enniatin O3 (203) | Verticillium hemipterigenum BCC 1449 | Antimalarial, antituberculous and cytotoxic activities | [153] |
Enniatin P1 (204) | Fusarium sp. VI 03441 | - | [154] |
Enniatin P2 (205) | Fusarium sp. VI 03441 | - | [154] |
Enniatin Q (206) | Endophytic fungus Fusarium tricinctum isolated from the fruits of Hordeum sativm | Insecticidal activity | [141] |
Enniatin R (207) | Entomogenous fungus Fusarium proliferatum from the cadaver of an unidentified insect collected in Tibet | - | [86] |
Enniatin S (208) | Entomogenous fungus Fusarium proliferatum from the cadaver of an unidentified insect collected in Tibet | - | [86] |
Enniatin T (209) | Entomogenous fungus Fusarium proliferatum from the cadaver of an unidentified insect collected in Tibet | - | [86] |
Enniatin U (210) | Entomogenous fungus Fusarium proliferatum from the cadaver of an unidentified insect collected in Tibet | - | [86] |
Enniatin V (211) | Entomogenous fungus Fusarium proliferatum from the cadaver of an unidentified insect collected in Tibet | - | [86] |
Exumolide A (212) | Marine-derived fungus Scytalidium sp. obtained from decying plant material in the Exuma Islands, Bahamas | Antimicroalgal activity | [155] |
Exumolide B (213) | Marine-derived fungus Scytalidium sp. obtained from decying plant material in the Exuma Islands, Bahamas | Antimicroalgal activity | [155] |
Guangomide A (214) | Endophytic fungus Acremonium sp. PSU-MA70 from a mangrove Rhizophora apiculata | - | [156] |
Trichothecium sp. MSX 51320 | - | [105] | |
Unidentified sponge-derived fungus | Weak antibacterial activity on Staphylococcus epidermids and Enterococcus durans | [106] | |
Guangomide B (215) | Endophytic fungus Acremonium sp. PSU-MA70 from a mangrove Rhizophora apiculata | - | [156] |
Unidentified sponge-derived fungus | Weak antibacterial activity on Staphylococcus epidermids and Enterococcus durans | [106] | |
Hirsutatin A (216) | Insect pathogenic fungus Hirsutella nivea BCC 2594 from a Homoptera leaf-hoppper | - | [157] |
Hirsutatin B (217) | Insect pathogenic fungus Hirsutella nivea BCC 2594 from a Homoptera leaf-hoppper | Antimalarial activity on Plasmodium falciparum K1 with an IC50 value of 5.8 μg/mL | [157] |
Hirsutellide A (218) | Entomopathogenic fungus Hirsutella kobayasii | Antimycobacterial activity; antimalarial activity on Plasmodium falciparum | [94] |
Homodestcardin (219) | Unidentified fungus 001314c from Ianthella sp. | - | [106] |
Hydroxydestruxin B (220) | Alternaria brassicae | Phytotoxic activity | [158] |
Hydroxyhomodestruxin B (221) | Alternaria brassicae | Phytotoxic activity | [158] |
IB-01212 (222) | Clonostachys sp. ESNA-A009 | Cytotoxic activity | [159] |
Clonostachys sp. | Antitumoral activity | [160] | |
Isaridin A (223) | Beauveria sp. Lr89 | - | [161] |
Beauveria felina EN-135 | - | [99] | |
Isaria sp. from soil | - | [162] | |
Isaridin B (224) | Beauveria felina EN-135 | - | [99] |
Isaria sp. from soil | - | [162] | |
Isaridin C1 (225) | Isaria sp. from soil | - | [98] |
Isaridin C2 (226) | Isaria sp. from soil | - | [98] |
Beauveria felina | - | [123] | |
Isaridin C1 (225)/C2 (226) = Isarfelin A | Isaria felina | Antifungal and insecticidal activities | [95] |
Isaridin D (227) | Isaria sp. from soil | - | [98] |
Isaridin E = Isarfelin B (228) | Isaria felina | Antifungal and insecticidal activities | [95] |
Isaria felina KMM 4639 | - | [163] | |
Beauveria felina EN-135 | - | [99] | |
Beauveria felina | - | [123] | |
Isaridin F (229) | Beauveria felina | - | [123] |
Isaridin G (230) | Beauveria felina EN-135 | - | [99] |
Isariin A = Isariin (231) | Isaria felina | Insecticidal activity | [98] |
Isariin B (232) | Isaria felina | Insecticidal activity | [97] |
Isariin C (233) | Isaria felina | Insecticidal activity | [97] |
Isariin C2 (234) | Isaria felina | Insecticidal activity | [98] |
Isariin D (235) | Isaria felina | Insecticidal activity | [97] |
Isariin E (236) | Isaria felina | Insecticidal activity | [98] |
Isariin F2 (237) | Isaria felina | Insecticidal activity | [98] |
Isariin G1 (238) | Isaria felina | Insecticidal activity | [98] |
Isariin G2 (239) | Isaria felina | Insecticidal activity | [98] |
Isoisariin B (240) | Isaria felina KMM 4639 | - | [163] |
Beauveria felina | Insecticidal activity | [96] | |
Isoisariin D (241) | Beauveria felina EN-135 | Brine-shrimp lethality activity | [125] |
Nodupetide (242) | Nodulisporium sp. IFB-A163 residing in the gut of insect Riptortus pedestris | Insecticidal and antimicrobial activities | [100] |
Oryzamide A (243) | Marine-derived fungus Nigrospora oyzae from the sponge Phakellia fusca | - | [164] |
Oryzamide B (244) | Marine-derived fungus Nigrospora oyzae from the sponge Phakellia fusca | - | [164] |
Oryzamide C (245) | Marine-derived fungus Nigrospora oyzae from the sponge Phakellia fusca | - | [164] |
Oryzamide D (246) | Marine-derived fungus Nigrospora oyzae from the sponge Phakellia fusca | - | [164] |
Oryzamide E (247) | Marine-derived fungus Nigrospora oyzae from the sponge Phakellia fusca | - | [164] |
Paecilodepsipeptide A = Gliotide (248) | Marine-derived fungus Gliocladium sp. from the alga Durvillaea antarctica | - | [101] |
Insect pathogenic fungus Paecilomyces cinnamomeus BCC 9616 | Antimalarial and cytotoxic activities | [102] | |
Pseudodestruxin A (249) | Coprophilous fungus Nigrosabulum globosum | Antibacterial activity | [103] |
Pseudodestruxin B (250) | Coprophilous fungus Nigrosabulum globosum | Antibacterial activity | [103] |
Pseudodestruxin C (251) | Marine-derived fungus Beauveria felina | - | [135] |
Pullularin A (252) | Pullularia sp. BCC 8613 | Antimalarial, antiviral and cytotoxic activities | [165] |
Bionectria ochroleuca | Cytotoxic activity on L5178Y cell line | [166] | |
Pullularin B (253) | Pullularia sp. BCC 8613 | - | [165] |
Pullularin C (254) | Pullularia sp. BCC 8613 | - | [165] |
Verticillium F04W2166 | Inhibitory activity on proteasome; Cytotoxic activity on human colon cell line HT-29 and human breast cancer cell line MDA-MB-231 | [167] | |
- | Cytotoxic acvitiy on human PC-3 cells | [168] | |
Bionectria ochroleuca | Cytotoxic activity on L5178Y cell line | [166] | |
Pullularin D (255) | Pullularia sp. BCC 8613 | - | [165] |
Pullularin E (256) | Endophytic fungus Bionecteria ochroleuca from the mangrove plant Sonneratia caseolaris | Cytotoxic activity on L5178Y cell line | [166] |
Roseocardin (257) | Beauveria felina | Antibacterial activity | [123] |
Trichothecium roseum TT103 | Positive inotropic effect on rat heart muscles | [169] | |
Roseotoxin A (258) | Trichothecium roseum | - | [170] |
Roseotoxin B (259) | Beauveria felina | - | [123] |
Beauveria felina EN-135 | Lethality against brine shrimp with an LD50 value of 0.73 μM | [125] | |
Trichothecium roseum TT1031 | - | [169] | |
Trichothecium roseum | - | [171] | |
Trichothecium roseum | Phtotoxic activity | [172] | |
Roseotoxin C (260) | Trichothecium roseum | - | [170] |
Scopularide A (261) | Marine sponge-derived Scopulariopsis brevicaulis from Tethya aurantium | Cytotoxic activity | [173] |
Scopularide B (262) | Marine sponge-derived Scopulariopsis brevicaulis from Tethya aurantium | Cytotoxic activity | [173] |
Spicellamide A (263) | Marine-derived fungus Spicellum roseum from the sponge Ectyplasia perox | Cytotoxic activity | [174] |
Spicellamide B (264) | Marine-derived fungus Spicellum roseum from the sponge Ectyplasia perox | Cytotoxic activity | [174] |
Sporidesmolide I (265) | Pithomyces chartarum | - | [175] |
Sporidesmolide II (266) | Pithomyces chartarum | - | [175] |
Sporidesmolide III (267) | Pithomyces chartarum | - | [175] |
Sporidesmolide IV (268) | Pithomyces chartarum | - | [176] |
Sporidesmolide V (269) | Pithomyces chartarum | - | [177] |
T987A (270) | Cladobotryum sp. | Cytotoxic activity | [178] |
T987B (271) | Cladobotryum sp. | Cytotoxic activity | [178] |
Trichodepsipeptide A (272) | Trichothecium sp. MSX 51320 | - | [105] |
Trichodepsipeptide B (273) | Trichothecium sp. MSX 51320 | - | [105] |
Trichomide A (274) | Trichothecium roseum | Immunosuppressive activity | [107] |
Trichomide B (275) | Trichothecium roseum | Immunosuppressive activity | [107] |
Verticilide B1 (276) | Verticillium sp. FKI-2679 from soil | Inhibition of ACAT1 and ACAT2 | [179] |
Name | Fungus and Its Origin | Biological Activity | References |
---|---|---|---|
Cordycommunin (277) | Ophiocordyceps communis BCC16475 | Antimycobacterial activity; Cytotoxic activity | [180] |
Fusaripeptide A (278) | Endophytic fungus Fusarium sp. from Mentha longifolia | Antifungal, anti-malarial and cytotoxic activities | [181] |
HUN-7293 (279) | Unidentified fungus | Inhibition of inducible cell adhesion molecule expression | [186] |
Simplicilliumtide J (280) | Deep-sea derived fungus Simplicillium obclavatum | Antifungal and antiviral activities | [182] |
Simplicilliumtide K (281) | Deep-sea derived fungus Simplicillium obclavatum | - | [182] |
Simplicilliumtide L (282) | Deep-sea derived fungus Simplicillium obclavatum | - | [182] |
Verlamelin A (283) | Entomopathogenic fungus Lecanicillium sp. | Antifungal activity | [183] |
Deep-sea derived fungus Simplicillium obclavatum | Antifungal and antiviral activities | [182] | |
Verlamelin B (284) | Entomopathogenic fungus Lecanicillium sp. | Antifungal activity | [183] |
Deep-sea derived fungus Simplicillium obclavatum | Antifungal and antiviral activities | [182] | |
W493 A (285) | Endophytic fungus Fusarium sp. from Ceriops tagal | Antifungal activity | [185] |
W493 B (286) | Endophytic fungus Fusarium sp. from Ceriops tagal | Antifungal activity | [185] |
Fusarium sp. CANU-HA23 | Antifungal activity | [25] | |
W493 C (287) | Endophytic fungus Fusarium sp. from Ceriops tagal | - | [184] |
W493 D (288) | Endophytic fungus Fusarium sp. from Ceriops tagal | - | [184] |
Name | Fungus and Its Origin | Biological Activity | References |
---|---|---|---|
Bassianolide (289) | Beauveria bassiana; Lecanicilium sp. (formerly Verticillium lecanii) | Insecticidal, cytotoxic and anthelmintic acitivities | [187,188] |
Xylaria sp. BCC1067 | - | [189] | |
BZR-cotoxin IV (290) | Plant pathogenic fungus Bipolaris zeicola | - | [197] |
Plant endopytic fungus Bipolaris sorokiniana LK12 | Moderate anti-lipid peroxidation and urease activities | [198] | |
Glomosporin (291) | Glomospora sp. BAUA 2825 | Antifungal activity | [199,200] |
Halobacillin (292) | Trichoderma asperellum | Antibacterial activity | [201] |
PF1022A (293) | Endophytic fungus Rosellina sp. PF1022 | Anthelmintic activity on Ascaridia galli in chicken | [191] |
Mycelia sterilia PF1022 | Anthelmintic activity | [192] | |
PF1022B (294) | Mycelia sterilia PF1022 | Anthelmintic activity | [192] |
PF1022C (295) | Mycelia sterilia PF1022 | Anthelmintic activity | [192] |
PF1022D (296) | Mycelia sterilia PF1022 | Anthelmintic activity | [192] |
PF1022E (297) | Mycelia sterilia PF1022 | Anthelmintic activity | [192] |
PF1022F (298) | Mycelia sterilia PF1022 | Anthelmintic activity | [192] |
Trichoderma asperellum | Antibacterial activity | [201] | |
PF1022G (299) | Mycelia sterilia PF1022 | Anthelmintic activity | [192] |
PF1022H (300) | Mycelia sterilia PF1022 | Anthelmintic activity | [192] |
Phaeofungin (301) | Endophytic fungus Phaeosphaeria sp. from Sedum sp. | Causing ATP release in wild-type Candida albicans strains; Modest antifungal activity | [196] |
Verticilide = Verticilide A1 (302) | Verticillium sp. FKI-1033 from soil | Selectively binding to the insect ryanodine receptor | [202] |
Verticillium sp. FKI-2679 from soil | ACAT inhibition | [179] | |
Verticilide A2 (303) | Verticillium sp. FKI-2679 from soil | ACAT inhibition | [179] |
Verticilide A3 (304) | Verticillium sp. FKI-2679 from soil | ACAT inhibition | [179] |
Name | Fungus and Its Origin | Biological Activity | References |
---|---|---|---|
Aureobasidin A (305) | Aureobasidium pullulans from a leaf collected at Tsushima of Japan | Antifungal activity; Inhibitory activity on Candida planktonic and biofilm cells | [203,211,212] |
Aureobasidin B (306) | Aureobasidium pullulans from a leaf collected at Tsushima of Japan | Antifungal activity | [204,213] |
Aureobasidin C (307) | Aureobasidium pullulans from a leaf collected at Tsushima of Japan | Antifungal activity | [204,213] |
Aureobasidin D (308) | Aureobasidium pullulans from a leaf collected at Tsushima of Japan | Antifungal activity | [204,213] |
Aureobasidin E (309) | Aureobasidium pullulans from a leaf collected at Tsushima of Japan | Antifungal activity | [204,213] |
Aureobasidin F (310) | Aureobasidium pullulans from a leaf collected at Tsushima of Japan | Antifungal activity | [204,213] |
Aureobasidin G (311) | Aureobasidium pullulans from a leaf collected at Tsushima of Japan | Antifungal activity | [204,213] |
Aureobasidin H (312) | Aureobasidium pullulans from a leaf collected at Tsushima of Japan | Antifungal activity | [204,213] |
Aureobasidin I (313) | Aureobasidium pullulans from a leaf collected at Tsushima of Japan | Antifungal activity | [204,213] |
Aureobasidin J (314) | Aureobasidium pullulans from a leaf collected at Tsushima of Japan | Antifungal activity | [204,213] |
Aureobasidin K (315) | Aureobasidium pullulans from a leaf collected at Tsushima of Japan | Antifungal activity | [204,213] |
Aureobasidin L (316) | Aureobasidium pullulans from a leaf collected at Tsushima of Japan | Antifungal activity | [204,213] |
Aureobasidin M (317) | Aureobasidium pullulans from a leaf collected at Tsushima of Japan | Antifungal activity | [204,213] |
Aureobasidin N (318) | Aureobasidium pullulans from a leaf collected at Tsushima of Japan | Antifungal activity | [204,213] |
Aureobasidin O (319) | Aureobasidium pullulans from a leaf collected at Tsushima of Japan | Antifungal activity | [204,213] |
Aureobasidin P (320) | Aureobasidium pullulans from a leaf collected at Tsushima of Japan | Antifungal activity | [204,213] |
Aureobasidin Q (321) | Aureobasidium pullulans from a leaf collected at Tsushima of Japan | Antifungal activity | [204,213] |
Aureobasidin R (322) | Aureobasidium pullulans from a leaf collected at Tsushima of Japan | Antifungal activity | [204,213] |
Aureobasidin S1 (323) | Aureobasidium pullulans from a leaf collected at Tsushima of Japan | Antifungal activity | [205] |
Aureobasidin S2a (324) | Aureobasidium pullulans from a leaf collected at Tsushima of Japan | Antifungal activity | [205] |
Aureobasidin S2b (325) | Aureobasidium pullulans from a leaf collected at Tsushima of Japan | Antifungal activity | [205] |
Aureobasidin S3 (326) | Aureobasidium pullulans from a leaf collected at Tsushima of Japan | Antifungal activity | [205] |
Aureobasidin S4 (327) | Aureobasidium pullulans from a leaf collected at Tsushima of Japan | Antifungal activity | [205] |
Aureobasidin T1 (328) | Aureobasidium pullulans from a leaf collected at Tsushima of Japan | Antifungal activity | [206] |
Aureobasidin T2 (329) | Aureobasidium pullulans from a leaf collected at Tsushima of Japan | Antifungal activity | [206] |
Aureobasidin T3 (330) | Aureobasidium pullulans from a leaf collected at Tsushima of Japan | Antifungal activity | [206] |
Aureobasidin T4 (331) | Aureobasidium pullulans from a leaf collected at Tsushima of Japan | Antifungal activity | [206] |
Aureobasidin U1 (332) | Aureobasidium pullulans from a leaf collected at Tsushima of Japan | Antifungal activity | [206] |
Aureobasidin U2 (333) | Aureobasidium pullulans from a leaf collected at Tsushima of Japan | Antifungal activity | [206] |
BZR-cotoxin I (334) | Plant pathogenic fungus Bipolaris zeicola | - | [208] |
Plant endopytic fungus Bipolaris sorokiniana LK12 | Moderate anti-lipid peroxidation and uease activities | [198] | |
BZR-cotoxin II (335) | Plant pathogenic fungus Bipolaris zeicola | - | [214] |
BZR-cotoxin III (336) | Plant pathogenic fungus Bipolaris zeicola | - | [215] |
Phomafungin (337) | Phoma sp. | Antifungal activity | [216] |
Pleofungin A (338) | Phoma sp. SANK 13899 from a soil sample collected at Tokyo of Japan | Inhibitory activity on inositol phosphorylceramide synthase | [209,210] |
Pleofungin B (339) | Phoma sp. SANK 13899 from a soil sample collected at Tokyo of Japan | Inhibitory activity on inositol phosphorylceramide synthase | [209,210] |
Pleofungin C (340) | Phoma sp. SANK 13899 from a soil sample collected at Tokyo of Japan | Inhibitory activity on inositol phosphorylceramide synthase | [209,210] |
Pleofungin D (341) | Phoma sp. SANK 13899 from a soil sample collected at Tokyo of Japan | Inhibitory activity on inositol phosphorylceramide synthase | [209,210] |
Name | Fungus and Its Origin | Biological Activity | References |
---|---|---|---|
Clavariopsin A (342) | Aquatic hyphomycetes Clavariopsis aquatic | Antifungal activity | [217,218] |
Clavariopsin B (343) | Aquatic hyphomycetes Clavariopsis aquatic | Antifungal activity | [217,218] |
Eujavanicin A (344) | Eupenicillium javanicum | Antifungal activity | [221] |
Pleosporin A (345) | Unidentified elephant dung fungus of the family Pleosporaceae | Antimalarial activity | [222] |
Sch 217048 (346) | Unidentified fungus | Neurokinin antagonist activity | [223] |
- | Inhition on tachykinin receptor | [219] | |
Unidentified elephant dung fungus of the family Pleosporaceae | Antimalarial activity on Plasmodium falciparum K1 | [222] | |
Freshwater fungus Clohesyomyces aquaticus | - | [220] | |
Sch 218157 (347) | Unidentified elephant dung fungus of the family Pleosporaceae | Antimalarial activity on Plasmodium falciparum K1 | [222] |
Sch 378161 (348) | Unidentified fungus | Inhition on tachykinin receptor | [219] |
Freshwater fungus Clohesyomyces aquaticus | - | [220] | |
Sch 378167 (349) | Unidentified fungus | Inhition on tachykinin receptor | [219] |
Sch 378199 (350) | Unidentified fungus | Inhition on tachykinin receptor | [219] |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.; Gong, X.; Li, P.; Lai, D.; Zhou, L. Structural Diversity and Biological Activities of Cyclic Depsipeptides from Fungi. Molecules 2018, 23, 169. https://doi.org/10.3390/molecules23010169
Wang X, Gong X, Li P, Lai D, Zhou L. Structural Diversity and Biological Activities of Cyclic Depsipeptides from Fungi. Molecules. 2018; 23(1):169. https://doi.org/10.3390/molecules23010169
Chicago/Turabian StyleWang, Xiaohan, Xiao Gong, Peng Li, Daowan Lai, and Ligang Zhou. 2018. "Structural Diversity and Biological Activities of Cyclic Depsipeptides from Fungi" Molecules 23, no. 1: 169. https://doi.org/10.3390/molecules23010169
APA StyleWang, X., Gong, X., Li, P., Lai, D., & Zhou, L. (2018). Structural Diversity and Biological Activities of Cyclic Depsipeptides from Fungi. Molecules, 23(1), 169. https://doi.org/10.3390/molecules23010169