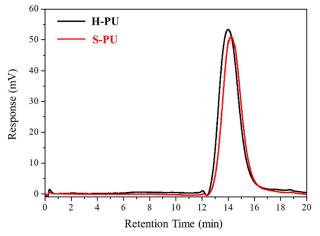

## **Supplementary Material**

## Sorbitol as a chain extender of polyurethane prepolymers to prepare self-healable and robust polyhydroxyurethane elastomers


## Sang-Hyub Lee, Se-Ra Shin and Dai-Soo Lee\*

Department of Semiconductor and Chemical Engineering, Chonbuk National University, 567 Baekjedaero, Deokjini-gu, Jeonju-si, Chonbuk, 54896, Republic of Korea

\* Correspondence: daisoolee@jbnu.ac.kr; Tel.: +82-63-270-2431



**Figure S1.** Enlarged views of the FT-IR spectra of S-PU and H-PU: (a) from  $4000 \text{ to } 2500 \text{ cm}^{-1}$ ; (b) from  $1200 \text{ to } 1000 \text{ cm}^{-1}$ .



**Figure S2.** GPC traces of the synthesized S-PU and H-PU.

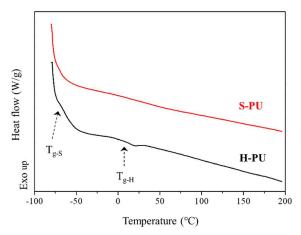



Figure S3. DSC thermogram of S-PU and H-PU.

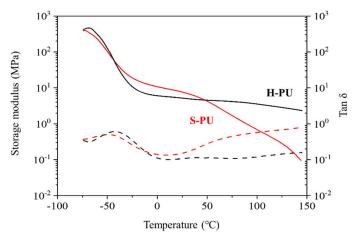
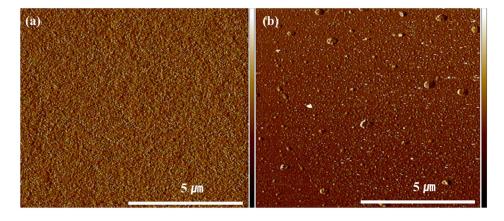




Figure S4. Storage moduli (solid lines) and  $\tan \delta$  values (dotted lines) of S-PU (red) and H-PU (black) obtained in the DMA measurements.



**Figure S5.** AFM images in the phase mode: (a) S-PU; (b) H-PU.



**Figure S6.** Temperature dependent FT-IR spectra of H-PU: (a) Absorbance at low wavenumbers (1140–1040 cm<sup>-1</sup>); (b) Absorbance at high wavenumbers (3800–2800 cm<sup>-1</sup>).

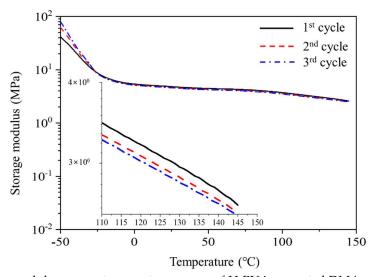



Figure S7. Storage modulus versus temperature curves of H-PU in repeated DMA measurements.

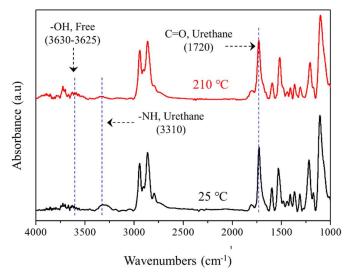
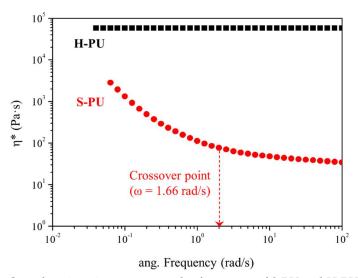
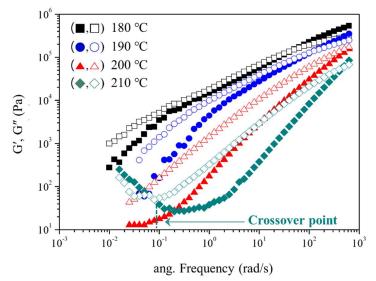
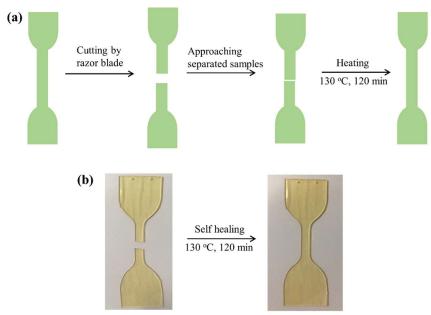
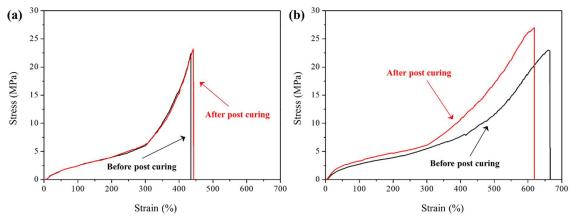



Figure S8. Normalized FT-IR spectra of S-PU at 25 °C (black) and 210 °C (red).



Figure S9. Complex viscosity versus angular frequency of S-PU and H-PU at 180 °C.



**Figure S10.** G' (filled symbols) and G''(open symbols) of H-PU versus angular frequency at 180 °C, 190 °C, 200 °C and 210 °C.



**Figure S11.** Preparation of specimens for self-healing tests by UTM: (a) schematic for the preparation of the sample specimens; (b) digital camera images of the S-PU sample after cutting (left) and self-healing at  $130\,^{\circ}$ C for  $120\,^{\circ}$ min.



**Figure S12.** Effects of post curing at 130 °C for 120 min: (a) tensile properties of H-PU before (black) and after (red) post curing; (b) tensile properties of S-PU before (black) and after (red) post curing.

Table S1. Tensile properties and gel fraction of S-PU and H-PU after post curing at 130 °C for 120 min

|                     | S-PU          |                    | H-PU          |                    |
|---------------------|---------------|--------------------|---------------|--------------------|
|                     | Uncut<br>S-PU | Post cured<br>S-PU | Uncut<br>H-PU | Post cured<br>H-PU |
| σ (MPa)             | 22.92         | 26.91              | 22.53         | 22.85              |
| ε (%)               | 658.3         | 619.5              | 433.8         | 434.5              |
| E (MPa)             | 4.447         | 5.952              | 4.655         | 4.641              |
| Gel- fraction a (%) | 25.42         | 54.94              | 35.78         | 35.42              |

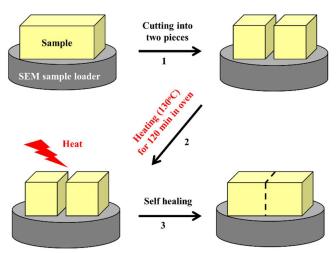
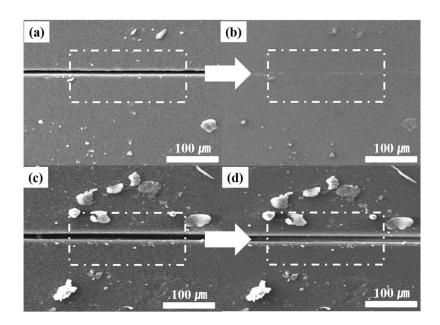




Figure S13. Schematic of the sample preparation to observe the self-healing effects by SEM.



**Figure S14.** SEM images of the PUs after cutting and heating to 130 °C for 120 min: (a) cut S-PU; (b) self-healed S-PU after heating; (c) cut H-PU; (d) unhealed H-PU after heating.