Separation and Bioactive Assay of 25R/S-Spirostanol Saponin Diastereomers from Yucca schidigera Roezl (Mojave) Stems
Abstract
:1. Introduction
2. Results and Discussion
2.1. Selection of Separation Conditions for 25R/S-Spirostanol Saponin Diastereomers by HPLC
2.1.1. General Rules and Characteristics HPLC Analysis for C12 Carbonylation 25R/S-Spirostanol Saponin Diastereomers 1a–3a, 1b–3b
2.1.2. General Rules and Characteristics HPLC Analysis for C12 Unsubstituted 25R/S-Spirostanol Saponin Diastereomers 4a–6a, 4b–6b
2.2. Structure Identification for 25R/S-Spirostanol Saponin Diastereomers
2.3. Inhibitory Activities on the Growth of SW620 Cell Lines Study of Extract, Fractions, and Compounds Obtained from Y. schidigera
3. Materials and Methods
3.1. General Information
3.2. Plant Material
3.3. Extraction and Isolation
3.3.1. Extraction and Isolation of 25R/S-Spirostanol Saponin Diastereomer Mixtures 1–6
3.3.2. Extraction and Isolation of 25R/S-Spirostanol Saponin Diastereomers 1a–6a, 1b–6b by Using C30 Column
3.4. Acid Hydrolysis of 1a–3a, 1b–3b
3.5. Bioassay
3.5.1. Materials
3.5.2. MTT Assay
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Cheeke, P.R. Actual and potential applications of Yucca schidigera and Quillaja saponaria saponins in human and animal nutrition. J. Anim. Sci. 2000, 77, 1–10. [Google Scholar] [CrossRef]
- Sastre, F.; Ferreira, F.; Pedreschi, F. A systematic approach for the chromatographic fractionation and purification of major steroid saponins in commercial extracts of Yucca schidigera Roezl. J. Chromatogr. B 2017, 1046, 235–242. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.F.; Lin, Y.Y.; Kong, L.Y. Steroids from the roots of Asparagus officinalis and their cytotoxic activity. J. Integr. Plant Biol. 2008, 50, 717–722. [Google Scholar] [CrossRef] [PubMed]
- Miyakoshi, M.; Tamura, Y.; Masuda, H.; Mizutani, K.; Tanaka, O.; Ikeda, T.; Ohtani, K.; Kasai, R.; Yamasaki, K. Antiyeast steroidal saponins from Yucca schidigera (Mohave yucca), a new anti-food-deteriorating agent. J. Nat. Prod. 2000, 63, 332–338. [Google Scholar] [CrossRef] [PubMed]
- Qu, L.; Wang, J.; Ruan, J.; Yao, X.; Huang, P.; Wang, Y.; Yu, H.; Han, L.; Zhang, Y.; Wang, T. Spirostane-type saponins obtained from Yucca schidigera. Molecules 2018, 23, 167. [Google Scholar] [CrossRef] [PubMed]
- Boll, P.M.; Philipsborn, W.V. NMR studies and the absolute configuration of Solanum Alkaloids (Spiro-aminoketal Alkaloids). Acta Chem. Scand. 1965, 19, 1365–1370. [Google Scholar] [CrossRef]
- Schreiber, K. Notiz zum Abbau von Solasodin zu Acetyldiosgeninlacton und (R)-(−)-4-Amino-3-methyl-buttersäure. Chem. Ber. 1965, 98, 323–325. [Google Scholar] [CrossRef]
- Agrawal, P.K.; Jain, D.C.; Gupta, R.K.; Thakur, R.S. Carbon-13 NMR spectroscopy of steroidal sapogenins and steroidal saponins. Phytochemistry 1985, 24, 2479–2496. [Google Scholar] [CrossRef]
- Sharma, R.I.; Smith, T.A.D. Colorectal tumor cells treated with 5-FU, oxaliplatin, irinotecan, and cetuximab exhibit changes in 18 F-FDG incorporation corresponding to hexokinase activity and glucose transport. J. Nucl. Med. 2008, 49, 1386–1395. [Google Scholar] [CrossRef] [PubMed]
- Zhu, L.L.; Zhao, Y.; Xu, Y.W.; Sun, Q.L.; Sun, X.G.; Kang, L.P.; Yan, R.Y.; Zhang, J.; Liu, C.; Ma, B.P. Comparison of ultra-high performance supercritical fluid chromatography and ultra-high performance liquid chromatography for the separation of spirostanol saponins. J. Pharm. Biomed. Anal. 2016, 120, 72–78. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; McCauley, J.; Pang, X.; Kang, L.; Yu, H.; Zhang, J.; Xiong, C.; Chen, R.; Ma, B. Analytical and semipreparative separation of 25(R/S)-spirostanol saponin diastereomers using super critical fluid chromatography. J. Sep. Sci. 2013, 36, 3270–3276. [Google Scholar] [PubMed]
- Ganzera, M.; Murauer, A. Separation of natural products. In Supercritical Fluid Chromatography; Poole, C.F., Ed.; Elsevier: Amsterdam, The Netherlands, 2017; pp. 439–460. ISBN 9780128092071. [Google Scholar]
- Miyahara, K.; Kudo, K.; Kawasaki, T. Co-occurrence and high-performance liquid chromatographic separation of the glycosides of rhodeasapogenin and its analogs which differ in the F-ring structure. Chem. Pharm. Bull. 1983, 31, 348–351. [Google Scholar] [CrossRef]
- Xiao, Y.H.; Yin, H.L.; Chen, L.; Tian, Y.; Liu, S.J.; Zhang, G.J.; Chen, H.W.; Jin, H.; Li, B.; Dong, J.X. Three spirostanolsaponins and a flavane-O-glucoside from the fresh rhizomes of Tupistra chinensis. Fitoterapia 2015, 102, 102–108. [Google Scholar] [CrossRef] [PubMed]
- Xiang, L.; Wang, Y.; Yi, X.; Feng, J.; He, X. Furospirostanol and spirostanolsaponins from the rhizome of Tupistra chinensis and their cytotoxic and anti-inflammatory activities. Tetrahedron 2016, 72, 134–141. [Google Scholar] [CrossRef]
- Xiang, L.; Yi, X.; Wang, Y.; He, X. Antiproliferative and anti-inflammatory polyhydroxylated spirostanol saponins from Tupistra Chinensis. Sci. Rep. 2016, 6, 31633. [Google Scholar] [CrossRef] [PubMed]
- Zhu, L.; Zhao, Y.; Sun, X.; Liu, D.; Zhang, D.; Liu, C.; Ma, B. Application of supercritical fluid chromatography in natural products. Chin. J. Pharm. Anal. 2016, 36, 1317–1323. [Google Scholar]
Sample Availability: Samples of all the compounds are available from the authors. |
No. | 1a | 1b | 2a | 2b | 3a | 3b | No. | 1a | 1b | 2a | 2b | 3a | 3b |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 30.6 | 30.6 | 30.6 | 30.6 | 30.6 | 30.6 | 21 | 14.0 | 13.8 | 14.0 | 13.8 | 13.9 | 13.8 |
2 | 26.7 | 26.7 | 26.6 | 26.7 | 26.6 | 26.6 | 22 | 109.3 | 109.8 | 109.3 | 109.8 | 109.3 | 109.8 |
3 | 73.9 | 73.9 | 74.0 | 74.0 | 74.9 | 74.9 | 23 | 31.8 | 26.4 | 31.8 | 26.4 | 31.9 | 26.4 |
4 | 30.2 | 30.2 | 30.1 | 30.1 | 30.7 | 30.7 | 24 | 29.2 | 26.1 | 29.2 | 26.2 | 29.3 | 26.2 |
5 | 36.5 | 36.5 | 36.5 | 36.5 | 36.4 | 36.4 | 25 | 30.5 | 27.5 | 30.5 | 27.5 | 30.6 | 27.5 |
6 | 26.8 | 26.8 | 26.8 | 26.8 | 26.8 | 26.8 | 26 | 66.9 | 65.2 | 66.9 | 65.2 | 67.0 | 65.2 |
7 | 26.4 | 26.4 | 26.4 | 26.4 | 26.4 | 26.4 | 27 | 17.3 | 16.3 | 17.3 | 16.3 | 17.3 | 16.3 |
8 | 34.7 | 34.7 | 34.7 | 34.7 | 34.7 | 34.7 | 1′ | 102.9 | 102.9 | 102.3 | 102.4 | 102.0 | 101.8 |
9 | 41.9 | 41.9 | 41.9 | 41.9 | 42.0 | 42.0 | 2′ | 75.3 | 75.3 | 74.2 | 74.3 | 83.1 | 83.1 |
10 | 35.7 | 35.7 | 35.7 | 35.7 | 35.8 | 35.8 | 3′ | 78.7 | 78.7 | 87.7 | 87.8 | 78.2 | 78.2 |
11 | 37.7 | 37.7 | 37.7 | 37.8 | 37.8 | 37.8 | 4′ | 71.7 | 71.7 | 69.5 | 69.5 | 71.6 | 71.6 |
12 | 213.0 | 213.0 | 213.0 | 213.0 | 213.0 | 213.0 | 5′ | 78.4 | 78.4 | 78.1 | 78.2 | 78.3 | 78.3 |
13 | 55.6 | 55.6 | 55.6 | 55.6 | 55.7 | 55.6 | 6′ | 62.8 | 62.8 | 62.3 | 62.4 | 62.7 | 62.7 |
14 | 56.0 | 56.0 | 56.0 | 56.0 | 56.1 | 56.1 | 1″ | 106.3 | 106.4 | 106.0 | 106.0 | ||
15 | 31.5 | 31.4 | 31.5 | 31.4 | 31.5 | 31.5 | 2″ | 75.3 | 75.4 | 77.1 | 77.1 | ||
16 | 79.8 | 79.9 | 79.8 | 79.9 | 79.8 | 79.9 | 3″ | 78.2 | 78.2 | 78.0 | 78.0 | ||
17 | 54.3 | 54.2 | 54.3 | 54.2 | 54.4 | 54.2 | 4″ | 70.9 | 70.9 | 71.9 | 71.9 | ||
18 | 16.1 | 16.1 | 16.1 | 16.1 | 16.1 | 16.1 | 5″ | 67.4 | 67.4 | 78.6 | 78.6 | ||
19 | 23.0 | 23.0 | 23.1 | 23.1 | 23.2 | 23.2 | 6″ | 63.0 | 63.0 | ||||
20 | 42.6 | 43.1 | 42.6 | 43.1 | 42.7 | 43.2 |
Sample | IC50 | Sample | IC50 |
---|---|---|---|
Positive control | 10.00 ± 0.15 | 3a | 29.81 ± 0.21 |
Y. schidigera 70% EtOH extract | 85.20 ± 0.95 | 3b | 55.90 ± 0.78 |
Y. schidigera 95% EtOH eluate | 93.04 ± 1.21 | 4a | >100 |
Y. schidigera H2O eluate | >100 | 4b | 60.26 ± 4.53 |
1a | >100 | 5a | 63.37 ± 0.70 |
1b | >100 | 5b | 33.91 ± 1.27 |
2a | >100 | 6a | 69.17 ± 1.24 |
2b | >100 | 6b | 12.02 ± 1.43 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qu, L.; Ruan, J.; Wu, S.; Huang, P.; Yan, J.; Yu, H.; Zhang, Y.; Wang, T. Separation and Bioactive Assay of 25R/S-Spirostanol Saponin Diastereomers from Yucca schidigera Roezl (Mojave) Stems. Molecules 2018, 23, 2562. https://doi.org/10.3390/molecules23102562
Qu L, Ruan J, Wu S, Huang P, Yan J, Yu H, Zhang Y, Wang T. Separation and Bioactive Assay of 25R/S-Spirostanol Saponin Diastereomers from Yucca schidigera Roezl (Mojave) Stems. Molecules. 2018; 23(10):2562. https://doi.org/10.3390/molecules23102562
Chicago/Turabian StyleQu, Lu, Jingya Ruan, Song Wu, Peijian Huang, Jiejing Yan, Haiyang Yu, Yi Zhang, and Tao Wang. 2018. "Separation and Bioactive Assay of 25R/S-Spirostanol Saponin Diastereomers from Yucca schidigera Roezl (Mojave) Stems" Molecules 23, no. 10: 2562. https://doi.org/10.3390/molecules23102562
APA StyleQu, L., Ruan, J., Wu, S., Huang, P., Yan, J., Yu, H., Zhang, Y., & Wang, T. (2018). Separation and Bioactive Assay of 25R/S-Spirostanol Saponin Diastereomers from Yucca schidigera Roezl (Mojave) Stems. Molecules, 23(10), 2562. https://doi.org/10.3390/molecules23102562