Chemical Structures of Lignans and Neolignans Isolated from Lauraceae
Abstract
:1. Introduction
2. Lignans
2.1. Simple Lignans
2.2. 7,7’-Epoxylignans
2.3. 7,9’-Epoxylignans
2.4. Lignan-9,9’-Olides
2.5. 2.9,2’.9’-Diepoxylignans
2.6. 7.9’,7’.9-Diepoxylignans
3. Cyclolignans
2,7.’-Cyclolignans
4. Neolignans
4.1. 8,1’-Neolignans
4.2. 8,3’-Neolignans
4.3. 7,1’-Neolignans
4.4. 7,3’-Neolignans
5. Cycloneolignans
5.1. 7.3’,8.1’-Cycloneolignans
5.2. 7.3’,8.5’-Cycloneolignans
5.3. 7.1’,8.3’-Cycloneolignans
6. Oxyneolignans
6.1. 7.3’,8.4’-Dioxyneolignans
6.2. 8,4’-Oxyneolignans
7. Uncommon Lignans
8. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Teponno, R.B.; Kusari, S.; Spiteller, M. Recent advances in research on lignans and neolignans. Nat. Prod. Rep. 2016, 33, 1044–1094. [Google Scholar] [CrossRef] [PubMed]
- Shimomura, H.; Sashida, Y.; Oohara, M. Lignans from Machilus thunbergii. Phytochemistry 1987, 26, 1513–1515. [Google Scholar] [CrossRef]
- Yu, Y.U.; Kang, S.Y.; Park, H.Y.; Sung, S.H.; Lee, E.J.; Kim, S.Y.; Kim, Y.C. Antioxidant lignans from Machilus thunbergii protect CCl4–injured primary cultures of rat hepatocytes. J. Pharm. Pharmacol. 2000, 52, 1163–1169. [Google Scholar] [CrossRef] [PubMed]
- Ma, C.J.; Sung, S.H.; Kim, Y.C. Neuroprotective lignans from the bark of Machilus thunbergii. Planta Med. 2004, 70, 79–80. [Google Scholar] [PubMed]
- Li, G.; Lee, C.S.; Woo, M.H.; Lee, S.H.; Chang, H.W.; Son, J.K. Lignans from the bark of Machilus thunbergii and their DNA topoisomerases I and II inhibition and cytotoxicity. Biol. Pharm. Bull. 2004, 27, 1147–1150. [Google Scholar] [CrossRef]
- Coybarrera, E.D.; Cucasuarez, L.E. In vitro anti-inflammatory effects of naturally–occurring compounds from two Lauraceae plants. An. Acad. Bras. Cienc. 2011, 83, 1397–1402. [Google Scholar] [CrossRef]
- Park, B.Y.; Min, B.S.; Kwon, O.K.; Oh, S.R.; Ahn, K.S.; Kim, T.J.; Kim, D.Y.; Bae, K.; Lee, H.K. Increase of caspase-3 activity by lignans from Machilus thunbergii in HL-60 cells. Biol. Pharm. Bull. 2004, 27, 1305–1307. [Google Scholar] [CrossRef] [PubMed]
- Macías-Villamizar, V.; Cuca-Suárez, L. Diaryldimethylbutane lignans and other constituents isolated from Nectandra turbacensis (Kunth) Nees (Lauraceae). Rev. Colomb. Quim. 2014, 43, 12–16. [Google Scholar]
- Macías-Villamizar, V.; Cuca-Suárez, L.; González, F.V.; Rodríguez, S. Lignoids isolated from Nectandra turbacensis (Kunth) Nees (Lauraceae). Rec. Nat. Prod. 2016, 10, 654–658. [Google Scholar]
- Pérez, C.; Almonacid, L.N.; Trujillo, J.M.; González, A.G.; Alonso, S.J.; Navarro, E. Lignans from Apollonias barbujana. Phytochemistry 1995, 40, 1511–1513. [Google Scholar] [CrossRef]
- Moro, J.C.; Fernandes, J.B.; Vieira, P.C.; Yoshida, M.; Gottlieb, H.E. Neolignans from Nectandra puberula. Phytochemistry 1987, 26, 269–272. [Google Scholar] [CrossRef]
- Quesne, P.W.L.; Larrahondo, J.E.; Raffauf, R.F. Antitumor plants. X. constituents of Nectandra rigida. J. Nat. Prod. 1980, 43, 353–359. [Google Scholar] [CrossRef] [PubMed]
- Shimomura, H.; Sashida, Y.; Oohara, M. Lignans from Machilus thunbergii. Phytochemistry 1988, 27, 634–636. [Google Scholar] [CrossRef]
- López, H.; Valera, A.; Trujillo, J. Lignans from Ocotea foetens. J. Nat. Prod. 1995, 58, 782–785. [Google Scholar] [CrossRef]
- Crossley, N.S.; Djerassi, C. Naturally occurring oxygen heterocyclics. Part XI. Veraguensin. J. Chem. Soc. 1962, 1459–1462. [Google Scholar] [CrossRef]
- Khan, M.R.; Gray, A.I.; Waterman, P.G. Neolignans from stem bark of Ocotea veraguensis. Phytochemistry 1987, 26, 1155–1158. [Google Scholar] [CrossRef]
- Dias, A.D.F.; Giesbrecht, A.M. Neolignans from Urbanodendron verrucosum. Phytochemistry 1982, 21, 1137–1139. [Google Scholar] [CrossRef]
- Huang, Y.-T.; Chang, H.-S.; Wang, G.-J.; Lin, C.-H.; Chen, I.-S. Secondary metabolites from the roots of Beilschmiedia tsangii and their anti-inflammatory activities. Int. J. Mol. Sci. 2012, 13, 16430–16443. [Google Scholar] [CrossRef]
- Phan, M.G.; Phan, T.S.; Matsunami, K.; Otsuka, H. New neolignans and lignans from Vietnamese medicinal plant Machilus odoratissima Nees. Cheminform 2006, 54, 380–383. [Google Scholar]
- Takaoka, D.; Tani, H.; Nozaki, H. A new lignan, (-)-parabenzoinol, from Parabenzoin trilobum Nakai. Chem. Lett. 1995, 24, 915–916. [Google Scholar] [CrossRef]
- Kwon, H.C.; Sang, U.C.; Lee, J.O.; Bae, K.H.; Zee, O.P.; Kang, R.L. Two new lignans from Lindera obtusiloba Blume. Arch. Pharm. Res. 1999, 22, 417–422. [Google Scholar] [CrossRef] [PubMed]
- Choi, H.G.; Choi, Y.H.; Ji, H.K.; Kim, H.H.; Kim, S.H.; Kim, J.A.; Sang, M.L.; Na, M.K.; Lee, S.H. A new neolignan and lignans from the stems of Lindera obtusiloba Blume and their anti-allergic inflammatory effects. Arch. Pharm. Res. 2014, 37, 467–472. [Google Scholar] [CrossRef] [PubMed]
- Wada, K.; Munakata, K. (-)-Parabenzlactone, a new piperolignanolide isolated from Parabenzoin trilobum Nakai. Tetrahedron Lett. 1970, 11, 2017–2019. [Google Scholar] [CrossRef]
- Wei, X.; Li, G.H.; Wang, X.L.; He, J.X.; Wang, X.N.; Ren, D.M.; Lou, H.X.; Shen, T. Chemical constituents from the leaves of Cinnamomum parthenoxylon (Jack) Meisn. (Lauraceae). Biochem. Syst. Ecol. 2017, 70, 95–98. [Google Scholar] [CrossRef]
- Barbosa-Filho, J.M.; Yoshida, M. Neolignans from the fruits of Licaria armeniaca. Phytochemistry 1987, 26, 319–321. [Google Scholar] [CrossRef]
- Barbosa-Filho, J.M.; Yoshida, M. Lignoids from Nectandra amazonum and N. glabrescens. Phytochemistry 1989, 28, 1991. [Google Scholar] [CrossRef]
- Batista, A.N.D.L.; Batista Junior, J.M.; López, S.N.; Furlan, M.; Cavalheiro, A.J.; Silva, D.H.S.; Bolzani, V.D.S.; Nunomura, S.M.; Yoshida, M. Aromatic compounds from three Brazilian Lauraceae species. Quím. Nova 2010, 33, 321–323. [Google Scholar] [CrossRef] [Green Version]
- Barrera, E.D.C.; Suárez, L.E.C.; Suárez, L.E.C. Chemical constituents from Pleurothyrium cinereum (van der Werff) (Lauraceae) from Colombia. Biochem. Syst. Ecol. 2008, 36, 674–677. [Google Scholar] [CrossRef]
- Lin, I.J.; Lo, W.L.; Chia, Y.C.; Huang, L.Y.; Cham, T.M.; Tseng, W.S.; Yeh, Y.T.; Yeh, H.C.; Wang, Y.D.; Chen, C.Y. Isolation of new esters from the stems of Cinnamomum reticulatum Hay. Nat. Prod. Res. 2010, 24, 775–780. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.R.; Jung, H.J.; Min, B.S.; Oh, S.R.; Kim, C.S.; Ahn, K.S.; Kang, W.S.; Lee, H.K. Constituents from the stems of Actinodaphne lancifolia. Phytochemistry 2002, 59, 861–865. [Google Scholar] [CrossRef]
- Li, C.T.; Kao, C.L.; Li, H.T.; Huang, S.T.; Huang, S.C.; Chen, C.Y. Secondary metabolites from the leaves of Cinnamomum macrostemon Hayata. Eur. J. Biomed. Pharm.Sci. 2015, 2, 38–51. [Google Scholar]
- Chen, C.; Hong, Z.; Yang, W.; Wu, M.; Huang, J.; Lee, J. A novel homosesquiterpenoid from the stems of Cinnamomum burmanii. Nat. Prod. Res. 2012, 26, 1218. [Google Scholar] [CrossRef] [PubMed]
- Carvalho, M.G.D.; Yoshida, M.; Gottlieb, H.E. Lignans from Nectandra turbacensis. Phytochemistry 1987, 26, 265–267. [Google Scholar] [CrossRef]
- Morais, L.C.S.L.; Almeida, R.N.; Dacunha, E.V.L.; Dasilva, M.S.; Barbosafilho, J.M.; Gray, A.I. Further lignans from Ocotea duckei. Pharm. Biol. 1999, 37, 144–147. [Google Scholar] [CrossRef]
- Hoang, V.D.; Tan, G.T.; Zhang, H.J.; Tamez, P.A.; Hung, N.V.; Cuong, N.M.; Soejarto, D.D.; Fong, H.H.; Pezzuto, J.M. Natural anti-HIV agents– Part I: (+)-demethoxyepiexcelsin and verticillatol from Litsea verticillata. Phytochemistry 2002, 59, 325–329. [Google Scholar] [CrossRef]
- Yang, L.J.; Wen, C.; Luo, Y.P.; Li, G.P.; Yang, X.D.; Liang, L. Lignans and ketonic compounds from Litsea chinpingensis (Lauraceae). Biochem. Syst. Ecol. 2009, 37, 696–698. [Google Scholar] [CrossRef]
- Chen, C.Y.; Yeh, Y.T.; Hsui, Y.R. A new lignan from the roots of Cinnamomum philippinense. Chem. Nat. Compd. 2011, 47, 519–520. [Google Scholar] [CrossRef]
- Lima, O.A.; Gottlieb, O.R.; Magalhães, M.T. Burchellin, a neolignan from Aniba burchellii. Phytochemistry 1972, 11, 2031–2037. [Google Scholar] [CrossRef]
- Mourão, J.C.; Yoshida, M.; Mascarenhas, Y.P.; Rodrigues, M.; Rosenstein, R.D.; Tomita, K. Absolute configuration of the benzofuranoid neolignans. Phytochemistry 1977, 16, 1003–1006. [Google Scholar]
- Fernandes, J.B.; Gottlieb, O.R.; Maia, J.G.S. Neolignans from an Aniba sp. Phytochemistry 1976, 15, 1033–1036. [Google Scholar] [CrossRef]
- Filho, R.B.; Figliuolo, R.; Gottlieb, O.R. Neolignans from a Nectandra species. Phytochemistry 1980, 19, 659–662. [Google Scholar] [CrossRef]
- Gottli, O.R.; Ferreira, S.Z.S. Neolignans from Aniba terminalis. Phytochemistry 1975, 14, 1825–1827. [Google Scholar] [CrossRef]
- Juan, C.M.V.; Maia, J.S.; Yoshida, M. Neolignans from an Aniba species. Phytochemistry 1980, 19, 474–476. [Google Scholar]
- Haraguchi, M.; Motidome, M.; Yoshida, M.; Gottlieb, O.R. Neolignans from Ocotea catharinensis. Phytochemistry 1983, 22, 561–563. [Google Scholar] [CrossRef]
- Ishige, M.; Motidome, M.; Yoshida, M.; Gottlieb, O.R. Neolignans from Ocotea catharinensis. Phytochemistry 1991, 30, 4121–4128. [Google Scholar] [CrossRef]
- Aiba, C.J.; Alvarenga, M.A.D.; Oscar, C.C.; Giesbrecht, A.M.; Pagliosa, F.M. Benzofuranoid neolignans from Aniba simulans. Phytochemistry 1977, 16, 741–743. [Google Scholar] [CrossRef]
- Aiba, C.J.; Fernandes, J.B.; Gottlieb, O.R.; Maia, J.G.S. Neolignans from an Aniba species. Phytochemistry 1975, 14, 1597–1604. [Google Scholar] [CrossRef]
- Aiba, C.J.; Maia, J.G.S.; Pagliosa, F.M.; Yoshida, M. Benzofuranoid neolignans from Licaria armeniaca. Phytochemistry 1978, 17, 2038–2039. [Google Scholar] [CrossRef]
- Barbosa-Filho, J.M.; Yoshida, M.; Barbosa, R. d. C.S.B.C.; Giesbrecht, A.M.; Young, M.C.M. Benzoyl esters and amides, styrylpyrones and neolignans from the fruits of Aniba riparia. Phytochemistry 1987, 26, 2615–2617. [Google Scholar] [CrossRef]
- Dias, S.M.C.; Fernandes, J.B.; Maia, J.G.S.; Gottlieb, H.E. Eusiderins and other neolignans from an Aniba species. Phytochemistry 1986, 25, 213–217. [Google Scholar] [CrossRef]
- Giesbrecht, A.M.; Franca, N.C.; Rocha, A.I.D. The neolignans of Licaria canella. Phytochemistry 1974, 13, 2285–2293. [Google Scholar] [CrossRef]
- Trevisan, L.M.V.; Yoshida, M. Hexahydrobenzofuranoid neolignans from an Aniba species. Phytochemistry 1984, 23, 661–665. [Google Scholar] [CrossRef]
- Aiba, C.J.; Filho, R.B.; Gottlieb, O.R. Porosin: A neolignan from Ocotea porosa. Phytochemistry 1973, 12, 413–416. [Google Scholar] [CrossRef]
- Andrade, C.H.S.; Filho, R.B. Neolignans from Aniba ferrea. Phytochemistry 1980, 19, 1191–1194. [Google Scholar] [CrossRef]
- Romoff, P.; Yoshida, M.; Gottlieb, O.R. Neolignans from Ocotea aciphylla. Phytochemistry 1984, 23, 2101–2104. [Google Scholar] [CrossRef]
- Felicio, J.D.A.; Motidome, M.; Yoshida, M. Further neolignans from Ocotea aciphylla. Phytochemistry 1986, 25, 1707–1710. [Google Scholar] [CrossRef]
- Dias, D.A.; Yoshida, M. Further neolignans from Ocotea porosa. Phytochemistry 1986, 25, 2613–2616. [Google Scholar] [CrossRef]
- Carvalho, M.G.D.; Yoshida, M.; Gottlieb, H.E. Bicyclooctanoid, carinatone and megaphone type neolignans from Ocotea porosa. Phytochemistry 1988, 27, 2319–2323. [Google Scholar] [CrossRef]
- David, J.M.; Yoshida, M.; Gottlieb, O.R. Neolignans from bark and leaves of Ocotea porosa. Phytochemistry 1994, 36, 491–499. [Google Scholar] [CrossRef]
- Aiba, C.J.; Corrêa, R.G.C.; Gottlieb, O.R. Natural occurrence of Erdtman’s dehydrodiisoeugenol. Phytochemistry 1973, 12, 1163–1164. [Google Scholar] [CrossRef]
- Tsai, I.L.; Chen, J.H.; Duh, C.Y.; Chen, I.S. Cytotoxic neolignans from the stem wood of Machilus obovatifolia. Planta Med. 2000, 66, 403–407. [Google Scholar] [CrossRef] [PubMed]
- Alvarenga, M.A.D.; Brocksom, U.; Oscar, C.C.; Magalhães, M.T. Neolignans from Aniba burchellii. Phytochemistry 1977, 16, 1797–1799. [Google Scholar] [CrossRef]
- Coy Barrera, E.D.; Cuca Suárez, L.E. Errata: Three new 7.3′,8.5′-connected bicyclo [3.2.1]octanoids and other neolignans from leaves of Nectandra amazonum Nees. (Lauraceae). Chem. Pharm. Bull. 2009, 57, 639–642. [Google Scholar] [CrossRef] [PubMed]
- Aiba, C.J.; Gottlieb, O.R.; Pagliosa, F.M.; Yoshida, M.; Magalhães, M.T. Neolignans from Nectandra miranda. Phytochemistry 1977, 16, 745–748. [Google Scholar] [CrossRef]
- Dodson, C.D.; Stermitz, F.R.; Oscar, C.C.; Janzen, D.H. Neolignans from fruits of Ocotea veraguensis. Phytochemistry 1987, 26, 2037–2040. [Google Scholar]
- Tsai, I.L.; Hsieh, C.F.; Duh, C.Y. Additional cytotoxic neolignans from Persea obovatifolia. Phytochemistry 1998, 48, 1371–1375. [Google Scholar] [CrossRef]
- Tsai, I.L.; Hsieh, C.F.; Duh, C.-Y.; Ih-Sheng, C. Cytotoxic neolignans from Persea obovatifolia. Phytochemistry 1996, 43, 1261–1263. [Google Scholar] [CrossRef]
- Diaz, P.S.P.; Yoshida, M. Neolignans from Aniba lancifolia. Phytochemistry 1980, 19, 285–288. [Google Scholar] [CrossRef]
- Drewes, S.E.; Horn, M.M.; Sehlapelo, B.M.; Ramesar, N.; Field, J.S.; Shaw, S.; Sandor, P. Isoicobullenone and a neolignan ketone from Ocotea bullatabark. Phytochemistry 1995, 38, 1505–1508. [Google Scholar] [CrossRef]
- Coybarrera, E.D.; Cucasuárez, L.E.; Sefkow, M. PAF-antagonistic bicyclo[3.2.1]octanoid neolignans from leaves of Ocotea macrophylla Kunth. (Lauraceae). Phytochemistry 2009, 70, 1309–1314. [Google Scholar] [CrossRef]
- Tsai, I.L.; Chen, J.H.; Duh, C.Y.; Chen, I.S. Cytotoxic neolignans and butanolides from Machilus obovatifolia. Planta Med. 2001, 67, 559–561. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, Z.S.; Roque, N.C.; Gottlieb, H.E. An unusual porosin type neolignan from Licaria chrysophylla. Phytochemistry 1982, 21, 2756–2758. [Google Scholar] [CrossRef]
- Lopes, M.N.; Silva, M.S.D.; José, M.B.F.; Ferreira, Z.S.; Yoshida, M. Unusual benzofuranoid neolignans from Licaria chrysophylla. Phytochemistry 1986, 25, 2609–2612. [Google Scholar] [CrossRef]
- Bülow, M.V.V.; Franca, N.C.; Gottlieb, O.R.; Suarez, A.M.P. Guianin: A neolignan from Aniba guianensis. Phytochemistry 1973, 12, 1805–1808. [Google Scholar] [CrossRef]
- Marques, M.O.M.; Gomes, M.C.C.P.; Yoshida, M. Bicyclo [3.2.1] octanoid neolignans from Ocotea porosa. Phytochemistry 1992, 31, 275–277. [Google Scholar] [CrossRef]
- Gomes, M.C.C.P.; Yoshi, M.; Gottli, O.R.; Juan, C.; Martinez, C.; Gottlieba, H.E. Bicyclo(3.2.1)octane neolignans from an Ocotea species. Phytochemistry 1983, 22, 269–273. [Google Scholar] [CrossRef]
- 77. Dias, S.M.C.; Fernandes, J.B.; Maia, J.G.S.; Gottlieb, O.R.; Gottlieb, H.E. Neolignans from an Aniba species. Phytochemistry 1982, 21, 1737–1740. [Google Scholar] [CrossRef]
- Silva, W.D.D.; Braz-Filho, R. Bicyclooctanoid neolignans from Ocotea costulatum. Phytochemistry 1989, 28, 661–662. [Google Scholar] [CrossRef]
- Fo, R.B.; Carvalho, M.G.D.; Maia, J.G.S.; Silva, M.L.D. Neolignans from Licaria rigida. Phytochemistry 1981, 20, 2049–2050. [Google Scholar]
- Alegrio, L.V.; Fo, R.B.; Maia, J.G.S. Lignans and neolignans from Licaria armeniaca. Phytochemistry 1981, 20, 1963–1965. [Google Scholar] [CrossRef]
- Franca, N.C.; Gottlieb, O.R.; Maia, J.G.S. Macrophyllin, a neolignan from Licaria macrophylla. Phytochemistry 1974, 13, 2839–2842. [Google Scholar] [CrossRef]
- Coy, E.D.; Cuca, L.E.; Sefkow, M. Macrophyllin-type bicyclo[3.2.1]octanoid neolignans from the leaves of Pleurothyrium cinereum. J. Nat. Prod. 2009, 72, 1245–1248. [Google Scholar] [CrossRef] [PubMed]
- Sehlapelo, B.M.; Drewes, S.E.; Sandor, P. Ocobullenone: A bicyclo[3.2.1]octanoid neolignan from Ocotea bullata. Phytochemistry 1993, 32, 1352–1353. [Google Scholar] [CrossRef]
- Yuan, L.T.; Kao, C.L.; Chen, C.T.; Li, H.T.; Chen, C.Y. A new lignan from Cinnamomum burmanii. Chem. Nat. Compd. 2017, 53, 623–625. [Google Scholar] [CrossRef]
- Pan, J.-Y.; Chen, S.-L.; Yang, M.-H.; Wu, J.; Sinkkonen, J.; Zou, K. An update on lignans: natural products and synthesis. Nat. Prod. Rep. 2009, 26, 1251–1292. [Google Scholar] [CrossRef] [PubMed]
- Marcotullio, M.C.; Curini, M.; Becerra, J.X. An ethnopharmacological, phytochemical and pharmacological review on lignans from Mexican Bursera spp. Molecules 2018, 23, 1976. [Google Scholar] [CrossRef] [PubMed]
- Majdalawieh, A.F.; Massri, M.; Nasrallah, G.K. A comprehensive review on the anti-cancer properties and mechanisms of action of sesamin, a lignan in sesame seeds (Sesamum indicum). Eur. J. Pharmacol. 2017, 815. [Google Scholar] [CrossRef] [PubMed]
- Araújo, I.G.A.; Silva, D.F.; do Carmo de Alustau, M.; Dias, K.L.G.; Cavalcante, K.V.M.; Veras, R.C.; Barbosa-Filho, J.M.; Neto, M.A.; Bendhack, L.M.; de Azevedo Correia, N.; et al. Calcium influx inhibition is involved in the hypotensive and vasorelaxant effects induced by yangambin. Molecules 2014, 19, 6863–6876. [Google Scholar] [CrossRef] [PubMed]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Xie, S.; Ying, J.; Wei, W.; Gao, K. Chemical Structures of Lignans and Neolignans Isolated from Lauraceae. Molecules 2018, 23, 3164. https://doi.org/10.3390/molecules23123164
Li Y, Xie S, Ying J, Wei W, Gao K. Chemical Structures of Lignans and Neolignans Isolated from Lauraceae. Molecules. 2018; 23(12):3164. https://doi.org/10.3390/molecules23123164
Chicago/Turabian StyleLi, Ya, Shuhan Xie, Jinchuan Ying, Wenjun Wei, and Kun Gao. 2018. "Chemical Structures of Lignans and Neolignans Isolated from Lauraceae" Molecules 23, no. 12: 3164. https://doi.org/10.3390/molecules23123164
APA StyleLi, Y., Xie, S., Ying, J., Wei, W., & Gao, K. (2018). Chemical Structures of Lignans and Neolignans Isolated from Lauraceae. Molecules, 23(12), 3164. https://doi.org/10.3390/molecules23123164