Phytochemical and Biological Characteristics of Mexican Chia Seed Oil
Abstract
:1. Introduction
2. Results and Discussion
2.1. Physical and Chemical Profiles
2.2. Oxidative Stability
2.3. Fat and Triacylglycerol Composition
2.4. Tocopherol and Phytosterol Levels
2.5. Determination of Trace Element Levels
2.6. Determination of Polycyclic Aromatic Hydrocarbons (PAHs)
2.7. FT-IR Spectrum Analysis
2.8. Antioxidant and Cytotoxicity
2.9. The Effect of Chia Seed Oil on the Hepg2 Lipid Accumulation Model
3. Materials and Methods
3.1. Chemicals
3.2. Extraction of Chia Seed Oil
3.3. Oil Content of Chia Seeds
3.4. Chemical Properties
3.4.1. Oxidative Stability
3.4.2. Color Determination
3.4.3. Fatty Acid Composition
3.4.4. Sn-2 Fatty Acid Composition
3.4.5. Triacylglycerol Composition
3.4.6. FT-IR Spectrum Analysis
3.5. Minor Components
3.5.1. Tocopherol and Phytosterol Levels
3.5.2. Determination of Polycyclic Aromatic Hydrocarbons (PAH)
3.5.3. Determination of Trace Element Levels
3.5.4. Antioxidant Activity In Vitro
3.6. Cell Cytotoxicity
3.7. CSO Inhibits OA-Induced Intracellular Lipid Level in HepG2 Cells
3.7.1. Cell Treatment
3.7.2. Measurement of Cellular Lipid Levels in HepG2 Cells
3.8. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Simopoulos, A.P. The importance of the ratio of omega-6/omega-3 essential fatty acids. Biomed. Pharmacother. 2002, 56, 365–379. [Google Scholar] [CrossRef]
- Singh, M. Essential fatty acids, DHA and human brain. Indian J. Pediatr. 2005, 72, 239–242. [Google Scholar] [CrossRef] [PubMed]
- Watchareewan, J.T.; Phillips, R.; Geneve, J.; Cahill, D.H. Extending the range of an ancient crop, Salvia hispanica L.—A new x3 source. Genet. Resour. Crop Evol. 2012, 59, 171–178. [Google Scholar]
- Timilsena, Y.P.; Wang, B.; Adhikari, R.; Adhikari, B. Preparation and characterization of chia seed protein isolate—Chia seed gum complex coacervates. Food Hydrocoll. 2016, 52, 554–563. [Google Scholar] [CrossRef]
- Martinez-Cruz, O.; Paredes-Lopez, O. Phytochemical profile and nutraceutical potential of chia seeds (Salvia hispanica L.) by ultra high performance liquid chromatography. J. Chromatogr. A 2014, 1346, 43–48. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.; Sung, A.; Burns-Whitmore, B.; Jo, E.; Wien, M. Effect of chia seed (Salvia hispanica, L.) supplementation on body composition, weight, post-prandial glucose and satiety. Faseb J. 2016, 30, lb221. [Google Scholar]
- Gazem, R.A.A.; Ramesh Puneeth, H.; Shivmadhu Madhu, C.; Chandrashekaraiah Sharada, A. In vitro anticancer and anti-lipoxygenase activities of chia seed oil and its blends with selected vegetable oils. Asian J. Pharm. Clin. Res. 2017, 10, 124–128. [Google Scholar] [CrossRef]
- Authority, E.F.S. Opinion on the safety of ‘Chia seeds (Salvia hispanica L.) and ground whole Chia seeds’ as a food ingredient. EFSA J. 2009, 996, 1–26. [Google Scholar]
- Ayerza, R. The Seed’s protein and oil content, fatty acid aomposition, and growing cycle length of a single genotype of chia (Salvia hispanica L.) as affected by environmental factors. J. Oleo Sci. 2009, 58, 347–354. [Google Scholar] [CrossRef] [PubMed]
- Dornbos, D.L.; Mullen, R.E. Soybean seed protein and oil contents and fatty-acid composition adjustments by drought and temperature. J. Am. Oil Chem. Soc. 1992, 69, 228–231. [Google Scholar] [CrossRef]
- Silva, B.P.; Anunciacao, P.C.; Matyelka, J.; Della Lucia, C.M.; Martino, H.S.D.; Pinheiro-Sant’Ana, H.M. Chemical composition of Brazilian chia seeds grown in different places. Food Chem. 2017, 221, 1709–1716. [Google Scholar] [CrossRef] [PubMed]
- Ayerza, R.; Coates, W. Composition of chia (Salvia hispanica) grown in six tropical and subtropical ecosystems of South America. Trop. Sci. 2004, 44, 131–135. [Google Scholar] [CrossRef]
- Ratusz, K.; Popis, E.; Ciemniewska-Zytkiewicz, H.; Wroniak, M. Oxidative stability of camelina (Camelina sativa L.) oil using pressure differential scanning calorimetry and Rancimat method. J. Therm. Anal. Calorim. 2016, 126, 343–351. [Google Scholar] [CrossRef]
- Farhoosh, R. The effect of operational parameters of the rancimat method on the determination of the oxidative stability measures and shelf-life prediction of soybean oil. J. Am. Oil Chem. Soc. 2007, 84, 205–209. [Google Scholar] [CrossRef]
- Uzunova, G.; Nikolova, K.; Perifanova, M.; Gentscheva, G.; Marudova, M.; Antova, G. Physicochemical characterization of chia (Salvia hispanica) seed oil from Argentina. Bulg. Chem. Commun. 2016, 48, 131–135. [Google Scholar]
- Hosseinian, F.S.; Rowland, G.G.; Bhirud, P.R.; Dyck, J.H.; Tyler, R.T. Chemical composition and physicochemical and hydrogenation characteristics of high-palmitic acid solin (low-linolenic acid flaxseed) oil. J. Am. Oil Chem. Soc. 2004, 81, 185–188. [Google Scholar] [CrossRef]
- Patil, R.T.; Ali, N. Effect of pre-treatments on mechanical oil expression of soybean using a commercial oil expeller. Int. J. Food Prop. 2006, 9, 227–236. [Google Scholar] [CrossRef]
- Coates, W.; Ayerza, R. Chia (Salvia hispanica L.) seed as an n-3 fatty acid source for finishing pigs: Effects on fatty acid composition and fat stability of the meat and internal fat, growth performance, and meat sensory characteristics. J. Anim. Sci. 2009, 87, 3798–3804. [Google Scholar] [CrossRef]
- Ixtaina, V.Y.; Martínez, M.L.; Spotorno, V.; Mateo, C.M.; Maestri, D.M.; Diehl, B.W.K.; Nolasco, S.M.; Tomás, M.C. Characterization of chia seed oils obtained by pressing and solvent extraction. J. Food Compos. Anal. 2011, 24, 166–174. [Google Scholar] [CrossRef]
- Boschin, G.; D’Agostina, A.; Annicchiarico, P.; Arnoldi, A. The fatty acid composition of the oil from Lupinus albus cv. Luxe as affected by environmental and agricultural factors. Eur. Food Res. Technol. 2007, 225, 769–776. [Google Scholar] [CrossRef]
- Food and Nutrition Board. Nutrient Recommendations: Dietary Reference Intakes (Dri), Dri Table: Recommended Dietary Allowances and Adequate Intakes, Total Water and Macronutrients; National Academy of Sciences: Washington, DC, USA, 2017. [Google Scholar]
- Reena, M.B.; Lokesh, B.R. Hypolipidemic effect of oils with balanced amounts of fatty acids obtained by blending and interesterification of coconut oil with rice bran oil or sesame oil. J. Agric. Food Chem. 2007, 55, 10461–10469. [Google Scholar] [CrossRef] [PubMed]
- Mohd Ali, N.; Yeap, S.K.; Ho, W.Y.; Beh, B.K.; Tan, S.W.; Tan, S.G. The promising future of chia, Salvia hispanica L. J. Biomed. Biotechnol. 2012, 2012, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Matthaus, B.; Ozcan, M.M. Quantitation of fatty acids, sterols, and tocopherols in turpentine (Pistacia terebinthus Chia) growing wild in Turkey. J. Agric. Food Chem. 2006, 54, 7667–7671. [Google Scholar] [CrossRef] [PubMed]
- Alvarez-Chavez, L.M.; Valdivia-Lopez, M.D.; Aburto-Juarez, M.D.; Tecante, A. Chemical characterization of the lipid fraction of Mexican chia seed (Salvia hispanica L.). Int. J. Food Prop. 2008, 11, 687–697. [Google Scholar] [CrossRef]
- Bakowska-Barczak, A.M.; Schieber, A.; Kolodziejczyk, P. Characterization of saskatoon berry (Amelanchier alnifolia Nutt.) seed oil. J. Agric. Food Chem. 2009, 57, 5401–5406. [Google Scholar] [CrossRef]
- Maguire, L.S.; O’Sullivan, S.M.; Galvin, K.; O’Connor, T.P.; O’Brien, N.M. Fatty acid profile, tocopherol, squalene and phytosterol content of walnuts, almonds, peanuts, hazelnuts and the macadamia nut. Int. J. Food Sci. Nutr. 2004, 55, 171–178. [Google Scholar] [CrossRef]
- Karadjova, I.; Zachariadis, G.; Boskou, G.; Stratis, J. Electrothermal atomic absorption spectrometric determination of aluminium, cadmium, chromium, copper, iron, manganese, nickel and lead in olive oil. J. Anal. Atom Spectrom. 1998, 13, 201–204. [Google Scholar] [CrossRef]
- Commission, C.A. Codex Standard for Edible Fats and Oils not Covered by Individual Standards (Codex stan 19–1981, Rev. 2-1999). Available online: http://www.fao.org/docrep/004/y2774e/y2774e03.htm (accessed on 30 October 2018).
- Brevedan, M.I.V.; Carelli, A.A.; Crapiste, G.H. Changes in composition and quality of sunflower oils during extraction and degumming. Grasas Aceites 2000, 51, 417–423. [Google Scholar]
- Ciecierska, M.; Obiedzinski, M.W. Polycyclic aromatic hydrocarbons in vegetable oils from unconventional sources. Food Control 2013, 30, 556–562. [Google Scholar] [CrossRef]
- Mafra, I.; Amaral, J.S.; Oliveira, M.B.P.P. Polycyclic aromatic hydrocarbons (PAH) in olive oils and other vegetable oils; Potential for carcinogenesis. Olives Olive Oil Health Dis. Prev. 2010, 489–498. [Google Scholar] [CrossRef]
- Moreda, W.; Perez-Camino, M.C.; Cert, A. Gas and liquid chromatography of hydrocarbons in edible vegetable oils. J. Chromatogr. A 2001, 936, 159–171. [Google Scholar] [CrossRef]
- Zelinkova, Z.; Wenzl, T. The occurrence of 16 EPA PAHs in food—A review. Polycycl. Aromat. Comp. 2015, 35, 248–284. [Google Scholar] [CrossRef] [PubMed]
- Arrebola, F.J.; Frenich, A.G.; Rodriguez, M.J.G.; Bolanos, P.P.; Vidal, J.L.M. Determination of polycyclic aromatic hydrocarbons in olive oil by a completely automated headspace technique coupled to gas chromatography-mass spectrometry. J. Mass Spectrom. 2006, 41, 822–829. [Google Scholar] [CrossRef] [PubMed]
- Guillen, M.D.; Cabo, N. Infrared spectroscopy in the study of edible oils and fats. J. Sci. Food Agr. 1997, 75, 1–11. [Google Scholar] [CrossRef]
- Timilsena, Y.P.; Vongsvivut, J.; Adhikari, R.; Adhikari, B. Physicochemical and thermal characteristics of Australian chia seed oil. Food Chem. 2017, 228, 394–402. [Google Scholar] [CrossRef] [PubMed]
- Xuan, T.D.; Gu, G.Q.; Minh, T.N.; Quy, T.N.; Khanh, T.D. An overview of chemical profiles, antioxidant and antimicrobial activities of aommercial vegetable edible oils marketed in Japan. Foods 2018, 7, 21. [Google Scholar] [CrossRef] [PubMed]
- Scapin, G.; Schmidt, M.M.; Prestes, R.C.; Rosa, C.S. Phenolics compounds, flavonoids and antioxidant activity of chia seed extracts (Salvia hispanica) obtained by different extraction conditions. Int. Food Res. J. 2016, 23, 2341–2346. [Google Scholar]
- Li, X.; Zhao, M.; Fan, L.; Cao, X.; Chen, L.; Chen, J.; Lo, Y.M.; Zhao, L. Chitobiose alleviates oleic acid-induced lipid accumulation by decreasing fatty acid uptake and triglyceride synthesis in HepG2 cells. J. Funct. Foods 2018, 46, 202–211. [Google Scholar] [CrossRef]
- Ayerza, R.; Coates, W. Ground chia seed and chia oil effects on plasma lipids and fatty acids in the rat. Nutr. Res. 2005, 25, 995–1003. [Google Scholar] [CrossRef]
- China National Standardization Management Committee. Determination of Oil Content Valid GB/T 14488.2-2008; China National Standardization Management Committee: Beijing, China, 2008. [Google Scholar]
- Azadmard-Damirchi, S.; Habibi-Nodeh, F.; Hesari, J.; Nemati, M.; Achachlouei, B.F. Effect of pretreatment with microwaves on oxidative stability and nutraceuticals content of oil from rapeseed. Food Chem. 2010, 121, 1211–1215. [Google Scholar] [CrossRef]
- Committee, A.C. Color of Fats and Oils, Lovibond (Wesson) Wesson Method Using Color Glasses Calibrated in Accordance with the Aocs-Tintometer Color Scale. AOCS Official Method Cc 13b-45. Available online: https://aocs.personifycloud.com/PersonifyEBusiness/Default.aspx?TabID=251&productId=111497 (accessed on 30 October 2018).
- Jin, J.; Wang, Y.; Su, H.; Warda, P.; Xie, D.; Liu, Y.J.; Wang, X.S.; Huang, J.H.; Jin, Q.Z.; Wang, X.G. Oxidative stabilities of mango kernel fat fractions produced by three-stage fractionation. Int. J. Food Prop. 2017, 20, 2817–2829. [Google Scholar] [CrossRef]
- Jin, J.; Warda, P.; Mu, H.Y.; Zhang, Y.F.; Jie, L.; Mao, J.H.; Xie, D.; Huang, J.H.; Jin, Q.Z.; Wang, X.G. Characteristics of mango kernel fats extracted from 11 China-specific varieties and their typically fractionated fractions. J. Am. Oil Chem. Soc. 2016, 93, 1115–1125. [Google Scholar] [CrossRef]
- AOCS. Individual Triglycerides in Oils and Fats by HPLC. AOCS Official Method Ce 5c-93. Available online: https://www.aocs.org/attain-lab-services/methods/methods/method-detail?productId=114619 (accessed on 30 October 2018).
- Moreau, R.A.; Hicks, K.B. Reinvestigation of the effect of heat pretreatment of corn fiber and corn germ on the levels of extractable tocopherols and tocotrienols. J. Agric. Food Chem. 2006, 54, 8093–8102. [Google Scholar] [CrossRef] [PubMed]
- Llorent-Martinez, E.J.; Ortega-Barrales, P.; Fernandez-de Cordova, M.L.; Dominguez-Vidal, A.; Ruiz-Medina, A. Investigation by ICP-MS of trace element levels in vegetable edible oils produced in Spain. Food Chem. 2011, 127, 1257–1262. [Google Scholar] [CrossRef] [PubMed]
- Shen, Y.; Zhang, H.; Cheng, L.; Wang, L.; Qian, H.; Qi, X. In vitro and in vivo antioxidant activity of polyphenols extracted from black highland barley. Food Chem. 2016, 194, 1003–1012. [Google Scholar] [CrossRef]
- Srivastava, M.; Nambiar, M.; Sharma, S.; Karki, S.S.; Goldsmith, G.; Hegde, M.; Kumar, S.; Pandey, M.; Singh, R.K.; Ray, P.; et al. An inhibitor of nonhomologous end-joining abrogates double-strand break repair and impedes cancer progression. Cell 2012, 151, 1474–1487. [Google Scholar] [CrossRef] [PubMed]
Sample Availability: Samples of the compounds are not available from the authors. |
Oil Parameters | Content | |
---|---|---|
Oil content (g/100 g) | 31.89 ± 0.50 | |
Oil stability (induction period)/h | 0.68 ± 0.03 | |
Oil color/(units) | ||
R | Y | |
1.65 ± 0.07 | 13.00 ± 0.00 | |
a Fatty Acid Composition | ||
Palmitic acid C16:0 | 7.07 ± 0.01 | |
Palmitoleic acid C16:1 (n-9) | 0.06 ± 0.00 | |
Trianoic acid C17:0 | 0.16 ± 0.01 | |
Stearic acid C18:0 | 2.81 ± 0.04 | |
Oleic acid C18:1 (n-9) | 5.50 ± 0.01 | |
Vaccenic acid C18:1 (n-7) | 0.80 ± 0.01 | |
Linoleic acid C18:2 (n-6) | 19.84 ± 0.01 | |
α-Linolenic C18:3 (n-3) | 63.64 ± 0.06 | |
Arachidic acid C20:0 | 0.12 ± 0.01 | |
SFA | 10.16 ± 0.06 | |
PUFA | 89.84 ± 0.07 | |
PUFA/SFA | 8.85 ± 0.06 | |
n-3/n-6 FA ratio | 3.21 ± 0.00 | |
sn-2 Fatty Acid Composition | ||
C16:0 | 1.10 ± 0.05 | |
C18:0 | 0.88 ± 0.09 | |
C18:1 | 6.38 ± 0.12 | |
C18:2 | 25.07 ± 0.06 | |
C18:3 | 63.76 ± 0.66 |
Oil Parameters | Percentages |
---|---|
Fat Compositions/% | |
TAG | 82.60 ± 0.15 |
1,3-DAG | 0.82 ± 0.03 |
1,2(2,3)-DAG | 0.74 ± 0.02 |
Total DAG | 1.56 ± 0.02 |
FFA | 15.18 ± 0.11 |
TAG Compositions/% | |
aLnaLnaLn | 53.44 ± 0.47 |
aLnaLnL | 23.76 ± 0.22 |
aLnLL | 8.22 ± 0.24 |
aLnaLnP | 6.25 ± 0.05 |
aLnLO | 1.80 ± 0.24 |
aLnOP | 4.43 ± 0.28 |
aLnOO | 2.10 ± 0.35 |
Di-UTAG | 10.69 ± 0.33 |
Tri-UTAG | 89.31 ± 0.34 |
Minor components | a Content (mg/kg) |
Tocopherols | |
α-tocopherol | 5.10 ± 0.42 |
γ-tocopherol | 70.38 ± 7.99 |
δ-tocopherol | 1.48 ± 0.06 |
Total tocopherols | 76.96 ± 8.47 |
Squalene | 226.43 ± 38.19 |
Phytosterols | |
Campesterol | 387.77 ± 59.05 |
Stigmasterol | 177.47 ± 31.57 |
β-Sitosterol | 2433.56 ± 71.69 |
Total phytosterols | 2998.80 ± 162.30 |
Mineral contents | |
Boron | 0.193 ± 0.012 |
Magnesium | 3.566 ± 0.185 |
Aluminum | 4.104 ± 0.644 |
Calcium | 1.226 ± 0.082 |
Manganese | 0.098 ± 0.010 |
Zinc | 0.153 ± 0.017 |
Arsenic | 0.014 ± 0.004 |
Strontium | 0.071 ± 0.014 |
PAHs | Concentration (μg/100 g) |
---|---|
Fluoranthene | 84.72 ± 9.85 |
Pyrene | 180.24 ± 18.84 |
Benzo (a) anthracene (BaA) | 66.92 ± 10.05 |
Chrysene (Chr) | 5.69 ± 0.98 |
Benzo (b) fluoranthene (BbFlu) | 31.49 ± 8.84 |
Benzo (k) fluoranthene (BkFlu) | 2.21 ± 0.95 |
Benzo (a) pyrene(BaP) | 3.68 ± 1.02 |
Dibenzo (a.h) anthracene (DBahA) | 30.04 ± 6.62 |
Indeno(1,2,3-cd) pyrene and Benzo (g,h,i) perylene (IP and BghiP) | 3.56 ± 0.88 |
Samples | Antioxidant Activity | Cytotoxicity c IC25 (μg/mL) | ||
---|---|---|---|---|
DPPH a IC50 (mg/mL) | ABTS b IC25 (mg/mL) | LNcap | HepG2 | |
Chia seed oil | 33.94 | 28.51 | 580.12 | 889.68 |
Catechin | 0.005 | - | - | - |
Tocopherol | - | 0.004 | - | - |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shen, Y.; Zheng, L.; Jin, J.; Li, X.; Fu, J.; Wang, M.; Guan, Y.; Song, X. Phytochemical and Biological Characteristics of Mexican Chia Seed Oil. Molecules 2018, 23, 3219. https://doi.org/10.3390/molecules23123219
Shen Y, Zheng L, Jin J, Li X, Fu J, Wang M, Guan Y, Song X. Phytochemical and Biological Characteristics of Mexican Chia Seed Oil. Molecules. 2018; 23(12):3219. https://doi.org/10.3390/molecules23123219
Chicago/Turabian StyleShen, Yingbin, Liyou Zheng, Jun Jin, Xiaojing Li, Junning Fu, Mingzhong Wang, Yifu Guan, and Xun Song. 2018. "Phytochemical and Biological Characteristics of Mexican Chia Seed Oil" Molecules 23, no. 12: 3219. https://doi.org/10.3390/molecules23123219
APA StyleShen, Y., Zheng, L., Jin, J., Li, X., Fu, J., Wang, M., Guan, Y., & Song, X. (2018). Phytochemical and Biological Characteristics of Mexican Chia Seed Oil. Molecules, 23(12), 3219. https://doi.org/10.3390/molecules23123219