The Effect of Combining Natural Terpenes and Antituberculous Agents against Reference and Clinical Mycobacterium tuberculosis Strains
Abstract
:1. Introduction
2. Results
2.1. Spoligotyping
2.2. Reference Avirulent Strain H37Ra
2.3. Virulent, Sensitive and Drug-Resistant Strains
2.4. Cytotoxicity Evaluation
3. Discussion
4. Materials and Methods
4.1. Tested Compounds
4.2. Mycobacterial Strains
4.3. Spoligotyping
4.4. Minimal Inhibitory Concentration Determination
4.5. Evaluation of Interactions between Terpenes and Antibiotics
4.6. Cytotoxicity Study
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- World Health Organization (WHO). Global Tuberculosis Report; World Health Organization: Rome, Italy, 2016; pp. 1–3. [Google Scholar]
- Ge, F.; Zeng, F.; Liu, S.; Guo, N.; Ye, H.; Song, Y.; Fan, J.; Wu, X.; Wang, X.; Deng, X.; et al. In vitro synergistic interactions of oleanolic acid in combination with isoniazid, rifampicin or ethambutol against Mycobacterium tuberculosis. J. Med. Microbiol. 2010, 59, 567–572. [Google Scholar] [CrossRef] [PubMed]
- Knezevic, P.; Aleksic, V.; Simin, N.; Svircev, E.; Petrovic, A.; Mimica-DUKic, N. Antimicrobial activity of Eucalyptus camaldulensis essential oils and their interactions with conventional antimicrobial agents against multi-drug resistant Acinetobacter baumannii. J. Ethnopharmacol. 2016, 178, 125–136. [Google Scholar] [CrossRef] [PubMed]
- Rosato, A.; Vitali, C.; DeLaurentis, N.; Armenise, D.; Milillo, A.M. Antibacterial effect of some essential oils administered alone or in combination with norfloxacin. Phytomedecine 2007, 14, 727–732. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Huang, S.; Sun, F.; Chiang, Y.; Chiang, C.; Tsai, C.; Wenga, C. Transformation of cinnamic acid from trans- to cis-form raises a notable bactericidal and synergistic activity against multiple-drug resistant Mycobacterium tuberculosis. Eur. J. Pharm. Sci. 2011, 43, 188–194. [Google Scholar] [CrossRef] [PubMed]
- Rastogi, N.; Goh, K.S.; Horgen, L.; Barrow, W.W. Synergistic activities of antituberculous drugs with cerulenin and trans-cinnami cacid against Mycobacterium tuberculosis. FEMS Immunol. Med. Microbiol. 1998, 21, 149–157. [Google Scholar] [CrossRef] [PubMed]
- Silva, F.; Ferreira, S.; Duarte, A.; Mendonça, D.I.; Domingues, F.C. Antifungal activity of Coriandrum sativum essential oil, its mode of action against Candida species and potential synergism with amphotericin B. Phytomedicine 2011, 19, 42–47. [Google Scholar] [CrossRef] [PubMed]
- Cristani, M.D.; Arrigo, M.; Mandalari, G.; Castelli, F.; Sarpietro, M.G.; Micieli, D.; Venuti, V.; Bisignano, G.; Saija, A.; Trombetta, D. Interaction of four monoterpenes contained in essential oils with model membranes: Implications for their antibacterial activity. J. Agric. Food Chem. 2007, 55, 6300–6308. [Google Scholar] [CrossRef] [PubMed]
- Lopez-Romero, J.C.; González-Ríos, H.; Borges, A.; Simões, M. Antibacterial effects and mode of action of selected essential oils components against Escherichia coli and Staphylococcus aureus. Evid. Based Complement. Altern. Med. 2015, 2015, 795435. [Google Scholar] [CrossRef] [PubMed]
- Nazzaro, F.; Fratianni, F.; De Martino, L.; Coppola, R.; De Feo, V. Effect of essential oils on pathogenic bacteria. Pharmaceuticals 2013, 6, 1451–1474. [Google Scholar] [CrossRef] [PubMed]
- Trombetta, D.; Castelli, F.; Sarpietro, M.G.; Venuti, V.; Cristani, M.; Daniele, C.; Saija, A.; Mazzanti, G.; Bisignano, G. Mechanisms of antibacterial action of three monoterpenes. Antimicrob. Agents Chemother. 2005, 49, 2474–2478. [Google Scholar] [CrossRef] [PubMed]
- Hyldgaard, M.; Mygind, T.; Meyer, R.L. Essential oils in food preservation: Mode of action, synergies, and interactions with food matrix components. Front. Microbiol. 2012, 25, 3–12. [Google Scholar] [CrossRef] [PubMed]
- Langeveld, W.T.; Veldhuizen, E.J.A.; Bur, S.A. Synergy between essential oil components and antibiotics: A review. Crit. Rev. Microbiol. 2014, 40, 76–94. [Google Scholar] [CrossRef] [PubMed]
- Rosato, A.; Piarulli, M.; Corbo, F.; Muraglia, M.; Carone, A.; Vitali, M.E.; Vitali, C. In vitro synergistic antibacterial action of certain combinations of gentamicin and essential oils. Curr. Med. Chem. 2010, 17, 3289–3295. [Google Scholar] [CrossRef] [PubMed]
- Moussaoui, F.; Alaoui, T. Evaluation of antibacterial activity and synergistic effect between antibiotic and the essential oils of some medicinal plants. Asian Pac. J. Trop. Biomed. 2016, 6, 32–37. [Google Scholar] [CrossRef]
- Dudek, G.; Grzywna, Z.J.; Willco, M.L. Classification of antituberculosis herbs for remedial purposes by using fuzzy sets. BioSystems 2008, 94, 285–289. [Google Scholar] [CrossRef] [PubMed]
- Baser, K.H.C.; Buchbauer, G. Handbook of Essential Oils: Science, Technology, and Applications; CRC Press: Boca Raton, FL, USA, 2015. [Google Scholar]
- Sjodin, K.; Persson, M.; Faldt, J.; Ekberg, I.; Borg-Karlson, A.K. Occurrence and correlations of monoterpene hydrocarbon enantiomers in pinus sylvestris and picea abies. J. Chem. Ecol. 2000, 26, 1701–1720. [Google Scholar] [CrossRef]
- Zheljazkov, V.D.; Semerdjieva, I.B.; Dincheva, I.; Kacaniova, M.; Astatkie, T.; RadoUKova, T.; Schlegel, V. Antimicrobial and antioxidant activity of Juniper galbuli essential oil constituents eluted at different times. Ind. Crops Prod. 2017, 109, 529–537. [Google Scholar] [CrossRef]
- Zebib, B.; Beyrouthy, M.E.L.; Sarfi, C.; Merah, O. Chemical composition of the essential oil of Ssatureja myrtifolia (Boiss. & Hohen.) from Lebanon. J. Essent. Oil-Bear. Plants 2015, 18, 248–254. [Google Scholar]
- Healthcare, T. PDR for Herbal Medicine; Medical Economics Company: Montvale, NJ, USA, 2007. [Google Scholar]
- Padovan, A.; Keszei, A.; Kulheim, C.; Foley, W.J. The evolution of foliar terpene diversity in myrtaceae. Phytochem. Rev. 2014, 13, 695–716. [Google Scholar]
- Fall, R.; Ngom, S.; Sall, D.; Sembene, M.; Samb, A. Chemical characterization of essential oil from the leaves of Callistemon viminalis (D.R.) and Melaleuca leucadendron (Linn.). Asian Pac. J. Trop. Biomed. 2017, 4, 347–351. [Google Scholar] [CrossRef]
- Kamatou, G.P.P.; Viljoen, A.M.A. Review of the application and pharmacological properties of alpha-bisabolol and alpha-bisabolol-rich oils. J. Am. Oil Chem. Soc. (JAOCS) 2010, 87, 1–7. [Google Scholar] [CrossRef]
- Wang, S.; Zhao, Z.; Sun, Y.-T.; Zeng, Z.; Zhan, X.; Li, C.; Xie, T. A review of medicinal plant species with elemene in China. Afr. J. Pharm. Pharmacol. 2012, 6, 3032–3040. [Google Scholar] [CrossRef]
- Borek, T.T.; Hochrein, J.M.; Irwin, A.N. Composition of the Essential Oils from Rocky Mountain Juniper (Juniperus scopulorum), Big Sagebrush (Artemisia tridentata), and White Sage (Salvia Apiana); Sandia National Laboratories: Albuquerque, NM, USA, 2003. [Google Scholar]
- Maya, K.M.; Zachariach, T.J.; Krishnamoorthy, B. Chemical composition of essential oil of nutmeg (Mmyristica fragrans Hout) accessions. J. Species Aromat. Crops 2004, 13, 135–139. [Google Scholar]
- Rouatbi, M.; Duquenoy, A.; Giampaoli, P. Extraction of the essential oil of thyme and black pepper by superheated steam. J. Food Eng. 2007, 78, 708–714. [Google Scholar] [CrossRef]
- Sieniawska, E.; Swiatek, L.; Rajtar, B.; Kozioł, E.; Polz-Dacewicz, M.; Skalicka-Wozniak, K. Carrot seed essential oil—Source of carotol and cytotoxicity study. Ind. Crops Prod. 2016, 92, 109–115. [Google Scholar] [CrossRef]
- Sieniawska, E.; Swatko-Ossor, M.; Sawicki, R.; Ginalska, G. Morphological changes in the overall Mycobacterium tuberculosis H37Ra cell shape and cytoplasm homogeneity due to Mutellina purpurea L. Essential oil and its main constituents. Med. Princ. Pract. 2015, 24, 527–532. [Google Scholar] [CrossRef] [PubMed]
- Sieniawska, E.; Swatko-Osso, M.; Sawicki, R.; Skalicka-Woźniak, K.; Ginalska, G. Natural terpenes influence the activity of antibiotics against isolated Mycobacterium tuberculosis. Med. Princ. Pract. 2017, 26, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Warren, R.M.; Streicher, E.M.; Charalambous, S.; Churchyard, G.; Van der Spuy, G.D.; Grant, A.D.; Van Helden, P.D.; Victor, C.T. Use of spoligotyping for accurate classification of recurrent tuberculosis. J. Clin. Microbiol. 2002, 40, 3851–3853. [Google Scholar] [CrossRef] [PubMed]
- Da Silva, S.L.; Figueiredo, P.M.; Yano, T. Cytotoxic evaluation of essential oil from Zanthoxylum rhoifolium Lam. Leaves. Acta Amazon. 2007, 37, 281–286. [Google Scholar] [CrossRef]
- Huang, L. Synthesis of (−)-Beta-elemene, (−)-Beta-elemenal, (−)-Beta-elemenol, (−)-Beta-elemene Fluoride and Their Analogues, Intermediates and Composition and Uses Thereof. WO 2006016912 A2, 16 February 2006. [Google Scholar]
- Nguta, J.M.; Appiah-Opong, R.; Nyarko, A.K.; Yeboah-Manu, D.C.; Addo, P.G.A. Current perspectives in drug discovery against tuberculosis from natural products. Int. J. Mycobacteriol. 2015, 4, 165–183. [Google Scholar] [CrossRef] [PubMed]
- Andrade-Ochoa, S.; Nevárez-Moorillón, G.V.; Sánchez-Torres, L.E.; Villanueva-García, M.; Sánchez-Ramírez, B.E.; Rodríguez-Valdez, L.M.; Rivera-Chavira, B.E. Quantitative structure-activity relationship of molecules constituent of different essential oils with antimycobacterial activity against Mycobacterium tuberculosis and Mycobacterium bovis. BMC Complement. Altern. Med. 2015, 15, 333. [Google Scholar] [CrossRef] [PubMed]
- Bouwmeester, H.J.; Gershenzon, J.; Konings, M.C.J.M.; Croteau, R. Biosynthesis of the monoterpenes limonene and carvone in the fruit of caraway. I. Demonstration of enzyme activities and their changes with development. Plant Physiol. 1998, 117, 901–912. [Google Scholar] [CrossRef] [PubMed]
- Jin, J.; Zhang, J.Y.; Guo, N.; Sheng, H.; Li, L.; Liang, J.C.; Wang, X.L.; Li, Y.; Liu, M.Y.; Wu, X.P.; et al. Farnesol, a potential efflux pump inhibitor in Mycobacterium smegmatis. Molecules 2010, 15, 7750–7762. [Google Scholar] [CrossRef] [PubMed]
- Sawicki, R.; Sieniawska, E.; Swatko-Ossor, M.; Golus, J.; Ginalska, G. The frequently occurring components of essential oils beta-elemene and R-limonene alter expression of dprE1 and clgr genes of mycobacterium tuberculosis h37ra. Food Chem. Toxicol. 2017, 145–149. [Google Scholar] [CrossRef] [PubMed]
- Yap, P.S.X.; Yiap, B.C.; Ping, H.C.; Lim, S.H.E. Essential oils, a new horizon in combating bacterial antibiotic resistance. Open Microbiol. J. 2014, 8, 6–14. [Google Scholar] [CrossRef] [PubMed]
- Young, K.D. The selective value of bacterial shape. Microbiol. Mol. Biol. Rev. 2006, 70, 660–703. [Google Scholar] [CrossRef] [PubMed]
- Carson, C.F.; Mee, B.J.; Riley, T.V. Mechanism of action of Melaleuca alternifolia (tea tree) oil on Staphylococcus aureus determined by time-kill, lysis, leakage, and salt tolerance assays and electron microscopy. Antimicrob. Agents Chemother. 2002, 46, 1914–1920. [Google Scholar] [CrossRef] [PubMed]
- Reichling, J.; Harkenthal, M.; Geiss, H.; Hoppe-Tichy, T.; Saller, R. Electron microscopic and biochemical investigations on the antibacterial effects of Australian tea tree oil against Staphylococcus aureus. Curr. Top. Phytochem. 2002, 5, 77–84. [Google Scholar]
- Zengin, H.; Baysal, A.H. Antibacterial and antioxidant activity of essential oil terpenes against pathogenic and spoilage-forming bacteria and cell structure-activity relationships evaluated by sem microscopy. Molecules 2014, 19, 17773–17798. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.S.; Krause, R.; Schreiber, J.; Krause, R.; Schreiber, J.; Mollenkopf, H.J.; Kowall, J.; Stein, R.; Jeon, B.Y.; Kwak, J.Y.; et al. Mutation in the transcriptional regulator phop contributes to avirulence of Mycobacterium tuberculosis H37Ra strain. Cell Host Microbe 2008, 3, 97–103. [Google Scholar] [CrossRef] [PubMed]
- Perez, E.; Samper, S.; Bordas, Y.; Guilhot, C.; Gicquel, B.; Martin, C. An essential role for phop in Mycobacterium tuberculosis virulence. Mol. Microbiol. 2001, 41, 179–187. [Google Scholar] [CrossRef] [PubMed]
- Walters, S.B.; Dubnau, E.; Kolesnikova, I.; Laval, F.; Daffe, M.; Smith, I. The Mycobacterium tuberculosis phopr two-component system regulates genes essential for virulence and complex lipid biosynthesis. Mol. Microbiol. 2006, 60, 312–330. [Google Scholar] [CrossRef] [PubMed]
- Das, A.K.; Kumar, V.A.; Sevalkar, R.R.; Bansal, R.; Sarkar, D. Unique n-terminal arm of Mycobacterium tuberculosis phop protein plays an unusual role in its regulatory function. J. Biol. Chem. 2013, 288, 29182–29192. [Google Scholar] [CrossRef] [PubMed]
- Goyal, R.; Das, A.K.; Singh, R.; Singh, P.K.; Korpole, S.; Sarkar, D. Phosphorylation of Phop protein plays direct regulatory role in lipid biosynthesis of Mycobacterium tuberculosis. J. Biol. Chem. 2011, 286, 45197–45208. [Google Scholar] [CrossRef] [PubMed]
- Asensio, J.G.; Maia, C.; Ferrer, N.L.; Walters, S.B.; Laval, F.; Barilone, N.; Laval, F.; Soto, C.Y.; Winter, N.; Daffe, M.; et al. The virulence-associated two component phop-phor system controls the biosynthesis of polyketide-derived lipids in Mycobacterium tuberculosis. J. Biol. Chem. 2006, 281, 1313–1316. [Google Scholar] [CrossRef] [PubMed]
- Gilbert, P.; Evans, D.J.; Evans, E.; Duguid, I.G.; Brown, M.R.W. Surface characteristics and adhesion of Escherichia coli and Staphylococcus epidermidis. J. Appl. Bacteriol. 1991, 71, 72–77. [Google Scholar] [PubMed]
- Lerebour, G.; Cupferman, S.; Bellon-Fontaine, M.N. Adhesion of Staphylococcus aureus and Staphylococcus epidermidis to the episkin reconstructed epidermis model and to an inert stainless steel substrate. J. Appl. Microbiol. 2004, 97, 7–16. [Google Scholar] [CrossRef] [PubMed]
- Palmer, J.; Flint, S.; Brooks, J. Bacterial cell attachment, the beginning of a biofilm. J. Ind. Microbiol. Biotechnol. 2007, 34, 577–588. [Google Scholar] [CrossRef] [PubMed]
- Rhoades, E.R.; Streeter, C.; Turk, J.; Hsu, F.F. Characterization of sulfolipids of Mycobacterium tuberculosis H37Rv by multiple-stage linear ion-trap high-resolution mass spectrometry with electrospray ionization reveals that the family of sulfolipid II predominates. Biochemistry 2011, 50, 9135–9147. [Google Scholar] [CrossRef] [PubMed]
- Helander, I.M.; Alakomi, H.L.; Latva-Kala, K.; Mattila-Sandholm, T.; Pol, I.; Smid, E.J.; Gorris, L.G.M.; von Wright, A. Characterization of the action of selected essential oil components on gram-negative bacteria. J. Agric. Food Chem. 1998, 46, 3590–3595. [Google Scholar] [CrossRef]
- Shrivastava, S.; Bera, T.; Roy, A.; Singh, G.; Ramachandrarao, P.; Dash, D. Characterization of enhanced antibacterial effects of novel silver nanoparticles. Nanotechnology 2007, 18, 225103. [Google Scholar] [CrossRef]
- Frostegard, A.; Tunlid, A.; Baath, E. Phospholipid fatty acid comcosition, biomass, and activity of microbial communities from two soil types experimentally exposed to different heavy metals. Appl. Environ. Microbiol. 1993, 199, 3605–3617. [Google Scholar]
- Poger, D.; Caron, B.; Mark, A.E. Effect of methyl-branched fatty acids on the structure of lipid bilayers. J. Phys. Chem. B 2014, 118, 13838–13848. [Google Scholar] [CrossRef] [PubMed]
- Rey-Jurado, E.; Tudó, G.; Martínez, J.A.; González-Martín, J. Synergistic effect of two combinations of antituberculous drugs against Mycobacterium tuberculosis. Tuberculosis 2012, 92, 260–263. [Google Scholar] [CrossRef] [PubMed]
- Bapela, N.B.; Lall, N.; Fourie, F.B.; Franzblau, S.G.; Van Rensburg, C.E.J. Activity of 7-methyl-juglone in combination with antituberculous drugs against Mycobacterium tuberculosis. Phytomedicine 2006, 13, 630–635. [Google Scholar] [CrossRef] [PubMed]
- Ferraz-Carvalho, R.S.; Pereira, M.A.; Linhares, L.A.; Lira-Nogueira, M.C.B. Effects of the encapsulation of usnic acid into liposomes and interactions with antituberculous agents against multidrug-resistant tuberculosis clinical isolates. Memórias do Instituto Oswaldo Cruz 2016, 111, 330–334. [Google Scholar] [CrossRef] [PubMed]
- Rey-Jurado, E.; Tudó, G.; De la Bellacasa, J.P.; Espasa, M.; González-Martín, J. In vitro effect of three-drug combinations of antituberculous agents against multidrug-resistant Mycobacterium tuberculosis isolates. Int. J. Antimicrob. Agents 2013, 41, 278–280. [Google Scholar] [CrossRef] [PubMed]
- Valcourt, C.; Saulnier, P.; Umerska, A.; Zanelli, M.P.; Montagu, A.; Rossines, E.; Joly-Guillou, M.L. Synergistic interactions between doxycycline and terpenic components of essential oils encapsulated within lipid nanocapsules against gram negative bacteria. Int. J. Pharm. 2016, 498, 23–31. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Campbell, E.A.; Korzheva, N.; Mustaev, A.; Murakami, K.; Nair, S.; Goldfarb, A.; Darst, S.A. Structural mechanism for rifampicin inhibition of bacterial RNA polymerase. Cell 2001, 104, 901–912. [Google Scholar] [CrossRef]
- Sieniawska, E.; Sawicki, R.; Swatko-Ossor, M.; Ginalska, G.; Skalicka-Wozniak, K. Nigella damascena L. Essential oil—A source of β-elemene for antimycobacterial testing. In Proceedings of the 48th International Symposium on Essential Oils (ISEO2017), Pécs, Hungary, 10–13 September 2017; p. 53. [Google Scholar]
- Augustynowicz-Kopec, E.; Zwolska, Z. Tuberculosis caused by xdr resistant Mycobacterium tuberculosis in Poland. Microbiological and molecular analysis. Pol. Pulmonol. Allergol. 2007, 75, 32–39. [Google Scholar]
- Augustynowicz-Kopec, E.; Zwolska, Z. Progress in diagnostics and the molecular epidemiology of Mycobacterium tuberculosis. Adv. Microbiol. 2010, 49, 151–156. [Google Scholar]
- Brudey, K.; Driscoll, J.R.; Rigouts, L.; Prodinger, W.M.; Gori, A.; Al-Hajoj, S.A.; Allix, C.; Aristimuño, L.; Arora, J.; Baumanis, V.; et al. Mycobacterium tuberculosis complex genetic diversity: Mining the fourth international spoligotyping database (SpolDB4) for classification, population genetics and epidemiology. BMC Microbiol. 2006, 6, 23–24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zwolska, Z.; Augustynowicz-Kopec, E.; Klatt, M. Primary and bcquired drug resistance of tuberculosis bacilli in Poland. Pol. Pulmonol. Allergol. 1999, 67, 536–545. [Google Scholar]
- Clinical and Laboratory Standards Institute (CLSI). Methods for Determining Bactericidal Activity of Antimicrobial Agents. Approved Guideline; CLSI Document M26-A; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 1999. [Google Scholar]
- Odds, F.C. Synergy, antagonism, and what the chequerboard puts between them. J. Antimicrob. Chemother. 2003, 52, 1–2. [Google Scholar] [CrossRef] [PubMed]
- Kolmas, J.; Pajor, K.; Pajchel, L.; Przekora, A.; Ginalska, G.; Oledzka, E.; Sobczak, M. Fabrication and physicochemical characterization of porous composite microgranules with selenium oxyanions and risedronate sodium for potential applications in bone tumors. Int. J. Nanomed. 2017, 12, 5633–5642. [Google Scholar] [CrossRef] [PubMed]
Sample Availability: Samples of the compounds are not available from the authors. |
Strain | Resistance Pattern | Spoligotyp |
---|---|---|
H37RaATTC 25177 | susceptible | H37Ra |
H37RV ATTC 25618 | susceptible | H37Rv |
192 | susceptible | T1 53 |
12331 | IRE | H1 47 |
253/16 | IRE | T1 1558 |
85/13 | SIRE | Beijing 1 |
126 | INH | T1 1558 |
MIC μg/mL | |||||||
---|---|---|---|---|---|---|---|
H37Ra | H37Rv | 192 | 12331 | 253/16 | 85/13 | 126 | |
EMB | 4 | 0.25 | <0.125 | 16 | 64 | 16 | 0.25 |
RMP | 1 | 0.25 | <0.125 | 256 | 4 | 128 | 0.25 |
INH | 0.125 | <0.125 | <0.125 | 16 | 8 | 16 | 0.5 |
α-pinene | 128 | 128 | 128 | >512 | 256 | 512 | 128 |
sabinene | 64 | 128 | 128 | >512 | 256 | 512 | 128 |
bisabolol | 64 | 16 | 16 | 256 | 128 | 128 | 32 |
β-elemene | 32 | 256 | 256 | 256 | >512 | >512 | 256 |
myrcene | 128 | 256 | 256 | 512 | >512 | >512 | 256 |
(S)-limonene | 32 | 256 | 256 | 512 | >512 | >512 | 256 |
(R)-limonene | 32 | 128 | 128 | 128 | 256 | 256 | 128 |
MIC (μg/mL) for EMB in a Presence of Terpenes | |||||||
H37Ra | H37Rv | 192 | 12331 | 253/16 | 85/13 | 126 | |
α-pinene | 1 | 0.125 | <0.125 | 16 | 32 | 16 | 0.25 |
sabinene | 0.5 | 0.25 | <0.125 | 16 | 64 | 16 | 0.25 |
bisabolol | 1 | 0.125 | <0.125 | 8 | 32 | 16 | 0.125 |
β-elemene | 1 | 0.25 | <0.125 | 16 | 64 | 16 | 0.25 |
myrcene | 0.5 | 0.25 | <0.125 | 16 | 64 | 16 | 0.25 |
(S)-limonene | 0.5 | 0.25 | <0.125 | 16 | 32 | 16 | 0.25 |
(R)-limonene | 1 | 0.125 | <0.125 | 8 | 32 | 16 | 0.125 |
MIC (μg/mL) for RMP in a Presence of Terpenes | |||||||
H37Ra | H37Rv | 192 | 12331 | 253/16 | 85/13 | 126 | |
α-pinene | 0.0625 | 0.25 | <0.125 | 256 | 4 | 128 | 0.25 |
sabinene | 0.0625 | 0.25 | <0.125 | 256 | 4 | 128 | 0.25 |
bisabolol | 0.0625 | 0.125 | <0.125 | 128 | 2 | 64 | 0.125 |
β-elemene | 0.0625 | 0.25 | <0.125 | 256 | 4 | 128 | 0.25 |
myrcene | 0.125 | 0.25 | <0.125 | 256 | 4 | 128 | 0.25 |
(S)-limonene | 0.125 | 0.25 | <0.125 | 256 | 4 | 128 | 0.25 |
(R)-limonene | 0.125 | 0.125 | <0.125 | 128 | 2 | 64 | 0.125 |
MIC (μg/mL) for INH in a Presence of Terpenes | |||||||
H37Ra | H37Rv | 192 | 12331 | 253/16 | 85/13 | 126 | |
α-pinene | 0.125 | <0.125 | <0.125 | 16 | 8 | 16 | 0.5 |
sabinene | 0.0625 | <0.125 | <0.125 | 16 | 8 | 16 | 0.5 |
bisabolol | 0.125 | <0.125 | <0.125 | 8 | 4 | 8 | 0.25 |
β-elemene | 0.0625 | <0.125 | <0.125 | 16 | 8 | 16 | 0.5 |
myrcene | 0.0625 | <0.125 | <0.125 | 16 | 8 | 16 | 0.5 |
(S)-limonene | 0.0625 | <0.125 | <0.125 | 16 | 8 | 16 | 0.5 |
(R)-limonene | 0.125 | <0.125 | <0.125 | 8 | 4 | 8 | 0.25 |
MIC (μg/mL) for α-Pinene in the Presence of Antibiotics | |||||||
H37Ra | H37Rv | 192 | 12331 | 253/16 | 85/13 | 126 | |
EMB | 8 | 128 | 128 | >512 | 256 | 512 | 128 |
RMP | 8 | 64 | 64 | >512 | 256 | 512 | 64 |
INH | 128 | 64 | 64 | >512 | 256 | 512 | 128 |
MIC (μg/mL) for Sabinene in the Presence of Antibiotics | |||||||
H37Ra | H37Rv | 192 | 12331 | 253/16 | 85/13 | 126 | |
EMB | 4 | 128 | 128 | >512 | 256 | 512 | 128 |
RMP | 4 | 128 | 128 | >512 | 256 | 512 | 128 |
INH | 8 | 128 | 128 | >512 | 256 | 512 | 128 |
MIC (μg/mL) for Bisabolol in the Presence of Antibiotics | |||||||
H37Ra | H37Rv | 192 | 12331 | 253/16 | 85/13 | 126 | |
EMB | 2 | 16 | 16 | 256 | 128 | 128 | 32 |
RMP | 4 | 8 | 8 | 64 | 128 | 128 | 32 |
INH | 32 | 8 | 16 | 64 | 128 | 128 | 16 |
MIC (μg/mL) for β-Elemene in the Presence of Antibiotics | |||||||
H37Ra | H37Rv | 192 | 12331 | 253/16 | 85/13 | 126 | |
EMB | 2 | 128 | 128 | 256 | 256 | >512 | 256 |
RMP | 2 | 128 | 128 | 256 | 256 | 256 | 256 |
INH | 4 | 128 | 128 | 256 | 256 | >512 | 256 |
MIC (μg/mL) for Myrcene in the Presence of Antibiotics | |||||||
H37Ra | H37Rv | 192 | 12331 | 253/16 | 85/13 | 126 | |
EMB | 8 | 256 | 256 | 512 | >512 | >512 | 256 |
RMP | 2 | 256 | 256 | 512 | >512 | >512 | 256 |
INH | 64 | 256 | 256 | 512 | >512 | >512 | 256 |
MIC (μg/mL) for (S)-Limonene in the Presence of Antibiotics | |||||||
H37Ra | H37Rv | 192 | 12331 | 253/16 | 85/13 | 126 | |
EMB | 2 | 256 | 256 | 512 | >512 | >512 | 256 |
RMP | 0.5 | 256 | 256 | 512 | >512 | >512 | 256 |
INH | 32 | 256 | 256 | 512 | >512 | >512 | 256 |
MIC (μg/mL) for (R)-Limonene in the Presence of Antibiotics | |||||||
H37Ra | H37Rv | 192 | 12331 | 253/16 | 85/13 | 126 | |
EMB | 2 | 64 | 64 | 128 | 128 | 256 | 128 |
RMP | 0.5 | 64 | 64 | 64 | 256 | 256 | 256 |
INH | 32 | 64 | 64 | 128 | 128 | 256 | 128 |
FICI Values Obtained for Mycobacterial Strains | |||||||
---|---|---|---|---|---|---|---|
H37Ra | H37Rv | 192 | 12331 | 256/16 | 85/13 | 126 | |
INH/bisabolol | 2 | 1.5 | 2 | 0.75 | 1.5 | 1.5 | 1 |
INH/myrcene | 1 | 2 | 2 | 2 | 2 | 2 | 2 |
INH/(R)-limonene | 2 | 1.5 | 1.5 | 1.5 | 1 | 1.5 | 1.5 |
INH/(S)-limonene | 0.6 | 2 | 2 | 2 | 2 | 2 | 2 |
INH/sabinene | 0.6 | 2 | 2 | 2 | 2 | 2 | 2 |
INH/α-pinene | 2 | 1.5 | 1.5 | 2 | 2 | 2 | 2 |
INH/β-elemene | 0.6 | 1.5 | 1.5 | 2 | 1.5 | 2 | 2 |
EMB/bisabolol | 1 | 1.5 | 2 | 1.5 | 1.5 | 2 | 1.5 |
EMB/myrcene | 0.2 | 2 | 2 | 2 | 2 | 2 | 2 |
EMB/(R)-limonene | 0.3 | 1 | 1.5 | 1.5 | 1 | 2 | 1.5 |
EMB/(S)-limonene | 0.1 | 2 | 2 | 2 | 1.5 | 2 | 2 |
EMB/sabinene | 0.2 | 2 | 2 | 2 | 2 | 2 | 2 |
EMB/α-pinene | 0.3 | 1.5 | 2 | 2 | 1.5 | 2 | 2 |
EMB/β-elemene | 0.3 | 1.5 | 1.5 | 2 | 1.5 | 2 | 2 |
RMP/bisabolol | 0.1 | 1 | 1.5 | 0.75 | 1.5 | 1.5 | 1.5 |
RMP/myrcene | 0.1 | 2 | 2 | 2 | 2 | 2 | 2 |
RMP/(R)-limonene | 0.1 | 1 | 1.5 | 1 | 1.5 | 1.5 | 2.5 |
RMP/(S)-limonene | 0.1 | 2 | 2 | 2 | 2 | 2 | 2 |
RMP/sabinene | 0.1 | 2 | 2 | 2 | 2 | 2 | 2 |
RMP/α-pinene | 0.1 | 1.5 | 1.5 | 2 | 2 | 2 | 1.5 |
RMP/β-elemene | 0.1 | 1.5 | 1.5 | 2 | 1.5 | 1.5 | 2 |
Tested Agent | IC50 (μg/mL) |
---|---|
α-Bisabolol | 71.12 |
(S)-Limonene | >500 |
(R)-Limonene | >500 |
α-Pinene | >500 |
Sabinene | 348 |
β-Elemene | ND |
Myrcene | 200 * |
Rifampicin | 141.5 |
Isoniazid | >500 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sieniawska, E.; Sawicki, R.; Swatko-Ossor, M.; Napiorkowska, A.; Przekora, A.; Ginalska, G.; Swatko-Ossor, M.; Augustynowicz-Kopec, E. The Effect of Combining Natural Terpenes and Antituberculous Agents against Reference and Clinical Mycobacterium tuberculosis Strains. Molecules 2018, 23, 176. https://doi.org/10.3390/molecules23010176
Sieniawska E, Sawicki R, Swatko-Ossor M, Napiorkowska A, Przekora A, Ginalska G, Swatko-Ossor M, Augustynowicz-Kopec E. The Effect of Combining Natural Terpenes and Antituberculous Agents against Reference and Clinical Mycobacterium tuberculosis Strains. Molecules. 2018; 23(1):176. https://doi.org/10.3390/molecules23010176
Chicago/Turabian StyleSieniawska, Elwira, Rafal Sawicki, Marta Swatko-Ossor, Agnieszka Napiorkowska, Agata Przekora, Grazyna Ginalska, Marta Swatko-Ossor, and Ewa Augustynowicz-Kopec. 2018. "The Effect of Combining Natural Terpenes and Antituberculous Agents against Reference and Clinical Mycobacterium tuberculosis Strains" Molecules 23, no. 1: 176. https://doi.org/10.3390/molecules23010176
APA StyleSieniawska, E., Sawicki, R., Swatko-Ossor, M., Napiorkowska, A., Przekora, A., Ginalska, G., Swatko-Ossor, M., & Augustynowicz-Kopec, E. (2018). The Effect of Combining Natural Terpenes and Antituberculous Agents against Reference and Clinical Mycobacterium tuberculosis Strains. Molecules, 23(1), 176. https://doi.org/10.3390/molecules23010176