Optimization of Vortex-Assisted Dispersive Liquid-Liquid Microextraction for the Simultaneous Quantitation of Eleven Non-Anthocyanin Polyphenols in Commercial Blueberry Using the Multi-Objective Response Surface Methodology and Desirability Function Approach
Abstract
:1. Introduction
2. Results and Discussion
2.1. Compounds Confirmation by UPLC-TOF/MS
2.2. Optimization of UPLC-QqQ/MS Conditions
2.3. Optimization of DLLME Condition by Experimental Design
2.3.1. Single Factor Experimental Analysis
2.3.2. Multi-Response Design and Analysis
2.3.3. Optimization Analysis
2.3.4. Verification of the Predictive Model
2.4. Analytical Performance of VA-DLLME-UPLC-QqQ/MS
2.5. Sample Analysis
3. Materials and Methods
3.1. Chemical and Apparatus
3.2. Preparation of Standard Solution
3.3. Sample Preparation by the DLLME Procedure
3.4. UPLC-MS Analysis
3.5. Experimental Design
3.5.1. Single Factor Experimental Design
3.5.2. Box-Behnken Design
3.6. Statistical Analysis and Optimization
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Giacalone, M.; Di Sacco, F.; Traupe, I.; Topini, R.; Forfori, F.; Giunta, F. Antioxidant and neuroprotective properties of blueberry polyphenols: A critical review. Nutr. Neurosci. 2011, 14, 119–125. [Google Scholar] [CrossRef] [PubMed]
- Neto, C.C. Cranberry and blueberry: Evidence for protective effects against cancer and vascular diseases. Mol. Nutr. Food Res. 2007, 51, 652–664. [Google Scholar] [CrossRef] [PubMed]
- Shi, M.; Loftus, H.; McAinch, A.J.; Su, X.Q. Blueberry as a source of bioactive compounds for the treatment of obesity, type 2 diabetes and chronic inflammation. J. Funct. Foods 2017, 30, 16–29. [Google Scholar] [CrossRef]
- Zhu, Y.; Sun, J.; Lu, W.; Wang, X.; Wang, X.; Han, Z.; Qiu, C. Effects of blueberry supplementation on blood pressure: A systematic review and meta-analysis of randomized clinical trials. J. Hum. Hypertens. 2017, 31, 165–171. [Google Scholar] [CrossRef] [PubMed]
- Correa-Betanzo, J.; Allen-Vercoe, E.; McDonald, J.; Schroeter, K.; Corredig, M.; Paliyath, G. Stability and biological activity of wild blueberry (Vaccinium angustifolium) polyphenols during simulated in vitro gastrointestinal digestion. Food Chem. 2014, 165, 522–531. [Google Scholar] [CrossRef] [PubMed]
- Louis, X.L.; Thandapilly, S.J.; Kalt, W.; Vinqvist-Tymchuk, M.; Aloud, B.M.; Raj, P.; Yu, L.; Le, H.; Netticadan, T. Blueberry polyphenols prevent cardiomyocyte death by preventing calpain activation and oxidative stress. Food Funct. 2014, 5, 1785–1794. [Google Scholar] [CrossRef] [PubMed]
- Harris, C.S.; Burt, A.J.; Saleem, A.; Le, P.M.; Martineau, L.C.; Haddad, P.S.; Bennett, S.A.L.; Arnason, J.T. A single HPLC-PAD-APCI/MS method for the quantitative comparison of phenolic compounds found in leaf, stem, root and fruit extracts of Vaccinium angustifolium. Phytochem. Anal. 2007, 18, 161–169. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Yuan, C.; Pan, L.; Benatrehina, P.A.; Chai, H.; Keller, W.J.; Naman, C.B.; Kinghorn, A.D. Bioassay-guided isolation of antioxidant and cytoprotective constituents from a Maqui Berry (Aristotelia chilensis) dietary supplement ingredient as markers for qualitative and quantitative analysis. J. Agric. Food Chem. 2017, 65, 8634–8642. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.F.; Jennifer, J.-C.; Ajay, P.S.; Vorsa, N. Characterization and quantification of flavonoids and organic acids over fruit development in American cranberry (Vaccinium macrocarpon) cultivars using HPLC and APCI-MS/MS. Plant Sci. 2017, 262, 91–102. [Google Scholar] [CrossRef] [PubMed]
- Ayaz, F.A.; Hayirlioglu-Ayaz, S.; Gruz, J.; Novak, O.; Strnad, M. Separation, characterization, and quantitation of phenolic acids in a little-known blueberry (Vaccinium arctostaphylos L.) fruit by HPLC-MS. J. Agric. Food Chem. 2005, 53, 8116–8122. [Google Scholar] [CrossRef] [PubMed]
- Su, X.; Zhang, J.; Wang, H.; Xu, J.; He, J.; Liu, L.; Zhang, T.; Chen, R.; Kang, J. Phenolic Acid Profiling, Antioxidant, and Anti-Inflammatory Activities, and miRNA Regulation in the Polyphenols of 16 Blueberry Samples from China. Molecules 2017, 22, 312. [Google Scholar] [CrossRef] [PubMed]
- De Souza Dias, F.; Silva, M.F.; David, J.M. Determination of quercetin, gallic acid, resveratrol, catechin and malvidin in brazilian wines elaborated in the Vale do São Francisco using liquid-liquid extraction assisted by ultrasound and GC-MS. Food Anal. Methods 2013, 6, 963–968. [Google Scholar] [CrossRef]
- Mülek, M.; Högger, P. Highly sensitive analysis of polyphenols and their metabolites in human blood cells using dispersive SPE extraction and LC-MS/MS. Anal. Bioanal. Chem. 2015, 407, 1885–1899. [Google Scholar] [CrossRef] [PubMed]
- Shalash, M.; Makahleh, A.; Salhimi, S.M.; Saad, B. Vortex-assisted liquid-liquid liquid microextraction followed by high performance liquid chromatography for the simultaneous determination of fourteen phenolic acids in honey, iced tea and canned coffee drinks. Talanta 2017, 174, 428–435. [Google Scholar] [CrossRef] [PubMed]
- Faraji, H.; Helalizadeh, M.; Kordi, M.R. Overcoming the challenges of conventional dispersive liquid-liquid microextraction: Analysis of THMs in chlorinated swimming pools. Anal. Bioanal. Chem. 2018, 410, 605–614. [Google Scholar] [CrossRef] [PubMed]
- Rezaee, M.; Khalilian, F. Application of ultrasound-assisted extraction followed by solid-phase extraction followed by dispersive liquid-liquid microextraction for the determination of chloramphenicol in chicken meat. Food Anal. Methods 2018, 11, 759–767. [Google Scholar] [CrossRef]
- Wang, K.; Xie, X.; Zhang, Y.; Huang, Y.; Zhou, S.; Zhang, W.; Lin, Y.; Fan, H. Combination of microwave-assisted extraction and ultrasonic-assisted dispersive liquid-liquid microextraction for separation and enrichment of pyrethroids residues in Litchi fruit prior to HPLC determination. Food Chem. 2018, 240, 1233–1242. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Huang, T.; Cao, H.X.; Yuan, Q.X.; Liang, Z.P.; Liang, G.X. Application of air-assisted liquid-liquid microextraction for determination of some fluoroquinolones in milk powder and egg samples: Comparison with conventional dispersive liquid-liquid microextraction. Food Anal. Methods 2016, 9, 2223–2230. [Google Scholar] [CrossRef]
- Rahmani, M.; Ghasemi, E.; Sasani, M. Application of response surface methodology for air assisted-dispersive liquid-liquid microextraction of deoxynivalenol in rice samples prior to HPLC-DAD analysis and comparison with solid phase extraction cleanup. Talanta 2017, 165, 27–32. [Google Scholar] [CrossRef] [PubMed]
- Matias-Guiu, P.; Rodríguez-Bencomo, J.J.; Pérez-Correa, J.R.; López, F. Aroma profile design of wine spirits: Multi-objective optimization using response surface methodology. Food Chem. 2018, 245, 1087–1097. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Xue, Y.; Li, Q.-M.; Wu, Y.; Liang, J.; Qing, L.-S. Neutral loss scan-based strategy for integrated identification of amorfrutin derivatives, new peroxisome proliferator-activated receptor gamma agonists, from Amorpha Fruticosa by UPLC-QqQ-MS/MS and UPLC-Q-TOF-MS. J. Am. Soc. Mass Spectrom. 2018, 29, 685–693. [Google Scholar] [CrossRef] [PubMed]
- Sun, W.-X.; Zhang, Z.-Z.; Xie, J.; He, Y.; Cheng, Y.; Ding, L.-S.; Luo, P.; Qing, L.-S. Determination of a astragaloside IV derivative LS-102 in plasma by ultra-performance liquid chromatography-tandem mass spectrometry in dog plasma and its application in a pharmacokinetic study. Phytomedicine 2019, 53, 243–251. [Google Scholar] [CrossRef]
- Xie, J.; Li, J.; Liang, J.; Luo, P.; Qing, L.-S.; Ding, L.-S. Determination of contents of catechins in oolong teas by quantitative analysis of multi-components via a single marker (QAMS) method. Food Anal. Methods 2017, 10, 363–368. [Google Scholar] [CrossRef]
- Qing, L.-S.; Xue, Y.; Zhang, J.-G.; Zhang, Z.-F.; Liang, J.; Jiang, Y.; Liu, Y.-M.; Liao, X. Identification of flavonoid glycosides in Rosa chinensis flowers by liquid chromatography–tandem mass spectrometry in combination with 13C nuclear magnetic resonance. J. Chromatogr. A 2012, 1249, 130–137. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.-L.; Li, J.; Li, X.-D.; Tao, W.-J.; Ding, L.-S.; Luo, P.; Qing, L.-S. An efficient direct competitive nano-ELISA for residual BSA determination in vaccines. Anal. Bioanal. Chem. 2017, 409, 4607–4614. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Q.Y.; Zhang, A.; Tsang, D.; Huang, Y.; Chen, Z. Stability of Green Tea Catechins. J. Agric. Food Chem. 1997, 45, 4624–4628. [Google Scholar] [CrossRef]
- Ferreira, S.L.C.; Bruns, R.E.; Ferreira, H.S.; Matos, G.D.; David, J.M.; Brandão, G.C.; da Silva, E.G.P.; Portugal, L.A.; dos Reis, P.S.; Souza, A.S.; et al. Box-Behnken design: An alternative for the optimization of analytical methods. Anal. Chim. Acta 2007, 597, 179–186. [Google Scholar] [CrossRef] [PubMed]
Sample Availability: Samples of the all compounds are available from the authors. |
Run | EtOAc/mL | ACN/mL | pH | GA/% | PC/% | VA/% | SA/% | FA/% | Que/% | C/% | EC/% | GCG/% | ECG/% | EGCG/% |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 500 | 650 | 4 | 70.56 | 66.70 | 67.73 | 44.58 | 77.88 | 62.34 | 71.07 | 62.45 | 71.01 | 72.23 | 66.87 |
2 | 1000 | 650 | 2 | 63.73 | 64.10 | 68.01 | 47.23 | 73.88 | 25.08 | 77.61 | 66.82 | 23.63 | 25.57 | 37.92 |
3 | 1000 | 350 | 6 | 38.45 | 42.72 | 65.54 | 43.26 | 45.13 | 22.69 | 53.74 | 54.63 | 40.53 | 43.26 | 53.66 |
4 | 1000 | 500 | 4 | 91.73 | 93.05 | 96.68 | 95.44 | 91.30 | 87.13 | 90.61 | 97.70 | 91.98 | 93.42 | 93.92 |
5 | 1000 | 350 | 2 | 69.13 | 73.06 | 76.00 | 54.35 | 74.38 | 35.72 | 74.52 | 75.87 | 29.92 | 36.35 | 40.61 |
6 | 1000 | 500 | 4 | 92.85 | 90.09 | 94.55 | 93.56 | 92.40 | 88.45 | 92.18 | 94.57 | 93.35 | 92.35 | 92.89 |
7 | 1000 | 500 | 4 | 93.89 | 91.31 | 93.12 | 94.36 | 94.19 | 89.80 | 91.35 | 94.9 | 92.69 | 94.28 | 91.39 |
8 | 1500 | 350 | 4 | 85.00 | 85.26 | 87.14 | 89.24 | 89.13 | 75.66 | 84.24 | 83.72 | 80.78 | 85.73 | 84.99 |
9 | 500 | 500 | 6 | 19.45 | 17.97 | 37.20 | 17.34 | 37.50 | 15.05 | 30.76 | 27.49 | 36.20 | 50.06 | 39.59 |
10 | 1500 | 500 | 2 | 67.24 | 68.27 | 59.09 | 63.46 | 77.50 | 30.77 | 67.8 | 64.98 | 28.39 | 45.88 | 41.97 |
11 | 500 | 500 | 2 | 57.89 | 48.19 | 61.86 | 31.58 | 68.25 | 23.44 | 64.9 | 58.60 | 16.47 | 19.21 | 30.40 |
12 | 500 | 350 | 4 | 65.32 | 71.02 | 76.52 | 62.54 | 76.38 | 60.26 | 70.5 | 69.12 | 67.64 | 65.44 | 75.16 |
13 | 1000 | 650 | 6 | 41.28 | 42.72 | 55.22 | 28.35 | 53.63 | 38.61 | 50.48 | 53.42 | 50.88 | 58.65 | 48.58 |
14 | 1000 | 500 | 4 | 94.12 | 92.46 | 93.19 | 95.89 | 93.29 | 86.46 | 90.49 | 95.39 | 94.69 | 91.24 | 92.39 |
15 | 1500 | 650 | 4 | 86.83 | 86.54 | 77.63 | 83.57 | 95.63 | 78.87 | 83.5 | 81.46 | 87.41 | 83.56 | 85.51 |
16 | 1000 | 500 | 4 | 95.89 | 91.9 | 95.69 | 94.68 | 95.25 | 89.35 | 91.68 | 96.77 | 93.84 | 92.87 | 93.2 |
17 | 1500 | 500 | 6 | 56.24 | 42.33 | 60.5 | 44.25 | 58.75 | 39.65 | 54.02 | 51.97 | 52.59 | 55.01 | 56.49 |
Source | Sum of Squares | df | Mean Square | F-Value | p-Value | Prob > F |
---|---|---|---|---|---|---|
Model | 11,823.31 | 9 | 1313.7 | 826.42 | <0.0001 | significant |
A-EtOAc | 1936.91 | 1 | 1936.91 | 1218.47 | <0.0001 | |
B-ACN | 260.6 | 1 | 260.6 | 163.94 | <0.0001 | |
C-pH | 502.76 | 1 | 502.76 | 316.28 | <0.0001 | |
AB | 37.76 | 1 | 37.76 | 23.75 | 0.0018 | |
AC | 6.18 | 1 | 6.18 | 3.88 | 0.0894 | |
BC | 15.17 | 1 | 15.17 | 9.54 | 0.0176 | |
A2 | 881.82 | 1 | 881.82 | 554.73 | <0.0001 | |
B2 | 449.45 | 1 | 449.45 | 282.74 | <0.0001 | |
C2 | 7132.12 | 1 | 7132.12 | 4486.67 | <0.0001 | |
Residual | 11.13 | 7 | 1.59 | |||
Lack of fit | 7.79 | 3 | 2.6 | 3.11 | 0.1511 | not significant |
Pure error | 3.34 | 4 | 0.84 | |||
Cor total | 11,834.44 | 16 |
Analyte | Regression Equation | Linear Range (ng/mL) | LOD * | LOQ * | Precision (RSD, n = 6) | Repeatability (n = 6) | Recovery (n = 6) | |||
---|---|---|---|---|---|---|---|---|---|---|
(y = ax + b, r2) | (ng) | (ng) | Intra-Day (%) | Inter-Day (%) | Mean (μg/kg) | RSD (%) | Mean (%) | RSD (%) | ||
GA | y = 327102x + 293214, 0.9962 | 1.05–21.0 | 0.01 | 0.03 | 0.59 | 1.18 | 9.085 | 1.27 | 93.56 | 1.39 |
PC | y = 75436x + 19495, 0.9993 | 0.98–19.6 | 0.02 | 0.06 | 0.96 | 1.11 | 10.053 | 1.34 | 91.71 | 1.02 |
VA | y = 3045x − 254, 0.9998 | 0.99–19.8 | 0.3 | 0.9 | 2.79 | 2.92 | 6.266 | 1.87 | 93.61 | 1.52 |
SA | y = 3500x − 1177, 0.9997 | 0.95–19.0 | 0.1 | 0.3 | 1.86 | 0.95 | 5.093 | 0.95 | 94.75 | 0.79 |
FA | y = 67479x − 1274, 0.9999 | 0.96–19.2 | 0.1 | 0.3 | 1.12 | 2.95 | 12.917 | 0.38 | 92.26 | 1.52 |
Que | y = 442647x − 283610, 0.9986 | 1.04–20.8 | 0.01 | 0.03 | 1.18 | 1.88 | 354.675 | 0.70 | 88.29 | 1.32 |
C | y = 43132x − 8789, 0.9999 | 0.96–19.2 | 0.1 | 0.3 | 0.58 | 1.49 | 8.295 | 1.11 | 91.13 | 0.72 |
EC | y = 87001x + 31241, 0.9989 | 0.92–18.4 | 0.1 | 0.3 | 1.32 | 1.87 | 15.177 | 0.95 | 95.76 | 1.16 |
GCG | y = 49998x − 10512, 0.9997 | 0.96–19.2 | 0.1 | 0.3 | 1.13 | 2.12 | 0.634 | 2.46 | 93.35 | 0.92 |
ECG | y = 117448x − 15171, 0.9997 | 1.08–21.6 | 0.1 | 0.3 | 1.36 | 2.48 | 9.528 | 1.88 | 92.67 | 1.08 |
EGCG | Y = 7895x − 1558, 0.9998 | 0.98–19.6 | 0.1 | 0.3 | 1.04 | 2.35 | 0.827 | 1.31 | 92.71 | 0.84 |
No | Source | GA | PC | VA | SA | FA | Que | C | EC | GCG | ECG | EGCG | Total |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | orchard, Deyang | 9.21 ± 0.15 | 10.10 ± 0.11 | 6.38 ± 0.02 | 5.09 ± 0.10 | 12.92 ± 0.09 | 357.54 ± 2.12 | 8.33 ± 0.11 | 15.24 ± 0.09 | 0.66 ± 0.06 | 9.79 ± 0.07 | 0.85 ± 0.03 | 439.096 |
2 | orchard, Chengdu | 19.02 ± 0.19 | 10.87 ± 0.14 | 7.13 ± 0.06 | 2.67 ± 0.12 | 10.09 ± 0.04 | 332.24 ± 2.38 | 7.09 ± 0.12 | 21.12 ± 0.21 | 1.22 ± 0.09 | 9.25 ± 0.07 | 1.72 ± 0.11 | 422.403 |
3 | orchard, Chengdu | 10.55 ± 0.15 | 4.83 ± 0.10 | 8.81 ± 0.11 | 3.25 ± 0.10 | 6.48 ± 0.11 | 160.99 ± 1.16 | 6.48 ± 0.20 | 37.27 ± 0.20 | 1.03 ± 0.08 | 6.44 ± 0.13 | 1.15 ± 0.05 | 247.286 |
4 | orchard, Chengdu | 18.37 ± 0.18 | 3.27 ± 0.13 | 10.112 ± 0.10 | 2.27 ± 0.14 | 6.77 ± 0.12 | 283.86 ± 2.07 | 8.65 ± 0.20 | 18.72 ± 0.19 | 0.88 ± 0.06 | 11.53 ± 0.10 | 0.73 ± 0.04 | 367.165 |
5 | fruit shop, Leshan | 13.03 ± 0.16 | 3.74 ± 0.06 | 4.39 ± 0.13 | 5.65 ± 0.10 | 16.59 ± 0.14 | 319.60 ± 2.20 | 8.58 ± 0.12 | 19.58 ± 0.13 | 0.85 ± 0.01 | 13.41 ± 0.09 | n.d. | 405.423 |
6 | fruit shop, Chengdu | 13.92 ± 0.09 | 5.98 ± 0.10 | 8.51 ± 0.18 | 1.86 ± 0.11 | 6.63 ± 0.08 | 439.85 ± 2.55 | 3.77 ± 0.12 | 36.04 ± 0.06 | 1.66 ± 0.08 | 6.14 ± 0.07 | n.d. | 524.376 |
7 | fruit shop, Chengdu | 17.13 ± 0.18 | 4.74 ± 0.10 | 10.09 ± 0.15 | 2.81 ± 0.14 | 10.50 ± 0.13 | 390.38 ± 2.61 | 10.81 ± 0.14 | 22.16 ± 0.13 | 1.37 ± 0.08 | 8.35 ± 0.11 | n.d. | 478.338 |
8 | fruit shop, Chengdu | 19.57 ± 0.13 | 5.63 ± 0.18 | 5.71 ± 0.15 | 3.12 ± 0.12 | 13.71 ± 0.12 | 137.62 ± 1.84 | 9.08 ± 0.08 | 13.56 ± 0.110 | 0.67 ± 0.05 | 8.63 ± 0.13 | n.d. | 217.294 |
9 | fruit shop, Yibing | 12.24 ± 0.21 | 5.72 ± 0.15 | 8.21 ± 0.13 | 4.69 ± 0.09 | 15.30 ± 0.15 | 430.71 ± 2.63 | 3.95 ± 0.11 | 15.26 ± 0.12 | 0.57 ± 0.05 | 9.22 ± 0.10 | n.d. | 505.877 |
10 | fruit shop, Deyang | 11.02 ± 0.11 | 4.77 ± 0.16 | 8.74 ± 0.15 | 5.83 ± 0.12 | 16.40 ± 0.10 | 231.83 ± 2.07 | 9.23 ± 0.14 | 26.41 ± 0.11 | 1.56 ± 0.07 | 6.54 ± 0.12 | n.d. | 322.336 |
11 | fruit shop, Suining | 13.46 ± 0.12 | 5.44 ± 0.09 | 5.67 ± 0.12 | 1.89 ± 0.11 | 15.70 ± 0.09 | 220.23 ± 2.59 | 8.89 ± 0.10 | 17.34 ± 0.10 | 1.28 ± 0.08 | 13.01 ± 0.10 | n.d. | 302.876 |
12 | fruit shop, Neijiang | 14.41 ± 0.16 | 8.22 ± 0.10 | 5.80 ± 0.18 | 3.51 ± 0.12 | 8.14 ± 0.07 | 134.57 ± 1.67 | 6.30 ± 0.10 | 21.69 ± 0.15 | 1.54 ± 0.06 | 4.22 ± 0.10 | n.d. | 208.408 |
13 | fruit shop, Mianyang | 11.91 ± 0.08 | 8.98 ± 0.16 | 7.85 ± 0.15 | 2.35 ± 0.09 | 14.45 ± 0.134 | 394.96 ± 2.56 | 7.41 ± 0.15 | 19.89 ± 0.08 | 0.80 ± 0 .03 | 12.83 ± 0.13 | n.d. | 481.433 |
14 | fruit shop, Nanchong | 19.52 ± 0.12 | 9.97 ± 0.11 | 8.65 ± 0.18 | 3.73 ± 0.10 | 10.23 ± 0.10 | 376.28 ± 2.00 | 11.15 ± 0.08 | 33.17 ± 0.10 | 0.91 ± 0.05 | 9.86 ± 0.14 | n.d. | 483.473 |
15 | fruit shop, Langzhong | 7.80 ± 0.14 | 5.58 ± 0.07 | 7.67 ± 0.13 | 4.68 ± 0.08 | 14.08 ± 0.11 | 180.87 ± 1.54 | 8.71 ± 0.10 | 28.82 ± 0.14 | 1.10 ± 0.08 | 6.03 ± 0.04 | n.d. | 265.320 |
16 | fruit shop, Chongqing | 14.97 ± 0.12 | 7.88 ± 0.13 | 6.02 ± 0.15 | 4.69 ± 0.10 | 5.89 ± 0.10 | 357.77 ± 2.23 | 4.32 ± 0.12 | 23.25 ± 0.11 | 1.06 ± 0.07 | 9.86 ± 0.11 | n.d. | 435.707 |
17 | fruit shop, Chongqing | 18.02 ± 0.08 | 6.91 ± 0.10 | 10.26 ± 0.10 | 3.06 ± 0.11 | 13.93 ± 0.09 | 229.77 ± 1.84 | 8.35 ± 0.11 | 16.92 ± 0.10 | 1.27 ± 0.05 | 4.02 ± 0.09 | n.d. | 312.492 |
18 | supermarket, Deyang | 3.25 ± 0.17 | 9.25 ± 0.12 | 8.86 ± 0.09 | 2.71 ± 0.13 | 12.60 ± 0.13 | 302.55 ± 1.83 | 10.30 ± 0.18 | 23.5 7 ± 0.14 | 0.80 ± 0.04 | 13.03 ± 0.07 | n.d. | 386.919 |
19 | supermarket, Chengdu | 19.82 ± 0.11 | 7.12 ± 0.09 | 8.21 ± 0.18 | 4.59 ± 0.08 | 15.74 ± 0.14 | 450.23 ± 3.27 | 5.74 ± 0.90 | 28.95 ± 0.14 | 1.16 ± 0.07 | 10.76 ± 0.09 | n.d. | 552.326 |
20 | supermarket, Chengdu | 14.35 ± 0.12 | 5.98 ± 0.09 | 8.27 ± 0.10 | 3.87 ± 0.14 | 10.19 ± 0.08 | 397.70 ± 2.14 | 8.61 ± 0.11 | 18.29 ± 0.06 | 1.07 ± 0.07 | 13.03 ± 0.13 | n.d. | 481.339 |
21 | supermarket, Chengdu | 16.68 ± 0.22 | 8.77 ± 0.16 | 7.69 ± 0.10 | 5.16 ± 0.06 | 8.50 ± 0.10 | 405.34 ± 1.85 | 4.81 ± 0.10 | 28.00 ± 0.12 | 1.61 ± 0.02 | 4.88 ± 0.13 | n.d. | 491.432 |
22 | supermarket, Chengdu | 12.95 ± 0.18 | 7.37 ± 0.12 | 4.17 ± 0.07 | 2.75 ± 0.13 | 7.12 ± 0.09 | 387.03 ± 2.31 | 6.55 ± 0.10 | 18.13 ± 0.11 | 0.73 ± 0.03 | 7.97 ± 0.10 | n.d. | 454.761 |
23 | supermarket, Mianyang | 7.66 ± 0.12 | 5.51 ± 0.09 | 7.06 ± 0.14 | 3.70 ± 0.08 | 10.80 ± 0.11 | 261.42 ± 2.10 | 10.34 ± 0.11 | 20.37 ± 0.12 | 0.88 ± 0.05 | 11.31 ± 0.11 | n.d. | 339.054 |
24 | supermarket, Chongqing | 11.96 ± 0.16 | 7.16 ± 0.12 | 10.11 ± 0.11 | 4.70 ± 0.16 | 7.54 ± 0.11 | 223.72 ± 1.74 | 4.29 ± 0.11 | 32.41 ± 0.13 | 1.07 ± 0.07 | 11.52 ± 0.11 | n.d. | 314.477 |
25 | supermarket, Chongqing | 13.92 ± 0.16 | 7.26 ± 0.15 | 8.09 ± 0.05 | 4.19 ± 0.19 | 11.51 ± 0.10 | 319.40 ± 2.21 | 8.06 ± 0.09 | 25.40 ± 0.11 | 1.14 ± 0.04 | 9.42 ± 0.12 | n.d. | 408.386 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xue, Y.; Xu, X.-S.; Yong, L.; Hu, B.; Li, X.-D.; Zhong, S.-H.; Li, Y.; Xie, J.; Qing, L.-S. Optimization of Vortex-Assisted Dispersive Liquid-Liquid Microextraction for the Simultaneous Quantitation of Eleven Non-Anthocyanin Polyphenols in Commercial Blueberry Using the Multi-Objective Response Surface Methodology and Desirability Function Approach. Molecules 2018, 23, 2921. https://doi.org/10.3390/molecules23112921
Xue Y, Xu X-S, Yong L, Hu B, Li X-D, Zhong S-H, Li Y, Xie J, Qing L-S. Optimization of Vortex-Assisted Dispersive Liquid-Liquid Microextraction for the Simultaneous Quantitation of Eleven Non-Anthocyanin Polyphenols in Commercial Blueberry Using the Multi-Objective Response Surface Methodology and Desirability Function Approach. Molecules. 2018; 23(11):2921. https://doi.org/10.3390/molecules23112921
Chicago/Turabian StyleXue, Ying, Xian-Shun Xu, Li Yong, Bin Hu, Xing-De Li, Shi-Hong Zhong, Yi Li, Jing Xie, and Lin-Sen Qing. 2018. "Optimization of Vortex-Assisted Dispersive Liquid-Liquid Microextraction for the Simultaneous Quantitation of Eleven Non-Anthocyanin Polyphenols in Commercial Blueberry Using the Multi-Objective Response Surface Methodology and Desirability Function Approach" Molecules 23, no. 11: 2921. https://doi.org/10.3390/molecules23112921
APA StyleXue, Y., Xu, X. -S., Yong, L., Hu, B., Li, X. -D., Zhong, S. -H., Li, Y., Xie, J., & Qing, L. -S. (2018). Optimization of Vortex-Assisted Dispersive Liquid-Liquid Microextraction for the Simultaneous Quantitation of Eleven Non-Anthocyanin Polyphenols in Commercial Blueberry Using the Multi-Objective Response Surface Methodology and Desirability Function Approach. Molecules, 23(11), 2921. https://doi.org/10.3390/molecules23112921