Dietary Lignans: Definition, Description and Research Trends in Databases Development
Abstract
:1. Introduction
2. Databases: Significance, Principles and Common Criteria/Measures
3. Distribution of Lignans in Food: Occurrence
4. Lignans and Databases: The Current Workflow
Author Contributions
Funding
Conflicts of Interest
References
- Durazzo, A. Lignans. In Phenolic Compounds in Food: Characterization and Analysis (Food Analysis and Properties); Leo, M.L.N., Janet, A.G.-U., Eds.; CRC Press: Boca Raton, FL, USA, 2018; Chapter 11. [Google Scholar]
- Lewis, N.G.; Davin, L.B. Lignans: Biosynthesis and function. In Comprehensive Natural Products Chemistry; Barton, D., Nakanishi, K., Meth-Cohn, O., Eds.; Elsevier: Amsterdam, the Netherlands, 1999; pp. 639–712. [Google Scholar]
- Imai, T.; Nomura, M.; Fukushima, K. Evidence for involvement of the phenylpropanoid pathway in the biosynthesis of the norlignan agatharesinol. J. Plant Physiol. 2006, 163, 483–487. [Google Scholar] [CrossRef] [PubMed]
- Pan, J.-Y.; Chen, S.-L.; Yang, M.-H.; Wu, J.; Sinkkonen, J.; Zou, K. An update on lignans: Natural products and synthesis. Nat. Prod. Rep. 2009, 26, 1251–1292. [Google Scholar] [CrossRef] [PubMed]
- Teponno, R.B.; Kusari, S.; Spiteller, M. Recent advances in research on lignans and neolignans. Nat. Prod. Rep. 2016, 33, 1044–1092. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, X.Y.; Feng, Z.M.; Yang, Y.N.; Jiang, J.S.; Zhang, P.C. Four new neolignan glucosides from the fruits of Arctium lappa. J. Asian Nat. Prod. Res. 2015, 17, 504–511. [Google Scholar] [CrossRef] [PubMed]
- Duarte, S.L.F.; Nascimento, Y.M.; Madeiro, S.A.L.; Costa, V.C.O.; Agra, M.F.A.; Sobrala, M.V.; Braz-Filho, R.; Carvalho, M.G.; Carvalho, J.E.; Ruiz, A.L.T.G.; et al. Luclaricin, a new lignan Phyllanthus acuminatus. Quim. Nova 2018, 41, 880–883. [Google Scholar] [CrossRef]
- Mo, X.; Chen, Y.; Han, Y.; Hao, H.; Huang, R. A New Benzylbutane Lignan from the Stems of Schisandra bicolor. Chem. Nat. Comp. 2018, 54, 872–874. [Google Scholar] [CrossRef]
- Gnabre, J.; Bates, R.; Huang, R.C. Creosote bush lignans for human disease treatment and prevention: Perspectives on combination therapy. J. Trad. Complem. Med. 2015, 5, 119–126. [Google Scholar] [CrossRef] [PubMed]
- Su, S.; Wink, M. Natural lignans from Arctium lappa as antiaging agents in Caenorhabditis elegans. Phytochemistry 2015, 117, 340–350. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Huang, R.Z.; Wang, C.G.; Ouyang, X.L.; Jing, X.T.; Liang, D.; Wang, H.S. New inhibitors of matrix metalloproteinases 9 (MMP-9): Lignans from Selaginella moellendorffii. Fitoterapia 2018, 130, 281–289. [Google Scholar] [CrossRef]
- Landete, J.M. Plant and mammalian lignans: A review of source, intake, metabolism, intestinal bacteria and health. Food Res. Int. 2012, 46, 410–424. [Google Scholar] [CrossRef]
- Saarinen, N.M.; Tuominen, J.; Pylkkänen, L.; Santti, R. Assessment of information to substantiate a health claim on the prevention of prostate cancer by lignans. Nutrients 2010, 2, 99–115. [Google Scholar] [CrossRef] [PubMed]
- Velentzis, L.S.; Cantwell, M.M.; Cardwell, C.; Keshtgar, M.R.; Leathem, A.J.; Woodside, J.V. Lignans and breast cancer risk in pre- and post-menopausal women: Meta-analyses of observational studies. Br. J. Canc. 2009, 100, 1492–1498. [Google Scholar] [CrossRef] [PubMed]
- Aehle, E.; Müller, U.; Eklund, P.C.; Willför, S.M.; Sippl, W.; Dräger, B. Lignans as food constituents with estrogen and antiestrogen activity. Phytochemistry 2011, 72, 2396–2405. [Google Scholar] [CrossRef] [PubMed]
- Kiyama, R. Biological effects induced by estrogenic activity of lignans. Trends Food Sci. Technol. 2016, 54, 186–196. [Google Scholar] [CrossRef]
- Durazzo, A.; Turfani, V.; Azzini, E.; Maiani, G.; Carcea, M. Phenols, lignans and antioxidant properties of legume and sweet chestnut flours. Food Chem. 2013, 140, 666–671. [Google Scholar] [CrossRef] [PubMed]
- Muir, A.D. Flax lignans: New opportunities for functional foods. Food Sci. Technol. Bull. 2010, 6, 61–79. [Google Scholar] [CrossRef]
- Cunha, W.R.; e Silva, M.L.A.; Sola, R.C.; Veneziani, S.R.A.; Bastos, J.K. Lignans: Chemical and biological properties. In Phytochemicals—A global Perspective of Their Role in Nutrition and Health; Venketeshwer, R., Ed.; In Tech: Rijeka, Croatia, 2012; pp. 213–234. [Google Scholar]
- Peterson, J.; Dwyer, J.; Adlercreutz, H.; Scalbert, A.; Jacques, P.; McCullough, M.L. Dietary lignans: Physiology and potential for cardiovascular disease risk reduction. Nutr. Rev. 2010, 68, 571–603. [Google Scholar] [CrossRef]
- Peñalvo, J.L.; Lopez-Romero, P. Urinary enterolignan concentrations are positively associated with serum HDL cholesterol and negatively associated with serum triglycerides in U.S. adults. J. Nutr. 2012, 142, 751–756. [Google Scholar] [CrossRef]
- Zamora-Ros, R.; Agudo, A.; Lujan-Barroso, L.; Isabelle, R.; Pietro, F.; Viktoria, K.; Bueno-de-Mesquita, H.B.; Max, L.; Ruth, C.T.; Carmen, N.; et al. Dietary flavonoid and lignan intake and gastric adenocarcinoma risk in the European Prospective Investigation into Cancer and Nutrition (EPIC) study. Am. J. Clin. Nutr. 2012, 96, 1398–1408. [Google Scholar] [CrossRef] [Green Version]
- Zamora-Ros, R.; Touillaud, M.; Rothwell, J.A.; Romieu, I.; Scalbert, A. Measuring exposure to the polyphenol metabolome in observational epidemiologic studies: Current tools and applications and their limits. Am. J. Clin. Nutr. 2014, 100, 11–26. [Google Scholar] [CrossRef]
- Durazzo, A.; Carcea, M.; Adlercreutz, H.; Azzini, E.; Polito, A.; Olivieri, L.; Zaccaria, M.; Meneghini, C.; Maiani, F.; Bausano, G.; et al. Effects of consumption of whole grain foods rich in lignans in healthy postmenopausal women with moderate serum cholesterol: A. pilot study. Int. J. Food Sci. Nutr. 2014, 65, 637–645. [Google Scholar] [CrossRef] [PubMed]
- Sun, Q.; Wedick, N.M.; Pan, A.; Townsend, M.K.; Cassidy, K.; Franke, A.A.; Rimm, E.B.; Hu, F.B.; van Dam, R.B. Gut Microbiota Metabolites of Dietary Lignans and Risk of Type 2 Diabetes: A Prospective Investigation in Two Cohorts of U.S. Women. Diabetes Care 2014, 37, 1287–1295. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chang, V.C.; Cotterchio, M.; Boucher, B.A.; Jenkins, D.J.A.; Mirea, L.; McCann, S.E.; Thompson, L.U. Effect of Dietary Flaxseed Intake on Circulating Sex Hormone Levels among Postmenopausal Women: A Randomized Controlled Intervention Trial. Nutr. Cancer. 2018, 30, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Barre, D.E.; Mizier-Barre, K.A. Lignans’ potential in pre- and post-onset type 2 diabetes management. Curr. Diabetes Rev. 2018, in press. [Google Scholar] [CrossRef] [PubMed]
- Santini, A.; Novellino, E.; Armini, V.; Ritieni, A. State of the art of Ready-to-Use Therapeutic Food: A tool for nutraceuticals addition to foodstuff. Food Chem. 2013, 140, 843–849. [Google Scholar] [CrossRef] [PubMed]
- Santini, A.; Tenore, G.C.; Novellino, E. Nutraceuticals: A paradigm of proactive medicine. Eur. J. Pharm. Sci. 2017, 96, 53–61. [Google Scholar] [CrossRef]
- Adefegha, S.A. Functional foods and nutraceuticals as dietary Intervention in chronic diseases; novel perspectives for health promotion and disease prevention. J. Diet. Suppl. 2018, 15, 977–1009. [Google Scholar] [CrossRef]
- Durazzo, A.; D’Addezio, L.; Camilli, E.; Piccinelli, R.; Turrini, A.; Marletta, L.; Marconi, S.; Lucarini, M.; Lisciani, S.; Gabrielli, P.; et al. From plant compounds to botanicals and back: A current snapshot. Molecules 2018, 23, 1844. [Google Scholar] [CrossRef]
- Santini, A.; Novellino, E. Nutraceuticals—shedding light on the grey area between pharmaceuticals and food. Expert. Rev. Clin. Pharmacol. 2018, 11, 545–547. [Google Scholar] [CrossRef]
- Pilkington, L.I. Lignans: A Chemometric Analysis. Molecules 2018, 23, 1666. [Google Scholar] [CrossRef]
- Obermeyer, W.R.; Musser, S.M.; Betz, J.M.; Casey, R.E.; Pohland, A.E.; Page, S.W. Chemical studies of phytoestrogens and related compounds in dietary supplements: Flax and chaparral. Proc. Soc. Exp. Biol. Med. 1995, 208, 6–12. [Google Scholar] [CrossRef]
- Mazur, W.; Fotsis, T.; Wahala, K.; Ojala, S.; Salakka, A.; Adlercreutz, H. Isotope dilution gas chromatographic-mass spectrometric method for the determination of isoflavonoids, coumestrol, and lignans in food samples. Anal. Biochem. 1996, 233, 169–180. [Google Scholar] [CrossRef] [PubMed]
- Nilsson, M.; Åman, P.; Härkönen, H.; Hallmans, G.; Knudsen, K.E.B.; Mazur, W.; Adlercreutz, H. Content of nutrients and lignans in roller milled fractions of rye. J. Sci. Food Agric. 1997, 73, 143–148. [Google Scholar] [CrossRef]
- Meagher, L.P.; Beecher, G.R.; Flanagan, V.P.; Li, B.W. Isolation and characterization of the lignan, isolariciresinol and pinoresinol in flaxseed meal. J. Agric. Food Chem. 1999, 47, 3173–3180. [Google Scholar] [CrossRef] [PubMed]
- Johnsson, P.; Kamal Eldin, A.; Lundgren, L.N.; Aman, P. HPLC method for analysis of secoisolariciresinol diglucoside in flaxseed. J. Agric. Food Chem. 2000, 48, 5216–5219. [Google Scholar] [CrossRef] [PubMed]
- Kraushofer, T.; Sontag, G. Determination of matairesinol in flaxseed by HPLC with coulometric electrode array detection. J. Chrom. B 2002, 777, 61–66. [Google Scholar] [CrossRef]
- Muir, A.D.; Westcott, N.D. Flaxseed constituents and human health. In Flax: The Genus Linum; Muir, A.D., Westcott, N.D., Eds.; Taylor & Francis: London, UK, 2003; pp. 243–251. [Google Scholar]
- Willför, S.M.; Smeds, A.I.; Holmbom, B.R. Chromatographic analysis of lignans. J. Chromatogr. A 2006, 1112, 64–77. [Google Scholar] [CrossRef]
- Smeds, A.I.; Eklund, P.C.; Sjöholm, R.E.; Willför, S.M.; Nishibe, S.; Deyama, T.; Holmbom, B.R. Quantification of a broad spectrum of lignans in cereals, oilseeds, and nuts. J. Agric. Food Chem. 2007, 55, 1337–1346. [Google Scholar] [CrossRef]
- Schwartz, H.; Sontag, G. Analysis of lignans in food samples-impact of sample preparation. Curr. Bioact. Compd. 2011, 7, 156–171. [Google Scholar] [CrossRef]
- Nørskov, N.P.; Knudsen, K.E.B. Validated LC-MS/MS Method for the Quantification of free and bound lignans in cereal-based diets and feces. J. Agric. Food Chem. 2016, 64, 8343–8351. [Google Scholar] [CrossRef]
- Hanhineva, K.; Rogachev, I.; Aura, A.M.; Aharoni, A.; Poutanen, K.; Mykkänen, H. Identification of novel lignans in the whole grain rye bran by non–targeted LC–MS metabolite profiling. Metabolomics 2012, 8, 399–409. [Google Scholar] [CrossRef]
- Linder, T.; Schnürch, M.; Mihovilovic, M.D. Construction of heterocyclic lignans in natural product synthesis and medicinal chemistry. In Targets in Heterocyclic Systems (Reviews and Accounts on Heterocyclic Chemistry); Attanasi, O.A., Merino, P., Spinelli, D., Eds.; Società Chimica Italiana: Rome, Italy, 2015; volume 19. [Google Scholar]
- Soorukram, D.; Pohmakotr, M.; Kuhakarn, C.; Reutrakul, V. Stereoselective synthesis of tetrahydrofuran lignans. Synthesis 2018, in press. [Google Scholar] [CrossRef]
- Vo, Q.V.; Nam, P.C.; Bay, M.V.; Thong, N.M.; Cuong, N.D.; Mechler, A. Density functional theory study of the role of benzylic hydrogen atoms in the antioxidant properties of lignans. Sci. Rep. 2018, 8, 12361. [Google Scholar] [CrossRef] [PubMed]
- Waltner-Towes, D.; Lang, T. A new conceptual base for food and agricultural policy: The emerging model of links between agriculture, food, health, environment and society. Glob. Chang. Hum. Health 2000, 1, 116–130. [Google Scholar] [CrossRef]
- Astley, S.; Finglas, P. Nutrition and Health. Ref. Module Food Sci. 2016. Available online: https://doi.org/10.1016/B978-0-08-100596-5.03425-9 (accessed on 7 May 2016).
- World Health Organization, Food Safety. 2017. Available online: http://www.who.int/mediacentre/factsheets/fs399/en/ (accessed on 31 October 2017).
- Lampe, J.W.; Atkinson, C.; Hullar, M.A. Assessing exposure to lignans and their metabolites in humans. J. AOAC Int. 2006, 89, 1174–1181. [Google Scholar]
- Encyclopaedia Britannica. Available online: https://www.britannica.com/technology/database (accessed on 20 November 2018).
- Sofroniou, A. Relational Databases and Distributed Systems; lulu.com: Morrisville, CA, USA, 2018. [Google Scholar]
- Greenfield, H.; Southgate, D.A.T. Food Composition Data. Production, Management, and Use, 2nd ed.; Food and Agriculture Organization of The United Nations: Rome, Italy, 2003. [Google Scholar]
- Pakkala, H.; Christensen, T.; de Victoria, I.M.; Presser, K.; Kadvan, A. Harmonised information exchange between decentralised food composition database systems. Eur. J. Clin. Nutr. 2010, 64, S58–S63. [Google Scholar] [CrossRef] [PubMed]
- Finglas, P.M.; Berry, R.; Astley, S. Assessing and improving the quality of food composition databases for nutrition and health applications in Europe: The contribution of EuroFIR. Adv. Nutr. 2014, 5, 608–614. [Google Scholar] [CrossRef]
- Becker, W. CEN/TC387 Food Data. Towards a CEN Standard on food data. Eur. J. Clin. Nutr. 2010, 64, S49–S52. [Google Scholar] [CrossRef]
- Finglas, P.; Roe, M.; Pinchen, H.; Astley, S. The contribution of food composition resources to nutrition science methodology. Nutr. Bull. 2017, 42, 198–206. [Google Scholar] [CrossRef]
- Durazzo, A.; Camilli, E.; D’Addezio, L.; Le Donne, C.; Ferrari, M.; Marconi, S.; Marletta, L.; Mistura, L.; Piccinelli, R.; Scalvedi, M.L.; et al. Food Groups and Individual Foods: Nutritional Attributes and Dietary Importance. Ref. Module Food Sci. 2018, 1–13. [Google Scholar] [CrossRef]
- Thompson, L.U.; Richard, S.E.; Cheung, F.; Kenaschuk, E.O.; Obermeyer, W.R. Variability in anticancer lignan levels in flaxseed. Nutr. Cancer 1997, 27, 26–30. [Google Scholar] [CrossRef] [PubMed]
- Mazur, W.M.; Adlercreutz, H. Natural and anthropogenic environmental estrogens: The scientific basis for risk assessment; naturally occurring estrogens in food. Pure. Appl. Chem. 1998, 70, 1759–1776. [Google Scholar] [CrossRef]
- Coulman, K.D.; Liu, Z.; Hum, W.Q.; Michaelides, J.; Thompson, L.U. Whole sesame seed is as rich a source of mammalian lignan precursors as whole flaxseed. Nutr. Cancer 2005, 52, 156–165. [Google Scholar] [CrossRef] [PubMed]
- Milder, I.E.; Arts, I.C.; van de Putte, B.; Venema, D.P.; Hollman, P.C. Lignan contents of Dutch plant foods: A database including lariciresinol, pinoresinol, secoisolariciresinol and matairesinol. Brit. J. Nutr. 2005, 93, 393–402. [Google Scholar] [CrossRef] [PubMed]
- Peñalvo, J.L.; Haajanen, K.M.; Botting, N.; Adlercreutz, H. Quantification of lignans in food using isotope dilution gas chromatography/mass spectrometry. J. Agric. Food Chem. 2005, 53, 9342–9347. [Google Scholar] [CrossRef] [PubMed]
- Holmbom, B.; Eckerman, C.; Eklund, P.; Hemming, J.; Nisula, L.; Reunanen, M.; Sjöholm, R.; Sundberg, A.; Sundberg, K.; Willför, S. Knots in trees—A new rich source of lignans. Phytochem. Rev. 2003, 2, 331–340. [Google Scholar] [CrossRef]
- Valsta, L.M.; Kilkkinen, A.; Mazur, W.; Nurmi, T.; Lampi, A.M.; Ovaskainen, M.L.; Korhonen, T.; Adlercreutz, H.; Pietinen, P. Phyto-oestrogen database of foods and average intake in Finland. Br. J. Nutr. 2003, 89, S31–S38. [Google Scholar] [CrossRef]
- Milder, I.E.J.; Feskens, E.J.M.; Arts, I.C.W.; Bueno-de-Mesquita, H.B.; Hollman, P.C.H.; Kromhout, D. Intake of the plant lignans secoisolariciresinol, matairesinol, lariciresinol and pinoresinol in Dutch men and women. J. Nutr. 2005, 135, 1202–1207. [Google Scholar] [CrossRef]
- Thompson, L.U.; Boucher, B.A.; Liu, Z.; Cotterchio, M.; Kreiger, N. Phytoestrogen content of foods consumed in Canada, including isoflavones, lignans and coumestan. Nutr. Cancer 2006, 54, 184–201. [Google Scholar] [CrossRef]
- Peñalvo, J.L.; Adlercreutz, H.; Uehara, M.; Ristimaki, A.; Watanabe, S. Lignan content of selected foods from Japan. J. Agric. Food Chem. 2008, 56, 401–409. [Google Scholar] [CrossRef]
- Kuhnle, G.G.C.; Dell’Aquila, C.; Aspinall, S.M.; Runswick, S.A.; Mulligan, A.A.; Bingham, S.A. Phytoestrogen content of beverages, nuts, seeds, and oils. J. Agric. Food Chem. 2008, 56, 7311–7315. [Google Scholar] [CrossRef] [PubMed]
- Kuhnle, G.G.C.; Dell’Aquila, C.; Aspinall, S.M.; Runswick, S.A.; Mullingan, A.A.; Bingham, S.A. Phytoestrogen content of foods of animal origin: Dairy products, eggs, meat, fish, and seafood. J. Agric. Food Chem. 2008, 56, 10099–10104. [Google Scholar] [CrossRef] [PubMed]
- Durazzo, A.; Raguzzini, A.; Azzini, E.; Foddai, M.S.; Narducci, V.; Maiani, G.; Carcea, M. Bioactive molecules in cereals. Tecnica Molitoria Int. 2009, 60, 150–162. [Google Scholar]
- 68Kuhnle, G.G.C.; Dell’Aquila, C.; Aspinall, S.M.; Runswick, S.A.; Mulligan, A.A.; Bingham, S.A. Phytoestrogen content of cereals and cereal based foods consumed in the UK. Nutr. Cancer 2009, 61, 302–309. [Google Scholar]
- Kuhnle, G.G.C.; Dell’Aquila, C.; Sue, M.A.; Runswick, S.A.; Joosen, A.M.C.P.; Mulligan, A.A.; Bingham, S.A. Phytoestrogen content of fruits and vegetables commonly consumed in the UK based on LC-MS and 13C-labelled standards. Food Chem. 2009, 116, 542–554. [Google Scholar] [CrossRef]
- Smeds, A.I.; Jauhiainen, L.; Tuomola, E.; Peltonen-Sainio, P. Characterization of variation in the lignan content and composition of winter rye, spring wheat and spring oat. J. Agric. Food Chem. 2009, 57, 5837–5842. [Google Scholar] [CrossRef] [PubMed]
- Moreno-Franco, B.; Garcia-Gonzalez, A.; Montero-Bravo, A.M.; Iglesias-Gitierrez, E.; Ubeda, N.; Maroto-Nunez, L.; Adlercreutz, H.; Penãlvo, J. Dietary alkylresorcinols and lignans in the Spanish diet: Development of the Alignia database. J. Agric. Food Chem. 2011, 59, 9827–9834. [Google Scholar] [CrossRef]
- Smeds, A.I.; Eklund, P.C.; Willför, S.M. Content, composition, and stereochemical characterisation of lignans in berries and seeds. Food Chem. 2012, 134, 1991–1998. [Google Scholar] [CrossRef]
- Durazzo, A.; Azzini, E.; Turfani, V.; Polito, A.; Maiani, G.; Carcea, M. Effect of cooking on lignans content in wholegrain pasta made with different cereals and other seeds. Cereal Chem. 2013, 90, 169–171. [Google Scholar] [CrossRef]
- Durazzo, A.; Zaccaria, M.; Polito, A.; Maiani, G.; Carcea, M. Lignan content in cereals, buckwheat and derived foods. Foods 2013, 2, 53–63. [Google Scholar] [CrossRef]
- Mulligan, A.A.; Kuhnle, G.G.; Lentjes, M.A.; van Scheltinga, V.; Powell, N.A.; McTaggart, A.; Bhaniani, A.; Khaw, K.T. Intakes and sources of isoflavones, lignans, enterolignans, coumestrol and soya-containing foods in the Norfolk arm of the European Prospective Investigation into Cancer and Nutrition (EPIC-Norfolk), from 7 d food diaries, using a newly updated database. Public Health Nutr. 2013, 16, 1454–1462. [Google Scholar] [CrossRef] [PubMed]
- Durazzo, A.; Turfani, V.; Narducci, V.; Azzini, E.; Maiani, G.; Carcea, M. Nutritional characterization and bioactive components of commercial carobs flours. Food Chem. 2014, 153, 109–113. [Google Scholar] [CrossRef] [PubMed]
- Turfani, V.; Narducci, V.; Durazzo, A.; Galli, V.; Carcea, M. Technological, nutritional and functional properties of wheat bread enriched with lentil or carob flours. LWT Food Sci. Technol. 2017, 78, 361–366. [Google Scholar] [CrossRef]
- Angeloni, A.; Navarini, L.; Sagratini, L.; Torregiani, E.; Vittori, S.; Caprioli, G. Development of an extraction method for the quantification of lignans in espresso coffee by using HPLC-MS/MS triple quadrupole. J. Mass Spectrom. 2018, 53, 842–848. [Google Scholar] [CrossRef] [PubMed]
- Gerstenmeyer, E.; Reimer, S.; Berghofer, E.; Schwartz, H.; Sontag, G. Effect of thermal heating on some lignans in flax seed, sesame seeds and rye. Food Chem. 2013, 138, 1847–1855. [Google Scholar] [CrossRef] [PubMed]
- Pihlava, J.M.; Nordlund, E.; Heinio, R.L.; Hietaniemi, V.; Lehtinen, P.; Poutanen, K. Phenolic compounds in wholegrain rye and its fractions. J. Food Comp. Anal. 2015, 38, 89–97. [Google Scholar] [CrossRef]
- Durazzo, A.; Azzini, E.; Raguzzini, A.; Maiani, G.; Finocchiaro, F.; Ferrari, B.; Gianinetti, A.; Carcea, M. Influence of processing on the lignans content of cereal based foods. Tecnica Molitoria Int. 2009, 60, 163–173. [Google Scholar]
- Mattioli, S.; Ruggeri, S.; Sebastiani, B.; Brecchia, G.; Dal Bosco, A.; Mancinelli, A.C.; Castellini, C. Performance and egg quality of laying hens fed flaxseed: Highlights on n-3 fatty acids, cholesterol, lignans and isoflavones. Animal 2017, 11, 705–712. [Google Scholar] [CrossRef]
- Inostroza, J.P.; Troncoso, J.; Mardones, C.; Vergara, C. Lignans in olive stones discarded from the oil industry. Comparison of three extraction Methods followed by HPLC-DAD-MS/MS and antioxidant capacity determination. J. Chil. Chem. Soc. 2018, 63, 4001–4005. [Google Scholar] [CrossRef]
- Jablonský, M.; Škulcová, A.; Malvis, A.; Šima, J. Extraction of value-added components from food industry based and agro-forest biowastes by deep eutectic solvents. J. Biotechnol. 2018, 282, 46–66. [Google Scholar] [CrossRef]
- Lucarini, M.; Durazzo, A.; Romani, A.; Campo, M.; Lombardi-Boccia, G.; Cecchini, F. Bio-based vompounds from grape seeds: A biorefinery approach. Molecules 2018, 23, 1888. [Google Scholar] [CrossRef] [PubMed]
- Blitz, C.L.; Murphy, S.P.; Au, D.L.M. Adding lignan values to a food composition database. J. Food Compos. Anal. 2007, 20, 99–105. [Google Scholar] [CrossRef]
- Scalbert, A.; Andres-Lacueva, C.; Arita, M.; Kroon, P.; Manach, C.; Urpi-Sarda, M.; Wishart, D. Databases on food phytochemicals and their health-promoting effects. J. Agric. Food Chem. 2011, 59, 4331–4348. [Google Scholar] [CrossRef] [PubMed]
- Horn-Ross, P.L.; Barnes, S.; Lee, M.; Coward, L.; Mandel, J.E.; Koo, J.; John, E.M.; Smith, M. Assessing phytoestrogen exposure in epidemiologic studies: Development of a database (United States). Cancer Causes Control. 2000, 11, 289–298. [Google Scholar] [CrossRef] [PubMed]
- Tetens, I.; Turrini, A.; Tapanainen, H.; Christensen, T.; Lampe, J.W.; Fagt, S.; Hakansson, N.; Lundquist, A.; Hallund, J.; Valsta, L.M.; et al. Dietary intake and main sources of plant lignans in five European countries. Food Nutr. Res. 2013, 57, 1. [Google Scholar] [CrossRef] [PubMed]
- Witkowska, A.M.; Waskiewicz, A.; Zujko, M.E.; Szczesniewska, D.; Stepaniak, U.; Pajak, A.; Drygas, W. Are total and individual dietary lignans related to cardiovascular disease and its risk factors in postmenopausal women? A. Nationwide Study. Nutrients 2018, 10, 865. [Google Scholar] [CrossRef] [PubMed]
- Phenol-Explorer—Database on Polyphenol Content in Foods. Available online: http://phenol-explorer.eu/ (accessed on 29 November 2018).
- Neveu, V.; Perez-Jiménez, J.; Vos, F.; Crespy, V.; du Chaffaut, L.; Mennen, L.; Knox, C.; Eisner, R.; Cruz, J.; Wishart, D.; Scalbert, A. Phenol-Explorer: An online comprehensive database on polyphenol contents in foods. Database 2010, 2010, bap024. [Google Scholar] [CrossRef]
- eBASIS—Bioactive Substances in Food Information System. Available online: http://ebasis.eurofir.org/Default.asp (accessed on 29 October 2018).
- Kiely, M.; Black, L.J.; Plumb, J.; Kroon, P.A.; Hollman, P.C.; Larsen, J.C.; Speijers, G.J.; Kapsokefalou, M.; Sheehan, D.; Gry, J.; et al. EuroFIR consortium. EuroFIR eBASIS: Application for health claims submissions and evaluations. Eur. J. Clin. Nutr. 2010, 3, S101. [Google Scholar] [CrossRef]
- Plumb, J.; Pigat, S.; Bompola, F.; Cushen, M.; Pinchen, H.; Nørby, E.; Astley, S.; Lyons, J.; Kiely, M.; Finglas, P. eBASIS (Bioactive Substances in Food Information Systems) and Bioactive Intakes: Major Updates of the Bioactive Compound Composition and Beneficial Bioeffects Database and the Development of a Probabilistic Model to Assess Intakes in Europe. Nutrients 2017, 9, 320. [Google Scholar] [CrossRef]
- Rothwell, J.A.; Urpi-Sarda, M.; Boto-Ordonez, M.; Knox, C.; Llorach, R.; Eisner, R.; Cruz, J.; Neveu, V.; Wishart, D.; Manach, C.; et al. Phenol-Explorer 2.0: A major update of the Phenol-Explorer database integrating data on polyphenol metabolism and pharmacokinetics in humans and experimental animals. Database 2012, 2012, bas031. [Google Scholar] [CrossRef]
- Rothwell, J.A.; Perez-Jimenez, J.; Neveu, V.; Medina-Remon, A.; M’Hiri, N.; Garcia-Lobato, P.; Manach, C.; Knox, C.; Eisner, R.; Wishart, D.S.; et al. Phenol-Explorer 3.0: A major update of the Phenol-Explorer database to incorporate data on the effects of food processing on polyphenol content. Database 2013, 2013, bat070. [Google Scholar]
- HMDB—Human Metabolome Database. Available online: www.hmdb.ca (accessed on 29 October 2018).
- Wishart, D.S.; Feunang, Y.D.; Marcu, A.; Guo, A.C.; Liang, K.; Vázquez-Fresno, R.; Sajed, T.; Johnson, D.; Li, C.; Karu, N.; et al. HMDB 4.0—The Human Metabolome Database for 2018. Nucleic Acids Res. 2018, 46, D608–D617. [Google Scholar] [CrossRef] [PubMed]
- PhytoHub Database. Available online: www.phytohub.eu (accessed on 8 June 2018).
- Bento da Silva, A.; Giacomoni, F.; Pavot, B.; Fillâtre, Y.; Rothwell, J.A.; Sualdea, B.B.; Veyrat, C.; Garcia-Villalba, R.; Gladine, C.; Kopec, R.; et al. PhytoHub V1.4: A new release for the online database dedicated to food phytochemicals and their human metabolites. In Proceedings of the 1st International Conference on Food Bioactivities & Health, Norwich, UK, 13–15 September 2016. [Google Scholar]
Sample Availability: Not available. |
Country | Type of Database | Main/Common Lignan Compounds | N° Total Foods | Food Groups and Subgroups | References |
---|---|---|---|---|---|
Finland | Phytoestrogen Database including lignans | Secoisolariciresinol Matairesinol | 180 | Vegetables, Herbs and spices, Mushrooms, Fruits, Miscellaneous | [67] |
Netherland | Lignan Database | Secoisolariciresinol Matairesinol Lariciresinol Pinoresinol | 109 | Oilseeds and nuts, Grain products, Vegetables and legumes, Fruits, Vegetable oils and fats, Other solid foods, Alcoholic beverages, Non-alcoholic beverages, Juices, Other beverages, | [64] |
Canada | Phytoestrogen Database including lignans | Secoisolariciresinol Matairesinol Lariciresinol Pinoresinol | 121 | Soy products. Legumes. Nuts and oil seeds. Vegetables. Fruits. Cereals and bread. Meat products and other processed foods. Non-alcoholic beverages. Alcoholic beverages | [69] |
Japan | Lignan Database | Secoisolariciresinol Matairesinol Lariciresinol Pinoresinol Syringaresinol Medioresinol | 86 | Vegetables. Tubers and roots. Mushrooms. Fruits. Legumes. Soybean-based products. Cereal-based products. Animal-derived products | [70] |
Spain | Alkylresorcinols and Lignans Database | Secoisolariciresinol Matairesinol Lariciresinol Pinoresinol Syringaresinol Medioresinol | 593 | Vegetables. Grains. Animal. Fats. Drinks | [77] |
United Kingdom | Phytoestrogen Database including lignans | Secoisolariciresinol Matairesinol (and Shonanin) | 496 | Cereal and cereal-based foods, Fresh and processed fruit and vegetables including soya-based foods and legumes, Nuts and seeds, Oils. Alcoholic beverages. Tea and coffee. Dairy products, Eggs, Meat, Fish and seafood | [71,72,74,75] |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Durazzo, A.; Lucarini, M.; Camilli, E.; Marconi, S.; Gabrielli, P.; Lisciani, S.; Gambelli, L.; Aguzzi, A.; Novellino, E.; Santini, A.; et al. Dietary Lignans: Definition, Description and Research Trends in Databases Development. Molecules 2018, 23, 3251. https://doi.org/10.3390/molecules23123251
Durazzo A, Lucarini M, Camilli E, Marconi S, Gabrielli P, Lisciani S, Gambelli L, Aguzzi A, Novellino E, Santini A, et al. Dietary Lignans: Definition, Description and Research Trends in Databases Development. Molecules. 2018; 23(12):3251. https://doi.org/10.3390/molecules23123251
Chicago/Turabian StyleDurazzo, Alessandra, Massimo Lucarini, Emanuela Camilli, Stefania Marconi, Paolo Gabrielli, Silvia Lisciani, Loretta Gambelli, Altero Aguzzi, Ettore Novellino, Antonello Santini, and et al. 2018. "Dietary Lignans: Definition, Description and Research Trends in Databases Development" Molecules 23, no. 12: 3251. https://doi.org/10.3390/molecules23123251
APA StyleDurazzo, A., Lucarini, M., Camilli, E., Marconi, S., Gabrielli, P., Lisciani, S., Gambelli, L., Aguzzi, A., Novellino, E., Santini, A., Turrini, A., & Marletta, L. (2018). Dietary Lignans: Definition, Description and Research Trends in Databases Development. Molecules, 23(12), 3251. https://doi.org/10.3390/molecules23123251