Simultaneous Identification and Dynamic Analysis of Saccharides during Steam Processing of Rhizomes of Polygonatum cyrtonema by HPLC–QTOF–MS/MS
Abstract
:1. Introduction
2. Results and Discussion
2.1. Appearance Change
2.2. Optimization and Validation of the HPLC–QTOF–MS/MS Method
2.3. Identification of Small-Molecule Saccharides
2.4. Dynamic Change of Saccharides
2.5. PCA Statistical Analysis
3. Materials and Methods
3.1. Chemicals and Reagents
3.2. Preparation of Samples
3.3. Extraction of Saccharides
3.4. Spectrophotometric Quantitative Measurement
3.5. HPLC–QTOF–MS/MS Analysis
3.6. Validation of the Methods for Quantitative Characterization of Monosaccharides and Oligosaccharides
3.7. PCA Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Zhao, P.; Zhao, C.; Li, X.; Gao, Q.; Huang, L.; Xiao, P.; Gao, W. The genus Polygonatum: A review of ethnopharmacology, phytochemistry and pharmacology. J. Ethnopharmacol. 2018, 214, 274–291. [Google Scholar] [CrossRef] [PubMed]
- Wujisguleng, W.; Liu, Y.; Long, C. Ethnobotanical review of food uses of Polygonatum (Convallariaceae) in China. Acta Soc. Bot. Pol. 2012, 81, 239–244. [Google Scholar] [CrossRef]
- Liu, N.; Dong, Z.; Zhu, X.; Xu, H.; Zhao, Z. Characterization and protective effect of Polygonatum sibiricum polysaccharide against cyclophosphamide-induced immunosuppression in Balb/c mice. Int. J. Biol. Macromol. 2018, 107, 796–802. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.; Liu, Y.; Meng, Y.; Yang, M.; He, K. Structure of polysaccharide from Polygonatum cyrtonema Hua and the antiherpetic activity of its hydrolyzed fragments. Antivir. Res. 2004, 63, 183–189. [Google Scholar] [CrossRef] [PubMed]
- Blunder, M.; Orthaber, A.; Bauer, R.; Bucar, F.; Kunert, O. Efficient identification of flavones, flavanones and their glycosides in routine analysis via off-line combination of sensitive NMR and HPLC experiments. Food Chem. 2017, 218, 600–609. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ruiz-Matute, A.I.; Brokl, M.; Soria, A.C.; Sanz, M.L.; Martínez-Castro, I. Gas chromatographic–mass spectrometric characterisation of tri- and tetrasaccharides in honey. Food Chem. 2010, 120, 637–642. [Google Scholar] [CrossRef] [Green Version]
- Liu, Z.; Lou, Z.; Ding, X.; Li, X.; Qi, Y.; Zhu, Z.; Chai, Y. Global characterization of neutral saccharides in crude and processed Radix Rehmanniae by hydrophilic interaction liquid chromatography tandem electrospray ionization time-of-flight mass spectrometry. Food Chem. 2013, 141, 2833–2840. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Jiang, W.; Lu, J.; Yu, Y.; Wu, B. Analysis of the monosaccharide composition of water-soluble polysaccharides from Sargassum fusiforme by high performance liquid chromatography/electrospray ionisation mass spectrometry. Food Chem. 2014, 145, 976–983. [Google Scholar] [CrossRef] [PubMed]
- Xue, S.; Wang, L.; Chen, S.; Cheng, Y. Simultaneous analysis of saccharides between fresh and processed Radix Rehmanniae by HPLC and UHPLC-LTQ-Orbitrap-MS with multivariate statistical analysis. Molecules 2018, 23, 541. [Google Scholar] [CrossRef] [PubMed]
- Georgelis, N.; Fencil, K.; Richael, C.M. Validation of a rapid and sensitive HPLC/MS method for measuring sucrose, fructose and glucose in plant tissues. Food Chem. 2018, 262, 191–198. [Google Scholar] [CrossRef] [PubMed]
- Corbin, K.R.; Byrt, C.S.; Bauer, S.; Debolt, S.; Chambers, D.; Holtum, J.A.; Karem, G.; Henderson, M.; Lahnstein, J.; Beahan, C.T. Prospecting for energy-rich renewable raw materials: Agave leaf case study. PLoS ONE 2015, 10, e0135382. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Rochfort, S. Identification and quantitative analysis of oligosaccharides in wheat flour using LC–MS. J. Cereal Sci. 2015, 63, 128–133. [Google Scholar] [CrossRef]
- Ricochon, G.; Paris, C.; Girardin, M.; Muniglia, L. Highly sensitive, quick and simple quantification method for mono and disaccharides in aqueous media using liquid chromatography–atmospheric pressure chemical ionization–mass spectrometry (LC–APCI–MS). J. Chromatogr. B 2011, 879, 1529–1536. [Google Scholar] [CrossRef] [PubMed]
- Lattova, E.; Perreault, H. Labelling saccharides with phenylhydrazine for electrospray and matrix-assisted laser desorption–ionization mass spectrometry. J. Chromatogr. B 2003, 793, 167–179. [Google Scholar] [CrossRef]
- Gaucher, S.P.; Leary, J.A. Stereochemical differentiation of mannose, glucose, galactose, and talose using zinc(II) diethylenetriamine and ESI-ion trap mass spectrometry. Anal. Chem. 1998, 70, 3009–3014. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.; Zhao, H.; Shi, S.; Li, H.; Zhou, X.; Jiao, F.; Jiang, X.; Peng, D.; Chen, X. Sensitive characterization of polyphenolic antioxidants in Polygonatum odoratum by selective solid phase extraction and high performance liquid chromatography-diode array detector-quadrupole time-of-flight tandem mass spectrometry. J. Pharm. Biomed. Anal. 2015, 112, 15–22. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Xu, H.; Yuan, F.; Fan, R.; Gao, Y. Preparation and physicochemical properties of soluble dietary fiber from orange peel assisted by steam explosion and dilute acid soaking. Food Chem. 2015, 185, 90–98. [Google Scholar] [CrossRef] [PubMed]
- Kyung-Tae, K.; Jungeun, N.; Jungeun, L.; Jung-Ok, K.; Gee-Dong, L.; Joong-Ho, K. Elimination of heavy metals (Pb, Cd) by steaming and roasting conditions of Polygonatum odoratum Roots. Korean J. Food Preserv. 2005, 12, 209–215. [Google Scholar]
- Kim, S.N.; Kang, S.-J. Effects of black Ginseng (9 times-steaming Ginseng) on hypoglycemic action and changes in the composition of ginsenosides on the steaming process. Korean J. Food Sci. Technol. 2009, 41, 77–81. [Google Scholar]
- Wangyu, K.; Jongmoon, K.; Han, S.B.; Seungki, L.; Nakdoo, K.; Manki, P.; Chongkook, K.; Jeonghill, P. Steaming of ginseng at high temperature enhances biological activity. J. Nat. Prod. 2000, 63, 1702–1704. [Google Scholar]
- Arena, S.; Renzone, G.; D’Ambrosio, C.; Salzano, A.M.; Scaloni, A. Dairy products and the Maillard reaction: A promising future for extensive food characterization by integrated proteomics studies. Food Chem. 2017, 219, 477–489. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.-B.; Yue, R.-Q.; Xu, J.; Ho, H.-M.; Ma, D.-L.; Leung, C.-H.; Chau, S.-L.; Zhao, Z.-Z.; Chen, H.-B.; Han, Q.-B. Comprehensive quantitative analysis of Shuang-Huang-Lian oral liquid using UHPLC–Q-TOF-MS and HPLC-ELSD. J. Pharm. Biomed. Anal. 2015, 102, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Villaluenga, C.; Frías, J.; Vidal-Valverde, C. Raffinose family oligosaccharides and sucrose contents in 13 Spanish lupin cultivars. Food Chem. 2005, 91, 645–649. [Google Scholar] [CrossRef] [Green Version]
- Apolinário, A.C.; Damasceno, B.P.G.D.L.; Beltrão, N.E.D.M.; Pessoa, A.; Converti, A.; Silva, J.A.D. Inulin-type fructans: A review on different aspects of biochemical and pharmaceutical technology. Carbohydr. Polym. 2014, 101, 368–378. [Google Scholar] [CrossRef] [PubMed]
- Laere, A.V.; Ende, W.V.D. Inulin metabolism in dicots: Chicory as a model system. Plant Cell Environ. 2002, 25, 803–813. [Google Scholar] [CrossRef]
- Lan, G.; Chen, H.; Chen, S.; Tian, J. Chemical composition and physicochemical properties of dietary fiber from Polygonatum odoratum as affected by different processing methods. Food Res. Int. 2012, 49, 406–410. [Google Scholar] [CrossRef]
- Liu, B.; Cheng, Y.; Bian, H.J.; Bao, J.K. Molecular mechanisms of Polygonatum cyrtonema lectin-induced apoptosis and autophagy in cancer cells. Autophagy 2009, 5, 253–255. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Liao, B.Y.; Thakur, K.; Zhang, J.G.; Wei, Z.J. The rheological behavior of polysaccharides sequential extracted from Polygonatum cyrtonema Hua. Int. J. Biol. Macromol. 2018, 109, 76–771. [Google Scholar] [CrossRef] [PubMed]
- Peshev, D.; Ende, W.V.D. Fructans: Prebiotics and immunomodulators. J. Funct. Foods 2014, 8, 348–357. [Google Scholar] [CrossRef]
- Ervin, E.L.; Syperda, G. Seasonal effects on soluble sugars and cytological aspects of Polygonatum canaliculatum rhizomes. Bull. Torrey Bot. Club 1971, 98, 162–167. [Google Scholar] [CrossRef]
- Chumpitazi, B.P.; Lim, J.; McMeans, A.R.; Shulman, R.J.; Hamaker, B.R. Evaluation of FODMAP carbohydrates content in selected foods in the United States. J. Pediatr. 2018, 199, 252–255. [Google Scholar] [CrossRef] [PubMed]
- Cavia, M.M.; Fernández-Muiño, M.A.; Gömez-Alonso, E.; Montes-Pérez, M.J.; Huidobro, J.F.; Sancho, M.T. Evolution of fructose and glucose in honey over one year: Influence of induced granulation. Food Chem. 2002, 78, 157–161. [Google Scholar] [CrossRef]
- Tomoda, M.; Satoh, N.; Sugiyama, A. Isolation and characterization of fructans from Polygonatum odoratum var.japonicum rhizomes. Chem. Pharm. Bull. (Tokyo) 1973, 21, 1806–1810. [Google Scholar] [CrossRef]
- Aisala, H.; Sinkkonen, J.; Kalpio, M.; Sandell, M.; This, H.; Hopia, A. In situ quantitative (1)H nuclear magnetic resonance spectroscopy discriminates between raw and steam cooked potato strips based on their metabolites. Talanta 2016, 161, 245–252. [Google Scholar] [CrossRef] [PubMed]
- Qi, X.; Cheng, L.; Li, X.; Zhang, D.; Wu, G.; Zhang, H.; Wang, L.; Qian, H.; Wang, Y.N. Effect of cooking methods on solubility and nutrition quality of brown rice powder. Food Chem. 2018. [Google Scholar] [CrossRef] [PubMed]
- Ravber, M.; Knez, Z.; Škerget, M. Simultaneous extraction of oil- and water-soluble phase from sunflower seeds with subcritical water. Food Chem. 2015, 166, 316–323. [Google Scholar] [CrossRef] [PubMed]
- Jin, J.; Kang, W.; Zhong, C.; Qin, Y.; Zhou, R.; Liu, H.; Xie, J.; Chen, L.; Qin, Y.; Zhang, S. The pharmacological properties of Ophiocordyceps xuefengensis revealed by transcriptome analysis. J. Ethnopharmacol. 2018, 219, 195–201. [Google Scholar] [CrossRef] [PubMed]
- Mohammat, A.; Yili, A.; Aisa, H.A. Rapid quantification and quantitation of alkaloids in Xinjiang Fritillaria by ultra performance liquid chromatography-quadrupole time-of-flight mass spectrometry. Molecules 2017, 22, 719. [Google Scholar] [CrossRef] [PubMed]
- Wu, T.; Taylor, C.; Nebl, T.; Ng, K.; Bennett, L.E. Effects of chemical composition and baking on in vitro digestibility of proteins in breads made from selected gluten-containing and gluten-free flours. Food Chem. 2017, 233, 514–524. [Google Scholar] [CrossRef] [PubMed]
Sample Availability: Samples of the compounds are available from the authors. |
Compounds | Range (μg/mL) | Regression Equation a | R2 | LOD b (μg/mL) | LOQ c (μg/mL) |
---|---|---|---|---|---|
Fructose d | 6.4–64 | y = 71886x + 682691 | 0.996 | 0.48 | 1.60 |
Glucose d | 15.2–152 | y = 238502x + 2043001 | 0.991 | 0.90 | 2.99 |
Glucose e | 15.2–152 | y = 457396x + 2818970 | 0.992 | 0.87 | 2.89 |
Galactose d | 15.7–157 | y = 65662x + 479229 | 0.992 | 3.63 | 12.10 |
Sucrose d | 7.1–71 | y = 296456x + 1182954 | 0.994 | 0.41 | 1.33 |
1-Kestose d | 73–366 | y = 71886x + 922640 | 0.995 | 0.92 | 3.06 |
Compounds | Precision (n = 6) | Stability (48 h) (RSD, %) | Recovery (n = 3) | ||
---|---|---|---|---|---|
Intra-Day (RSD, %) | Inter-Day (RSD, %) | Mean (%) | RSD (%) | ||
Fructose a | 1.37 | 1.82 | 2.29 | 96.7 | 2.37 |
Glucose a | 1.24 | 2.56 | 3.01 | 94.3 | 2.46 |
Glucose b | 1.62 | 2.29 | 1.48 | 98.3 | 2.13 |
Galactose a | 1.91 | 3.51 | 2.12 | 96.7 | 3.13 |
Sucrose a | 1.84 | 3.27 | 2.14 | 107.5 | 6.39 |
1-Kestose a | 0.93 | 2.22 | 1.29 | 96.1 | 3.71 |
No | tR (min) | [M − H]− (m/z) (Δppm) | Fragment Ions (m/z) | Molecular Formula | Compound |
---|---|---|---|---|---|
1 | 7.09 | 323.1003 (−4.98) | 323.0990; 179.0564; 161.0461; 143.0364; 113.0258; 101.0251 | C12H20O10 | Hexose derivative |
2 | 8.16 | 323.1010 (−6.13) | 323.1011; 179.0567; 161.0464; 143.0386; 113.0230; 101.0267 | C12H20O10 | Hexose derivative |
3 | 9.12 | 179.0581 (−0.58) | 179.0533; 161.0458; 143.0354; 113.0242; 101.0245 | C6H12O6 | Fructose |
4 | 10.43 | 181.0739 (−0.36) | 181.0715; 163.0629; 149.0436; 119.0338; 101.0247 | C6H14O6 | Sorbitol |
5 a | 11.60 | 179.0566 (−2.94) | 179.0583; 161.0433; 143.0350; 113.0248; 101.0248 | C6H12O6 | Glucose |
6 a | 11.60 | 179.0585 (−0.08) | 179.0574; 161.0480; 143.0336; 112.9853; 101.0246 | C6H12O6 | Galactose |
7 | 14.4 | 179.0587 (−0.65) | 179.0583; 161.0451; 143.0378; 112.9846; 101.0241 | C6H12O6 | Hexose |
8 | 15.24 | 341.1125 (−1.14) | 341.1090; 179.0555; 161.0465; 143.0338; 119.0350; 101.0243 | C12H22O11 | Sucrose |
9 | 23.71 | 503.1666 (−1.1) | 503.1668; 341.1101; 323.0988; 221.0670; 179.0554; 161.0441; 143.0328; 113.0220; 101.0240 | C18H32O16 | Trisaccharide |
10 | 26.49 | 503.1670 (−4.19) | 503.1668; 341.1054; 323.0986; 221.0655; 179.0553; 161.0467; 143.0368; 113.0255; 101.0244 | C18H32O16 | 1-Kestose |
11 | 33.15 | 503.1653 (2.62) | 503.1653; 341.1031; 323.0936; 221.0616; 179.0513; 161.0412; 143.0308; 113.0216; 101.0219 | C18H32O16 | Raffinose |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jin, J.; Lao, J.; Zhou, R.; He, W.; Qin, Y.; Zhong, C.; Xie, J.; Liu, H.; Wan, D.; Zhang, S.; et al. Simultaneous Identification and Dynamic Analysis of Saccharides during Steam Processing of Rhizomes of Polygonatum cyrtonema by HPLC–QTOF–MS/MS. Molecules 2018, 23, 2855. https://doi.org/10.3390/molecules23112855
Jin J, Lao J, Zhou R, He W, Qin Y, Zhong C, Xie J, Liu H, Wan D, Zhang S, et al. Simultaneous Identification and Dynamic Analysis of Saccharides during Steam Processing of Rhizomes of Polygonatum cyrtonema by HPLC–QTOF–MS/MS. Molecules. 2018; 23(11):2855. https://doi.org/10.3390/molecules23112855
Chicago/Turabian StyleJin, Jian, Jia Lao, Rongrong Zhou, Wei He, You Qin, Can Zhong, Jing Xie, Hao Liu, Dan Wan, Shuihan Zhang, and et al. 2018. "Simultaneous Identification and Dynamic Analysis of Saccharides during Steam Processing of Rhizomes of Polygonatum cyrtonema by HPLC–QTOF–MS/MS" Molecules 23, no. 11: 2855. https://doi.org/10.3390/molecules23112855
APA StyleJin, J., Lao, J., Zhou, R., He, W., Qin, Y., Zhong, C., Xie, J., Liu, H., Wan, D., Zhang, S., & Qin, Y. (2018). Simultaneous Identification and Dynamic Analysis of Saccharides during Steam Processing of Rhizomes of Polygonatum cyrtonema by HPLC–QTOF–MS/MS. Molecules, 23(11), 2855. https://doi.org/10.3390/molecules23112855