Applications of Ion Mobility-Mass Spectrometry in Carbohydrate Chemistry and Glycobiology
Abstract
:1. Introduction
2. Complexity and Standard Analytical Techniques for Carbohydrates
2.1. Complexity of Carbohydrates
2.2. Standard Analytical Techniques for Carbohydrates
3. Overview of Ion Mobility-Mass Spectrometry
3.1. Introduction of IM-MS
3.2. Principles of IM-MS
3.3. IM-MS Instrumentation
3.4. Limitations of IM-MS
4. Applications of IM-MS to Carbohydrates
4.1. Mono- and Oligosaccharides
4.2. Complex carbohydrates
4.3. Oligonucleotides
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Gray, C.J.; Thomas, B.; Upton, R.; Migas, L.G.; Eyers, C.E.; Barran, P.E.; Flitsch, S.L. Applications of ion mobility mass spectrometry for high throughput, high resolution glycan analysis. Biochim. Biophys. Acta 2016, 1860, 1688–1709. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, H.; Bendiak, B.; Siems, W.F.; Gang, D.R.; Hill, H.H. Ion mobility mass spectrometry analysis of isomeric disaccharide precursor, product and cluster ions. Rapid Commun. Mass Spectrom. 2013, 27, 2699–2709. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Y.; Clemmer, D. Characterizing oligosaccharides using injected-ion mobility mass spectrometry. Anal. Chem. 1997, 69, 2504–2509. [Google Scholar] [CrossRef] [PubMed]
- Clowers, B.H.; Dwivedi, P.; Steiner, W.E.; Hill, H.H.; Bendiak, B. Separation of sodiated isobaric disaccharides and trisaccharides using electrospray ionization-atmospheric pressure ion mobility-time of flight mass spectrometry. J. Am. Soc. Mass Spectrom. 2005, 16, 660–669. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hofmann, J.; Pagel, K. Glycan analysis by ion mobility-mass spectrometry. Angew. Chem. Int. Ed. 2017, 56, 8342–8349. [Google Scholar] [CrossRef] [PubMed]
- Mookherjee, A.; Guttman, M. Bridging the structural gap of glycoproteomics with ion mobility spectrometry. Curr. Opin. Chem. Biol. 2018, 42, 86–92. [Google Scholar] [CrossRef] [PubMed]
- Morrison, K.A.; Clowers, B.H. Contemporary glycomic approaches using ion mobility–mass spectrometry. Curr. Opin. Chem. Biol. 2018, 42, 119–129. [Google Scholar] [CrossRef] [PubMed]
- Manz, C.; Pagel, K. Glycan analysis by ion mobility-mass spectrometry and gas-phase spectroscopy. Curr. Opin. Chem. Biol. 2018, 42, 16–24. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Glover, M.S.; Li, L. Recent advances in ion mobility–mass spectrometry for improved structural characterization of glycans and glycoconjugates. Curr. Opin. Chem. Biol. 2018, 42, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Shin, I.; Kim, K.S. Carbohydrate chemistry. Chem. Soc. Rev. 2013, 42, 4267–4269. [Google Scholar] [CrossRef] [PubMed]
- Williams, J.P.; Grabenauer, M.; Holland, R.J.; Carpenter, C.J.; Wormald, M.R.; Giles, K.; Harvey, D.J.; Bateman, R.H.; Scrivens, J.H.; Bowers, M.T. Characterization of simple isomeric oligosaccharides and the rapid separation of glycan mixtures by ion mobility mass spectrometry. Int. J. Mass Spectrom. 2010, 298, 119–127. [Google Scholar] [CrossRef]
- Dwivedi, P.; Bendiak, B.; Clowers, B.H.; Hill, H.H. Rapid resolution of carbohydrate isomers by electrospray ionization ambient pressure ion mobility spectrometry-time-of-flight mass spectrometry (ESI-APIMS-TOFMS). J. Am. Soc. Mass Spectrom. 2007, 18, 1163–1175. [Google Scholar] [CrossRef] [PubMed]
- Zhu, M.; Bendiak, B.; Clowers, B.; Hill, H.H. Ion mobility-mass spectrometry analysis of isomeric carbohydrate precursor ions. Anal. Bioanal. Chem. 2009, 394, 1853–1867. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hofmann, J.; Hahm, H.S.; Seeberger, P.H.; Pagel, K. Identification of carbohydrate anomers using ion mobility-mass spectrometry. Nature 2015, 526, 241–244. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Giles, K.; Bendiak, B.; Kaplan, K.; Siems, W.F.; Hill, H.H. Resolving structural isomers of monosaccharide methyl glycosides using drift tube and traveling wave ion mobility mass spectrometry. Anal. Chem. 2012, 84, 3231–3239. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Bendiak, B.; Siems, W.F.; Gang, D.R.; Hill, H.H. Determining the isomeric heterogeneity of neutral oligosaccharide-alditols of bovine submaxillary mucin using negative ion traveling wave ion mobility mass spectrometry. Anal. Chem. 2015, 87, 2228–2235. [Google Scholar] [CrossRef] [PubMed]
- Dwivedi, P.; Schultz, A.J.; Hill, H.H., Jr. Metabolic profiling of human blood by high-resolution ion mobility mass spectrometry (IM-MS). Int. J. Mass Spectrom. 2010, 298, 78–90. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stow, S.M.; Lareau, N.M.; Hines, K.M.; McNees, C.R.; Goodwin, C.R.; Bachmann, B.O.; Mclean, J.A. Structural Separations for Natural Product Characterization by Ion Mobility–Mass Spectrometry Fundamental Theory to Emerging Applications; John Wiley & Sons, Inc: Hoboken, NJ, USA, 2014; pp. 397–431. [Google Scholar]
- Pagel, K.; Harvey, D.J. Ion mobility-mass spectrometry of complex carbohydrates: collision cross sections of sodiated N-linked glycans. Anal. Chem. 2013, 85, 5138–5145. [Google Scholar] [CrossRef] [PubMed]
- Barnes, W.S.; Martin, D.W.; McDaniel, E.W. Mass spectrographic identification of the ion observed in hydrogen mobility experiments. Phys. Rev. Lett. 1961, 6, 110–111. [Google Scholar] [CrossRef]
- McAfee, K.B., Jr.; Edelson, D. Identification and mobility of ions in a townsend discharge by time-resolved mass spectrometry. Proc. Phys. Soc. 1963, 81, 382–384. [Google Scholar] [CrossRef]
- Fenn, L.S.; McLean, J.A. Biomolecular structural separations by ion mobility-mass spectrometry. Anal. Bioanal. Chem. 2008, 391, 905–909. [Google Scholar] [CrossRef] [PubMed]
- McLean, J.A. The mass-mobility correlation redux: the conformational landscape of anhydrous biomolecules. J. Am. Soc. Mass Spectrom. 2009, 20, 1775–1781. [Google Scholar] [CrossRef] [PubMed]
- Vakhrushev, S.Y.; Langridge, J.; Campuzano, I.; Hughes, C.; Peter-Katalinic, J. Identification of monosialylated N-glycoforms in the CDG urinome by ion mobility tandem mass spectrometry: the potential for clinical applications. Clin. Proteomics 2008, 4, 47–57. [Google Scholar] [CrossRef]
- Pritchard, L.K.; Harvey, D.J.; Bonomelli, C.; Crispin, M.; Doores, K.J. Cell- and protein-directed glycosylation of native cleaved HIV-1 envelope. J. Virol. 2015, 89, 8932–8944. [Google Scholar] [CrossRef] [PubMed]
- Seo, Y.; Andaya, A.; Leary, J.A. Preparation, separation, and conformational analysis of differentially sulfated heparin octasaccharide isomers using ion mobility mass spectrometry. Anal. Chem. 2012, 84, 2416–2423. [Google Scholar] [CrossRef] [PubMed]
- Struwe, W.B.; Benesch, J.L.; Harvey, D.J.; Pagel, K. Collision cross sections of high-mannose N-glycans in commonly observed adduct states – identification of gas-phase conformers unique to [M − H](−) ions. Analyst 2015, 140, 6799–6803. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Singh, A.; Li, L.; Linhardt, R.J.; Xu, Y.; Liu, J.; Woods, R.J.; Amster, I.J. Investigating changes in the gas-phase conformation of Antithrombin III upon binding of Arixtra using traveling wave ion mobility spectrometry (TWIMS). Analyst 2015, 140, 6980–6989. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reading, E.; Munoz-Muriedas, J.; Roberts, A.D.; Dear, G.J.; Robinson, C.V.; Beaumont, C. Elucidation of drug metabolite structural isomers using molecular modeling coupled with ion mobility mass spectrometry. Anal. Chem. 2016, 88, 2273–2280. [Google Scholar] [CrossRef] [PubMed]
- Ewing, R.G.; Atkinson, D.A.; Eiceman, G.A.; Ewing, G.J. A critical review of ion mobility spectrometry for the detection of explosives and explosive related compounds. Talanta 2001, 54, 515–529. [Google Scholar] [CrossRef]
- Mäkinen, M.A.; Anttalainen, O.A.; Sillanpää, M.E.T. Ion mobility spectrometry and its applications in detection of chemical warfare agents. Anal. Chem. 2010, 82, 9594–9600. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Bendiak, B.; Kaplan, K.; Davis, E.; Siems, W.F.; Hill, H.H. Evaluation of ion mobility-mass spectrometry for determining the isomeric heterogeneity of oligosaccharide-alditols derived from bovine submaxillary mucin. Int. J. Mass Spectrom. 2013, 352, 9–18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahonen, L.; Fasciotti, M.; Gennäs, G.B.A.; Kotiaho, T.; Daroda, R.J.; Eberlin, M.; Kostiainen, R. Separation of steroid isomers by ion mobility mass spectrometry. J. Chromatogr. A 2013, 1310, 133–137. [Google Scholar] [CrossRef] [PubMed]
- Fenn, L.S.; Kliman, M.; Mahsut, A.; Zhao, S.R.; McLean, J.A. Characterizing ion mobility-mass spectrometry conformation space for the analysis of complex biological samples. Anal. Bioanal. Chem. 2009, 394, 235–244. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Isailovic, D.; Kurulugama, R.T.; Plasencia, M.D.; Stokes, S.T.; Kyselova, Z.; Goldman, R.; Mechref, Y.; Novotny, M.V.; Clemmer, D.E. Profiling of human serum glycans associated with liver cancer and cirrhosis by IMS−MS. J. Proteome Res. 2008, 7, 1109–1117. [Google Scholar] [CrossRef] [PubMed]
- Plasencia, M.D.; Isailovic, D.; Merenbloom, S.I.; Mechref, Y.; Clemmer, D.E. Resolving and assigning N-linked glycan structural isomers from ovalbumin by IMS-MS. J. Am. Soc. Mass Spectrom. 2008, 19, 1706–1715. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, S.; Valentine, S.J.; Reilly, J.P.; Clemmer, D.E. Analyzing a mixture of disaccharides by IMS-VUVPD-MS. Int. J. Mass Spectrom. 2012, 309, 161–167. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Che, F.-Y.; Deng, H.-T.; Ding, S.-J. Mass spectrometry applications in biomedical research. BioMed. Res. Int. 2015. [Google Scholar] [CrossRef] [PubMed]
- Reinhold, V.N.; Reinhold, B.B.; Costello, C.E. Carbohydrate molecular weight profiling, sequence, linkage, and branching data: ES-MS and CID. (electrospray-mass spectrometry collision-induced dissociation). Anal. Chem. 1995, 67, 1772–1784. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.; Siems, W.F.; Klasmeier, J.; Hill, H.H. Separation of isomeric peptides using electrospray ionization/high-resolution ion mobility spectrometry. Anal. Chem. 2000, 72, 391–395. [Google Scholar] [CrossRef] [PubMed]
- Thalassinos, K.; Slade, S.E.; Jennings, K.R.; Scrivens, J.H.; Giles, K.; Wildgoose, J.; Hoyes, J.; Bateman, R.H.; Bowers, M.T. Ion mobility mass spectrometry of proteins in a modified commercial mass spectrometer. Int. J. Mass Spectrom. 2004, 236, 55–63. [Google Scholar] [CrossRef]
- Eiceman, G.A.; Sowa, S.; Lin, S.; Bell, S.E. Ion mobility spectrometry for continuous on-site monitoring of nicotine vapors in air during the manufacture of transdermal systems. J. Hazard. Mater. 1995, 43, 13–30. [Google Scholar] [CrossRef]
- Enders, J.R.; McLean, J.A. Chiral and structural analysis of biomolecules using mass spectrometry and ion mobility-mass spectrometry. Chirality 2009, 21, E253–E264. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Woods, A.; Ugarov, M.; Egan, T.; Koomen, J.; Gillig, K.; Fuhrer, K.; Gonin, M.; Schultz, J. Lipid/peptide/nucleotide separation with MALDI-ion mobility-TOF MS. Anal. Chem. 2004, 76, 2187–2195. [Google Scholar] [CrossRef] [PubMed]
- Borsdorf, H.; Nazarov, E.G.; Eiceman, G.A. Atmospheric pressure ionization and gas phase ion mobility studies of isomeric dihalogenated benzenes using different ionization techniques. Int. J. Mass Spectrom. 2004, 232, 117–126. [Google Scholar] [CrossRef]
- Von Helden, G.; Wyttenbach, T.; Bowers, M.T. Conformation of macromolecules in the gas phase: use of matrix-assisted laser desorption methods in ion chromatography. Science 1995, 267, 1483–1485. [Google Scholar] [CrossRef] [PubMed]
- Wyttenbach, T.; von Helden, G.; Bowers, M.T. Gas-phase conformation of biological molecules: Bradykinin. J. Am. Chem. Soc. 1996, 118, 8355–8364. [Google Scholar] [CrossRef]
- Clemmer, D.E.; Hudgins, R.R.; Jarrold, M.F. Naked protein conformations: Cytochrome c in the gas phase. J. Am. Chem. Soc. 1995, 117, 10141–10142. [Google Scholar] [CrossRef]
- Srebalus Barnes, C.; Hilderbrand, A.; Valentine, S.; Clemmer, D. Resolving isomeric peptide mixtures: A combined HPLC/ion mobility-TOFMS analysis of a 4000-component combinatorial library. Anal. Chem. 2002, 74, 2–36. [Google Scholar] [CrossRef]
- Niu, S.; Ruotolo, B.T. Collisional unfolding of multiprotein complexes reveals cooperative stabilization upon ligand binding. Protein Sci. 2015, 24, 1272–1281. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Valentine, S.J.; Plasencia, M.D.; Liu, X.; Krishnan, M.; Naylor, S.; Udseth, H.R.; Smith, R.D.; Clemmer, D.E. Toward plasma proteome profiling with ion mobility-mass spectrometry. J. Proteome Res. 2006, 5, 2977–2984. [Google Scholar] [CrossRef] [PubMed]
- Dwivedi, P.; Wu, P.; Klopsch, S.; Puzon, G.; Xun, L.; Hill, H. Metabolic profiling by ion mobility mass spectrometry (IMMS). Metabolomics 2008, 4, 63–80. [Google Scholar] [CrossRef]
- Dwivedi, P.; Puzon, G.; Tam, M.; Langlais, D.; Jackson, S.; Kaplan, K.; Siems, W.F.; Schultz, A.J.; Xun, L.; Woods, A.; Hill, H.H. Metabolic profiling of Escherichia coli by ion mobility-mass spectrometry with MALDI ion source. J. Mass Spectrom. 2010, 45, 1383–1393. [Google Scholar] [CrossRef] [PubMed]
- Raja, U.K.B.; Injeti, S.; Culver, T.; McCabe, J.W.; Angel, L.A. Probing the stability of insulin oligomers using electrospray ionization ion mobility mass spectrometry. Eur. J. Mass Spectrom. 2015, 21, 759–774. [Google Scholar] [CrossRef] [PubMed]
- Kliman, M.; May, J.C.; McLean, J.A. Lipid analysis and lipidomics by structurally selective ion mobility-mass spectrometry. Biochim. Biophys. Acts Mol. Cell Biol. Lipids 2011, 1811, 935–945. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yamaguchi, Y.; Nishima, W.; Re, S.; Sugita, Y. Confident identification of isomeric N-glycan structures by combined ion mobility mass spectrometry and hydrophilic interaction liquid chromatography. Rapid Commun. Mass Spectrom. 2012, 26, 2877–2884. [Google Scholar] [CrossRef] [PubMed]
- May, J.C.; Goodwin, C.R.; Lareau, N.M.; Leaptrot, K.L.; Morris, C.B.; Kurulugama, R.T.; Mordehai, A.; Klein, C.; Barry, W.; Darland, E.; et al. Conformational ordering of biomolecules in the gas phase: Nitrogen collision cross sections measured on a prototype high resolution drift tube ion mobility-mass spectrometer. Anal. Chem. 2014, 86, 2107–2116. [Google Scholar] [CrossRef] [PubMed]
- Zakharova, N.; Crawford, C.; Hauck, B.; Quinton, J.; Seims, W.; Hill, H.; Clark, A. An assessment of computational methods for obtaining structural information of moderately flexible biomolecules from ion mobility spectrometry. J. Am. Soc. Mass Spectrom. 2012, 23, 792–805. [Google Scholar] [CrossRef] [PubMed]
- Smith, R.D.; Baker, E.S.; Zheng, X.; Garimella, S.V.B.; Hamid, A.M.; Ibrahim, Y.M.; Deng, L.; Webb, I.K.; Prost, S.A.; Sandoval, J.A.; Norheim, R.V.; Anderson, G.A.; Tolmachev, A.V. Ultra-high resolution ion mobility separations utilizing traveling waves in a 13 m serpentine path length structures for lossless ion manipulations module. Anal. Chem. 2016, 88, 8957–8964. [Google Scholar]
- Wojcik, R.; Webb, I.; Deng, L.; Garimella, S.; Prost, S.; Ibrahim, Y.; Baker, E.; Smith, R. Lipid and glycolipid isomer analyses using ultra-high resolution ion mobility spectrometry separations. Int. J. Mol. Sci. 2017, 18, 183. [Google Scholar] [CrossRef] [PubMed]
- Zekavat, B.; Solouki, T. Chemometric data analysis for deconvolution of overlapped ion mobility profiles. J. Am. Soc. Mass Spectrom. 2012, 23, 1873–1884. [Google Scholar] [CrossRef] [PubMed]
- Gama, M.R.; Da Costa Silva, R.G.; Collins, C.H.; Bottoli, C.B.G. Hydrophilic interaction chromatography. Trends Anal. Chem. 2012, 37, 48–60. [Google Scholar] [CrossRef]
- Li, H.; Bendiak, B.; Siems, W.F.; Gang, D.R.; Hill, H.H. Carbohydrate structure characterization by tandem ion mobility mass spectrometry (IMMS)2. Anal. Chem. 2013, 85, 2760–2769. [Google Scholar] [CrossRef] [PubMed]
- Fenn, L.S.; McLean, J.A. Enhanced carbohydrate structural selectivity in ion mobility-mass spectrometry analyses by boronic acid derivatization. Chem. Commun. 2008, 5505–5507. [Google Scholar] [CrossRef] [PubMed]
- Hoffmann, W.; Hofmann, J.; Pagel, K. Energy-resolved ion mobility-mass spectrometry-a concept to improve the separation of isomeric carbohydrates. J. Am. Soc. Mass Spectrom. 2014, 25, 471–479. [Google Scholar] [CrossRef] [PubMed]
- Jin, L.; Barran, P.E.; Deakin, J.A.; Lyon, M.; Uhrin, D. Conformation of glycosaminoglycans by ion mobility mass spectrometry and molecular modelling. Phys. Chem. Chem. Phys. 2005, 7, 3464–3471. [Google Scholar] [CrossRef] [PubMed]
- Fenn, L.S.; McLean, J.A. Structural resolution of carbohydrate positional and structural isomers based on gas-phase ion mobility-mass spectrometry. Phys. Chem. Chem. Phys. 2011, 13, 2196–2205. [Google Scholar] [CrossRef] [PubMed]
- Hofmann, J.; Struwe, W.B.; Scarff, C.A.; Scrivens, J.H.; Harvey, D.J.; Pagel, K. Estimating collision cross sections of negatively charged N-glycans using traveling wave ion mobility-mass spectrometry. Anal. Chem. 2014, 86, 10789–10795. [Google Scholar] [CrossRef] [PubMed]
- Harvey, D.J.; Crispin, M.; Bonomelli, C.; Harvey, D.J.; Scrivens, J.H. Ion mobility mass spectrometry for ion recovery and clean-up of MS and MS/MS spectra obtained from low abundance viral samples. J. Am. Soc. Mass Spectrom. 2015, 26, 1754–1767. [Google Scholar] [CrossRef] [PubMed]
- Harvey, D.J.; Struwe, W.B.; Crispin, M.; Scarff, C.A.; Edgeworth, M.; Scrivens, J.H.; Scarff, C.A.; Edgeworth, M.; Pagel, K.; Thalassinos, K. Travelling-wave ion mobility mass spectrometry and negative ion fragmentation of hybrid and complex N-glycans. J. Mass Spectrom. 2016, 51, 1064–1079. [Google Scholar] [CrossRef] [PubMed]
- Both, P.; Green, A.P.; Gray, C.J.; Sardzik, R.; Voglmeir, J.; Fontana, C.; Austeri, M.; Rejzek, M.; Richardson, D.; Field, R.A.; et al. Discrimination of epimeric glycans and glycopeptides using IM-MS and its potential for carbohydrate sequencing. Nat. Chem. 2014, 6, 65–74. [Google Scholar] [CrossRef] [PubMed]
- Crispin, M.; Harvey, D.J.; Bitto, D.; Bonomelli, C.; Edgeworth, M.; Scrivens, J.H.; Huiskonen, J.T.; Bowden, T.A. Structural plasticity of the Semliki Forest virus glycome upon interspecies transmission. J. Proteome Res. 2014, 13, 1702–1712. [Google Scholar] [CrossRef] [PubMed]
- Rashid, A.M.; Saalbach, G.; Bornemann, S. Discrimination of large maltooligosaccharides from isobaric dextran and pullulan using ion mobility mass spectrometry. Rapid Commun. Mass Spectrom. 2014, 28, 191–199. [Google Scholar] [CrossRef] [PubMed]
- Harvey, D.J.; Abrahams, J.L. Fragmentation and ion mobility properties of negative ions from N-linked carbohydrates: Part 7. Reduced glycans. Rapid Commun. Mass Spectrom. 2016, 30, 627–634. [Google Scholar] [CrossRef] [PubMed]
- Lemmnitzer, K.; Riemer, T.; Groessl, M.; Süβ, R.; Knochenmuss, R.; Schiller, J. Comparison of ion mobility-mass spectrometry and pulsed-field gradient nuclear magnetic resonance spectroscopy for the differentiation of chondroitin sulfate isomers. Anal. Methods 2016, 8, 8483–8491. [Google Scholar] [CrossRef] [Green Version]
- Gidden, J.; Bushnell, J.E.; Bowers, M.T. Gas-phase conformations and folding energetics of oligonucleotides: dTG− and dGT−. J. Am. Chem. Soc. 2001, 123, 5610–5611. [Google Scholar] [CrossRef] [PubMed]
- Koomen, J.M.; Ruotolo, B.T.; Gillig, K.J.; McLean, J.A.; Russell, D.H.; Kang, M.; Dunbar, K.R.; Fuhrer, K.; Gonin, M.; Schultz, J.A. Oligonucleotide analysis with MALDI-ion-mobility-TOFMS. Anal. Bioanal. Chem. 2002, 373, 612–617. [Google Scholar] [CrossRef] [PubMed]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mu, Y.; Schulz, B.L.; Ferro, V. Applications of Ion Mobility-Mass Spectrometry in Carbohydrate Chemistry and Glycobiology. Molecules 2018, 23, 2557. https://doi.org/10.3390/molecules23102557
Mu Y, Schulz BL, Ferro V. Applications of Ion Mobility-Mass Spectrometry in Carbohydrate Chemistry and Glycobiology. Molecules. 2018; 23(10):2557. https://doi.org/10.3390/molecules23102557
Chicago/Turabian StyleMu, Yuqing, Benjamin L. Schulz, and Vito Ferro. 2018. "Applications of Ion Mobility-Mass Spectrometry in Carbohydrate Chemistry and Glycobiology" Molecules 23, no. 10: 2557. https://doi.org/10.3390/molecules23102557
APA StyleMu, Y., Schulz, B. L., & Ferro, V. (2018). Applications of Ion Mobility-Mass Spectrometry in Carbohydrate Chemistry and Glycobiology. Molecules, 23(10), 2557. https://doi.org/10.3390/molecules23102557