Chemical Composition, Antimicrobial and Antioxidant Activities of the Flower Volatile Oils of Fagopyrum esculentum, Fagopyrum tataricum and Fagopyrum Cymosum
Abstract
:1. Introduction
2. Results and Discussion
2.1. Chemical Compositions Analysis of Volatile Oils
2.2. Antimicrobial Activity
2.3. Antioxidant Activity
3. Experimental
3.1. Plant Material
3.2. Preparation of the Volatile Oils
3.3. Gas Chromatography/Mass Spectrometry (GC/MS) Analysis
3.4. Antibacterial Activity Assay
3.5. DPPH Radical Scavenging Activity Assay
3.6. β-Carotene-Linoleic Acid Bleaching Assay
3.7. Statistical Analysis
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Wang, J.H.; Zhao, J.L.; Liu, H.; Zhou, L.G.; Liu, Z.L.; Wang, J.G.; Han, J.G.; Yu, Z.; Yang, F.Y. Chemical analysis and biological activity of the essential oils of two valerianaceous species from china: Nardostachys chinensis and Valeriana officinalis. Molecules 2010, 15, 6411–6422. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.L.; Zhang, L.F.; Hu, Q.P.; Hao, D.L.; Xu, J.G. Chemical composition, antibacterial activity of Cyperus rotundus rhizomes essential oil against Staphylococcus aureus via membrane disruption and apoptosis pathway. Food Control 2017, 80, 290–296. [Google Scholar] [CrossRef]
- Pandey, A.K.; Singh, P.; Tripathi, N.N. Chemistry and bioactivities of essential oils of some Ocimum species: An overview. Asian Pac. J. Trop. Biomed. 2014, 4, 682–694. [Google Scholar] [CrossRef]
- Donsì, F.; Ferrari, G. Essential oil nanoemulsions as antimicrobial agents in food. J. Biotechnol. 2016, 233, 106–120. [Google Scholar] [CrossRef] [PubMed]
- Guerra-Rosas, M.I.; Morales-Castro, J.; Cubero-Márquez, M.A.; Salvia-Trujillo, L.; Martín-Belloso, O. Antimicrobial activity of nanoemulsions containing essential oils and high methoxyl pectin during long-term storage. Food Control 2017, 77, 131–138. [Google Scholar] [CrossRef]
- Raut, J.S.; Karuppayil, S.M. A status review on the medicinal properties of essential oils. Ind. Crop. Prod. 2014, 62, 250–264. [Google Scholar] [CrossRef]
- Atarés, L.; Chiralt, A. Essential oils as additives in biodegradable films and coatings for active food packaging. Trends Food Sci. Technol. 2016, 48, 51–62. [Google Scholar] [CrossRef]
- Shakeri, A.; Khakdan, F.; Soheili, V.; Sahebkar, A.; Shaddel, R.; Asili, J. Volatile composition, antimicrobial cytotoxic and antioxidant evaluation of the essential oil from Nepeta sintenisii Bornm. Ind. Crop. Prod. 2016, 84, 224–229. [Google Scholar] [CrossRef]
- Zheljazkov, V.D.; Semerdjieva, I.B.; Dincheva, I.; Kacaniova, M.; Astatkie, T.; Radoukova, T.; Schlegel, V. Antimicrobial and antioxidant activity of Juniper galbuli essential oil constituents eluted at different times. Ind. Crop. Prod. 2017, 109, 529–537. [Google Scholar] [CrossRef]
- Janeš, D.; Kantar, D.; Kreft, S.; Prosen, H. Identification of buckwheat (Fagopyrum esculentum Moench) aroma compounds with GC-MS. Food Chem. 2009, 112, 120–124. [Google Scholar] [CrossRef]
- Lee, S.W.; Seo, J.M.; Lee, M.K.; Chun, J.H.; Antonisamy, P.; Arasu, M.V.; Suzuki, T.; Al-Dhabi, N.A.; Kim, S.J. Influence of different LED lamps on the production of phenolic compounds in common and Tartary buckwheat sprouts. Ind. Crop. Prod. 2014, 54, 320–326. [Google Scholar] [CrossRef]
- Fabjan, N.; Rode, J.; Košir, I.J.; Wang, Z.H.; Zhang, Z.; Kreft, I. Tartary buckwheat (Fagopyrum tataricum Gaertn.) as a source of dietary rutin and quercitrin. J. Agric. Food Chem. 2003, 51, 6452–6455. [Google Scholar] [CrossRef] [PubMed]
- Zhao, G.; Zou, L.; Wang, Z.G.; Hu, H.L.; Hu, Y.B.; Peng, L.X. Pharmacokinetic profile of total quercetin after single oral dose of tartary buckwheat extracts in rats. J. Agric. Food Chem. 2011, 59, 4435–4441. [Google Scholar] [CrossRef] [PubMed]
- Qin, P.Y.; Ma, T.J.; Wu, L.; Shan, F.; Ren, G.X. Identification of tartary buckwheat tea aroma compounds with gas chromatography-mass spectrometry. J. Food Sci. 2011, 76, s401–s407. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Zhong, L.; Zou, L.; Zhang, C.; Peng, L.; Xiao, W.; Zhao, G. Efficient promotion of the sprout growth and rutin production of tartary buckwheat by associated fungal endophytes. Cereal Res. Commun. 2014, 42, 401–412. [Google Scholar] [CrossRef]
- Zhong, L.Y.; Niu, B.; Tang, L.; Chen, F.; Zhao, G.; Zhao, J.L. Effects of polysaccharide elicitors from endophytic Fusarium oxysporum Fat9 on the growth, flavonoid accumulation and antioxidant property of Fagopyrum tataricum sprout cultures. Molecules 2016, 21, 1590. [Google Scholar] [CrossRef] [PubMed]
- Chan, P.K. Inhibition of tumor growth in vitro by the extract of fagopyrum cymosum (fago-c). Life Sci. 2003, 72, 1851–1858. [Google Scholar] [CrossRef]
- Stojilkovski, K.; Glavač, N.K.; Kreft, S.; Kreft, I. Fagopyrin and flavonoid contents in common, tartary, and cymosum buckwheat. J. Food Compos. Anal. 2013, 32, 126–130. [Google Scholar] [CrossRef]
- Ren, Q.; Li, Y.F.; Wu, C.S.; Wang, C.H.; Jin, Y.; Zhang, J.L. Metabolism of secondary metabolites isolated from tartary buckwheat and its extract. Food Chem. 2014, 154, 134–144. [Google Scholar] [CrossRef] [PubMed]
- Jing, R.; Li, H.Q.; Hu, C.L.; Jiang, Y.P.; Qin, L.P.; Zheng, C.J. Phytochemical and pharmacological profiles of three fagopyrum buckwheats. Int. J. Mol. Sci. 2016, 17, 589. [Google Scholar] [CrossRef] [PubMed]
- Janeš, D.; Prosen, H.; Kreft, I.; Kreft, S. Aroma compounds in buckwheat (Fagopyrum esculentum Moench) groats, flour, bran, and husk. Cereal Chem. 2010, 87, 141–143. [Google Scholar] [CrossRef]
- Peng, L.X.; Zou, L.; Wang, J.B.; Zhao, J.L.; Xiang, D.B.; Zhao, G. Flavonoids, antioxidant activity and aroma compounds analysis from different kinds of tartary buckwheat tea. Indian J. Pharm. Sci. 2015, 77, 661–667. [Google Scholar] [PubMed]
- Janeš, D.; Prosen, H.; Kreft, S. Identification and quantification of aroma compounds of tartary buckwheat (Fagopyrum tataricum Gaertn.) and some of its milling fractions. J. Food Sci. 2012, 77, c746–c751. [Google Scholar] [CrossRef] [PubMed]
- Ono, M.; Oda, E.; Tanaka, T.; Iida, Y.; Yamasaki, T.; Masuoka, C.; Ikeda, T.; Nohara, T. DPPH radical-scavenging effect on some constituents from the aerial parts of Lippia triphylla. J. Nat. Med. 2008, 62, 101–106. [Google Scholar] [CrossRef] [PubMed]
- Oke, F.; Aslim, B.; Ozturk, S.; Altundag, S. Essential oil composition, antimicrobial and antioxidant activities of Satureja cuneifolia Ten. Food Chem. 2009, 112, 874–879. [Google Scholar] [CrossRef]
- Nagababu, E.; Rifkind, J.M.; Sesikeran, B.; Lakshmaiah, N. Assessment of antioxidant activities of eugenol by in vitro and in vivo methods. Methods Mol. Biol. 2010, 610, 165–180. [Google Scholar] [PubMed]
- Shahat, A.A.; Ibrahim, A.Y.; Hendawy, S.F.; Omer, E.A.; Hammouda, F.M.; Abdel-Rahman, F.H.; Saleh, M.A. Chemical composition, antimicrobial and antioxidant activities of essential oils from organically cultivated fennel cultivars. Molecules 2011, 16, 1366–1377. [Google Scholar] [CrossRef] [PubMed]
- Ren, H.T.; Zhou, B.; Qin, T.F.; Xia, K.G.; Zhou, H.J. Study on antioxidant activity of volatile components from Pu-erh tea. J. Tea Sci. 2014, 34, 213–220. [Google Scholar]
- Nogueira Neto, J.D.; De Almeida, A.A.; Da Silva Oliveira, J.; Dos Sanos, P.S.; De Sousa, D.P.; De Freitas, R.M. Antioxidant effects of nerolidol in mice hippocampus after open field test. Neurochem. Res. 2013, 38, 1861–1870. [Google Scholar] [CrossRef] [PubMed]
- Van den Dool, H.; Kratz, P.D. A generalization of the retention index system including linear temperature programmed gas-liquid partion chromatography. J. Chromatogr. A 1963, 11, 463–471. [Google Scholar] [CrossRef]
- Zhao, J.L.; Shan, T.J.; Huang, Y.F.; Liu, X.L.; Gao, X.W.; Wang, M.A.; Jiang, W.B.; Zhou, L.G. Chemical composition and in vitro antimicrobial activity of the volatile oils from Gliomastix murorum and Pichia guilliermondii, two endophytic fungi in Paris polyphylla var. yunnanensis. Nat. Prod. Commun. 2009, 4, 1491–1496. [Google Scholar] [PubMed]
- Abe, K.; Matsuki, N. Measurement of cellular 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) reduction activity and lactate dehydrogenase release using MTT. Neurosci. Res. 2000, 38, 325–329. [Google Scholar] [CrossRef]
- Sakuma, M. Probit analysis of preference data. App. Entomol. Zool. 1998, 33, 339–347. [Google Scholar] [CrossRef]
- Ebrahimabadi, A.H.; Ebrahimabadi, E.H.; Djafari-Bidgoli, Z.; Kashi, F.J.; Mazoochi, A.; Batooli, H. Composition and antioxidant and antimicrobial activity of essential oil and extracts of Stachys inflata Benth from Iran. Food Chem. 2010, 119, 452–458. [Google Scholar] [CrossRef]
Sample Availability: Samples of the buckwheat flower volatile oils are available from the authors. |
Species | Flower Biomass (g) | Volatile Oil Volume (mL) | Volatile Oil Yield (v/w, %) |
---|---|---|---|
F. esculentum | 380.0 | 1.08 | 0.28 |
F. tataricum | 176.0 | 0.75 | 0.43 |
F. cymosum | 400.0 | 1.25 | 0.31 |
No. | Compounds | RI a | RA (%) b | ||
---|---|---|---|---|---|
F. esculentum | F. tataricum | F. cymosum | |||
1 | 3-Penten-2-one | 1199 | 1.33 | - | - |
2 | 1-Pentanol | 1281 | - | - | 1.57 |
3 | (Z)-2-Penten-1-ol | 1340 | - | - | 2.40 |
4 | 6-Methyl-5-hepten-2-one | 1358 | - | - | 3.71 |
5 | 1-Hexanol | 1367 | 2.40 | - | 7.07 |
6 | (E)-3-Hexen-1-ol | 1378 | 6.52 | - | 1.54 |
7 | (E)-3-Hexen-1-yl acetate | 1401 | 2.78 | 8.03 | |
8 | (E)-2-Octenal | 1447 | 2.66 | - | - |
9 | 2-Furancarboxaldehyde | 1487 | - | 3.25 | - |
10 | Linalool oxide | 1488 | - | - | 7.47 |
11 | Pentadecane | 1499 | 2.02 | - | - |
12 | 2-Ethyl-1-hexanol | 1501 | - | - | 3.22 |
13 | 1-(2-Furanyl)-ethanone | 1528 | - | - | 1.31 |
14 | 1-Octanol | 1568 | 1.01 | - | 6.71 |
15 | 5-Methyl-2-furancarboxaldehyde | 1595 | 2.76 | 2.50 | - |
16 | Benzeneacetaldehyde | 1669 | 4.54 | - | - |
17 | Heptadecane | 1699 | 2.99 | - | - |
18 | (-)-α-Terpineol | 1715 | 4.19 | - | - |
19 | 1-(3,5-Dimethyl-2-pyrazinyl)-1-ethanone | 1753 | - | - | 4.46 |
20 | Octadecane | 1799 | 1.64 | - | - |
21 | Tetradecanal | 1829 | 2.11 | - | - |
22 | t-anethole | 1847 | -- | 4.25 | |
23 | Nonadecane | 1899 | 2.26 | - | - |
24 | Phenylethyl alcohol | 1900 | - | 4.60 | 2.34 |
25 | 1-(6,6-Dimethyl-2-methylene-3-cyclohexenyl)-buten-3-one | 1959 | - | - | 4.36 |
26 | (Z)-Jasmone | 1964 | - | - | 5.32 |
27 | Benzothiazole | 1983 | 5.08 | 2.64 | 6.72 |
28 | Eicosane | 1998 | 3.06 | - | - |
29 | Hexadecanal | 2040 | 2.89 | - | - |
30 | Isopropyl myristate | 2045 | 4.06 | - | - |
31 | Nerolidol | 2053 | - | 2.18 | - |
32 | Octanoic acid | 2091 | 2.82 | - | - |
33 | Heneicosane | 2100 | 3.08 | 5.28 | - |
34 | 2,6-di(t-Butyl)-4-hydroxy-4-methyl-2,5-cyclohexadien-1-one | 2117 | 2.70 | - | - |
35 | 2-Pentadecanone | 2129 | - | 18.61 | - |
36 | 6,10,14-Trimethyl-2-pentadecanone | 2131 | 5.06 | - | - |
37 | Eugenol | 2172 | - | 17.18 | 12.22 |
38 | Nonanoic acid | 2174 | 7.58 | - | - |
39 | t-Muurolol | 2206 | - | - | 1.43 |
40 | Methyl hexadecanoate | 2212 | 3.70 | - | - |
41 | Decanoic acid | 2232 | 3.99 | - | - |
42 | 2,4-bis(1,1-Dimethylethyl)-phenol | 2249 | - | 3.80 | - |
43 | Undecanoic acid | 2265 | 3.22 | - | - |
44 | (E,E)-Farnesylacetone | 2275 | - | 7.15 | - |
45 | 1-Methylindole | 2315 | - | 1.83 | - |
46 | Dodecanoic acid | 2323 | 2.28 | - | - |
47 | Ethyl linoleate | 2335 | - | 3.21 | - |
48 | 1,2-Benzenedicarboxylic acid, bis(2-methylpropyl) ester | 2347 | - | 13.19 | 2.99 |
49 | Phytol | 2370 | - | 3.06 | - |
50 | Hexadecanoic acid | 2543 | 4.16 | - | 3.11 |
Total identified | 92.89 | 88.48 | 90.23 | ||
Ketones | 9.09 | 25.76 | 13.39 | ||
Alcohols | 9.93 | 7.66 | 24.85 | ||
Esters | 10.54 | 16.40 | 11.02 | ||
Phenols | - | 20.98 | 12.22 | ||
Terpenoids | 4.19 | 2.18 | 9.90 | ||
Aldehydes | 14.96 | 5.75 | - |
Test Bacterium | MIC (μg/mL) | IC50 (μg/mL) | ||||||
---|---|---|---|---|---|---|---|---|
VO of F. esc. | VO of F. tat. | VO of F. cym. | CK+ | VO of F. esc. | VO of F. tat. | VO of F. cym. | CK+ | |
A. tumefaciens | 400 | 200 | 200 | 80 | 251.38 ± 1.76 | 134.06 ± 0.68 | 122.56 ± 0.82 | 45.58 ± 0.86 |
E. coli | 600 | 400 | 400 | 60 | 382.46 ± 2.18 | 227.58 ± 1.42 | 213.18 ± 1.82 | 36.82 ± 0.62 |
P. lachrymans | 400 | 200 | 200 | 60 | 248.73 ± 1.25 | 123.68 ± 1.26 | 116.28 ± 1.04 | 32.52 ± 0.45 |
X. vesicatoria | 400 | 200 | 100 | 60 | 226.82 ± 0.83 | 106.36 ± 0.88 | 68.32 ± 0.62 | 31.36 ± 0.76 |
B. subtilis | 800 | 600 | 400 | 100 | 436.14 ± 1.28 | 322.76 ± 2.38 | 216.36 ± 2.08 | 58.62 ± 1.27 |
S. aureus | 800 | 800 | 400 | 200 | 478.42 ± 3.58 | 452.32 ± 2.16 | 228.62 ± 1.78 | 106.56 ± 1.38 |
Sample | DPPH Scavenging Activity IC50 (μg/mL) | β-Carotene-Linoleic Bleaching Assay IC50 (μg/mL) |
---|---|---|
VO of F. esculentum | 354.15 ± 3.82 | 242.06 ± 2.48 |
VO of F. tataricum | 210.63 ± 2.68 | 184.13 ± 2.06 |
VO of F. cymosum | 264.92 ± 1.84 | 206.11 ± 1.72 |
CK+ | 37.86 ± 0.78 | 25.32 ± 0.68 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, J.; Jiang, L.; Tang, X.; Peng, L.; Li, X.; Zhao, G.; Zhong, L. Chemical Composition, Antimicrobial and Antioxidant Activities of the Flower Volatile Oils of Fagopyrum esculentum, Fagopyrum tataricum and Fagopyrum Cymosum. Molecules 2018, 23, 182. https://doi.org/10.3390/molecules23010182
Zhao J, Jiang L, Tang X, Peng L, Li X, Zhao G, Zhong L. Chemical Composition, Antimicrobial and Antioxidant Activities of the Flower Volatile Oils of Fagopyrum esculentum, Fagopyrum tataricum and Fagopyrum Cymosum. Molecules. 2018; 23(1):182. https://doi.org/10.3390/molecules23010182
Chicago/Turabian StyleZhao, Jianglin, Lan Jiang, Xiaohui Tang, Lianxin Peng, Xing Li, Gang Zhao, and Lingyun Zhong. 2018. "Chemical Composition, Antimicrobial and Antioxidant Activities of the Flower Volatile Oils of Fagopyrum esculentum, Fagopyrum tataricum and Fagopyrum Cymosum" Molecules 23, no. 1: 182. https://doi.org/10.3390/molecules23010182
APA StyleZhao, J., Jiang, L., Tang, X., Peng, L., Li, X., Zhao, G., & Zhong, L. (2018). Chemical Composition, Antimicrobial and Antioxidant Activities of the Flower Volatile Oils of Fagopyrum esculentum, Fagopyrum tataricum and Fagopyrum Cymosum. Molecules, 23(1), 182. https://doi.org/10.3390/molecules23010182