Four New Depsides Isolated from Salvia miltiorrhiza and Their Significant Nerve-Protective Activities
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. General
3.2. Plant Material
3.3. Extraction and Isolation
3.4. Compound Characterization
3.5. HS-SY5Y Cell Culture and Cell Viability Assay
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Cheng, T.O. Cardiovascular effects of Danshen. Int. J. Cardiol. 2007, 121, 9–22. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.B.; Li, Y.; Xue, L.M.; Severino, R.P.; Gao, S.H.; Niu, J.Z.; Qin, L.P.; Zhang, D.W.; Bromme, D. Salvia miltiorrhiza: An ancient Chinese herbal medicine as a source for anti-osteoporotic drugs. J. Ethnopharmacol. 2014, 155, 1401–1416. [Google Scholar] [CrossRef] [PubMed]
- Lian-Niang, L.; Rui, T.; Wei-Ming, C. Salvianolic acid A., a new depside from roots of Salvia miltiorrhiza. Planta Med. 1984, 50, 227–228. [Google Scholar] [CrossRef] [PubMed]
- Ai, C.B.; Li, L.N. Stereostructure of salvianolic acid B and isolation of salvianolic acid C from Salvia miltiorrhiza. J. Nat. Prod. 1988, 51, 145–149. [Google Scholar] [CrossRef]
- Ai, C.B.; Li, L.N. Salvianolic acids D and E: Two new depsides from Salvia miltiorrhiza. Planta Med. 1992, 58, 197–199. [Google Scholar] [CrossRef] [PubMed]
- Yoon, Y.; Kim, Y.O.; Jeon, W.K.; Park, H.J.; Sung, H.J. Tanshinone IIA isolated from Salvia miltiorrhiza BUNGE induced apoptosis in HL60 human premyelocytic leukemia cell line. J. Ethnopharmacol. 1999, 68, 121–127. [Google Scholar] [CrossRef]
- Lee, A.R.; Wu, W.L.; Chang, W.L.; Lin, H.C.; King, M.L. Isolation and bioactivity of new tanshinones. J. Nat. Prod. 1987, 50, 157–160. [Google Scholar] [CrossRef]
- Lee, B.W.; Chun, S.W.; Kim, S.H.; Lee, Y.; Kang, E.S.; Cha, B.S.; Lee, H.C. Lithospermic acid B protects beta-cells from cytokine-induced apoptosis by alleviating apoptotic pathways and activating anti-apoptotic pathways of Nrf2–HO-1 and Sirt1. Toxicol. Appl. Pharm. 2011, 252, 47–54. [Google Scholar] [CrossRef]
- Chen, T.; Liu, W.; Chao, X.; Zhang, L.; Qu, Y.; Huo, J.; Fei, Z. Salvianolic acid B attenuates brain damage and inflammation after traumatic brain injury in mice. Brain Res. Bull. 2011, 84, 163–168. [Google Scholar] [CrossRef]
- Zhao, Y.; Hao, Y.; Ji, H.; Fang, Y.; Guo, Y.; Sha, W.; Zhou, Y.; Pang, X.; Southerland, W.M.; Califano, J.A.; et al. Combination effects of salvianolic acid B with low-dose celecoxib on inhibition of head and neck squamous cell carcinoma growth in vitro and in vivo. Cancer Prev. Res. (Phila). 2010, 3, 787–796. [Google Scholar] [CrossRef]
- World Health Organization. International Statistical Classification of Diseases and Related Health Problems; World Health Organization: Geneva, Switzerland, 2004. [Google Scholar]
- Lee, Y.W.; Kim, D.H.; Jeon, S.J.; Park, S.J.; Kim, J.M.; Jung, J.M.; Lee, H.E.; Bae, S.G.; Oh, H.K.; Son, K.H.; et al. Neuroprotective effects of salvianolic acid B on an Aβ25–35 peptide-induced mouse model of Alzheimer’s disease. Eur. J. Pharmacol. 2013, 704, 70–77. [Google Scholar] [CrossRef] [PubMed]
- Hou, Y.; Li, W.; Xu, L.; Chen, L. In Salvia miltiorrhiza, phenolic acids possess protective properties against amyloid β-induced cytotoxicity, and tanshinones act as acetylcholinesterase inhibitors. Environ. Toxicol. Pharmacol. 2011, 31, 443–452. [Google Scholar]
- Finkel, T.; Holbrook, N.J. Oxidants oxidative stress and the biology of ageing. Nature 2000, 408, 239–247. [Google Scholar] [CrossRef] [PubMed]
- Murata, T.; Oyama, K.; Fujiyama, M.; Oobayashi, B.; Umehara, K.; Miyase, T.; Yoshizaki, F. Diastereomers of lithospermic acid and lithospermic acid B from Monarda fistulosa and Lithospermum erythrorhizon. Fitoterapia 2013, 91, 51–59. [Google Scholar] [CrossRef] [PubMed]
- Gong, J.; Ju, A.; Zhou, D.; Li, D.; Zhou, W.; Geng, W.; Li, B.; Li, L.; Liu, Y.; He, Y.; et al. Salvianolic acid Y: A new protector of PC12 cells against hydrogen peroxide-induced injury from Salvia officinalis. Molecules 2015, 20, 683–692. [Google Scholar] [CrossRef] [PubMed]
- Markesbery, W.R.; Carney, J.M. Oxidative alterations in Alzheimer’s disease. Brain Pathol. 1999, 9, 133–146. [Google Scholar] [CrossRef] [PubMed]
- Browne, S.E.; Ferrante, R.J.; Beal, M.F. Oxidative stress in Huntington’s disease. Brain Pathol. 1999, 9, 147–163. [Google Scholar] [CrossRef]
- Zhang, Y.; Dawson, V.L.; Dawson, T.M. Oxidative stress and genetics in the pathogenesis of Parkinson’s disease. Neurobiol. Dis. 2000, 7, 240–250. [Google Scholar] [CrossRef]
- Ferrante, R.J.; Browne, S.E.; Shinobu, L.A.; Bowling, A.C.; Baik, M.J.; MacGarvey, U.; Kowall, N.W.; Brown, R.H.; Beal, M.F. Evidence of increased oxidative damage in both sporadic and familial amyotrophic lateral sclerosis. J. Neurochem. 1997, 69, 2064–2074. [Google Scholar] [CrossRef]
- Chen, L.; Xu, B.; Liu, L.; Luo, Y.; Yin, J.; Zhou, H.; Chen, W.; Shen, T.; Han, X.; Huang, S. Hydrogen peroxide inhibits mTOR signaling by activation of AMPKalpha leading to apoptosis of neuronal cells. Lab. Invest. 2010, 90, 762–773. [Google Scholar] [CrossRef]
- Vargas, C.G.; da Silva Junior, J.D.; Rabelo, T.K.; Moreira, J.C.F.; Gelain, D.P.; Rodrigues, E.; Augusti, P.R.; Rios, A.O.; Flores, S.H. Bioactive compounds and protective effect of red and black rice brans extracts in human neuron-like cells (SH-SY5Y). Food Res. Int. 2018, 113, 57–64. [Google Scholar] [CrossRef] [PubMed]
- An, H.; Kim, I.S.; Koppula, S.; Kim, B.W.; Park, P.J.; Lim, B.O.; Choi, W.S.; Lee, K.H.; Choi, D.K. Protective effects of Gastrodia elata Blume on MPP+-induced cytotoxicity in human dopaminergic SH-SY5Y cells. J. Ethnopharmacol. 2010, 130, 290–298. [Google Scholar] [CrossRef] [PubMed]
Sample Availability: Samples of the compounds 1–12 are available from the authors. |
C | 1 a | 2 b | 3 b | 4 b | ||||
---|---|---|---|---|---|---|---|---|
δH | δC | δH | δC | δH | δC | δH | δC | |
1 | - | 124.9 | - | 122.7 | - | 115.6 | - | 122.5 |
2 | - | 128.0 | - | 124.8 | - | 124.9 | - | 124.9 |
3 | - | 149.6 | - | 147.3 | - | 147.2 | - | 147.1 |
4 | - | 144.8 | - | 143.8 | - | 144.2 | - | 134.9 |
5 | 6.79 d (8.5) | 117.8 | 6.81 d (8.4) | 116.7 | 6.83 d (8.4) | 117.5 | 6.82 d (8.5) | 117.3 |
6 | 7.12 d (8.5) | 122.6 | 7.24 d (8.4) | 121.7 | 7.29 d (8.4) | 120.8 | 7.28 d (8.5) | 121.1 |
7 | 7.56 d (16.0) | 143.7 | 7.53 d (16.0) | 142.9 | 7.52 d (15.8) | 141.8 | 7.57 d (16.0) | 142.7 |
8 | 6.32 d (16.0) | 117.6 | 6.28 d (16.0) | 114.9 | 6.34 d (15.8) | 115.4 | 6.33 d (16.0) | 114.8 |
9 | - | 169.3 | - | 165.9 | - | 165.8 | - | 165.7 |
1′ | - | 130.8 | - | 126.7 | - | 127.7 | - | 126.4 |
2′ | 6.76 br d (1.5) | 117.6 | 6.66 br d (2.0) | 117.2 | 6.66 brd (2.0) | 116.4 | 6.65 br s | 116.6 |
3′ | - | 144.8 | - | 145.6 | - | 144.9 | - | 144.9 |
4′ | - | 150.0 | - | 144.3 | - | 143.9 | - | 144.1 |
5′ | 6.67 d (8.5) | 116.1 | 6.60 d (8.0) | 115.7 | 6.62 d (8.0) | 115.4 | 6.61 d (8.0) | 115.4 |
6′ | 6.61 dd (8.5, 1.5) | 121.8 | 6.36 br d (8.0) | 119.5 | 6.52 dd (8.0, 2.0) | 119.9 | 6.47, dd (8.0, 2.0) | 120.0 |
7′ | 3.07 m; 2.93 m | 38.2 | 2.90, 6.5 d | 36.3 | 2.98 dd (14.0, 4.0) | 36.3 | 2.92 br d (6.5) | 36.2 |
- | - | - | 2.84 m | - | - | - | ||
8′ | 5.00 m | 77.8 | - | 73.1 | - | 73.5 | - | 73.0 |
9′ | - | 177.8 | - | 169.9 | - | 171.2 | - | 169.8 |
1″ | - | 129.3 | - | 131.5 | - | 131.2 | - | 131.2 |
2″ | 6.89 br d (1.5) | 115.0 | 6.68 br d (2.0) | 112.4 | 6.68 br d (2.0) | 112.6 | 6.66 br d (1.5) | 112.5 |
3′’ | - | 145.6 | - | 145.4 | - | 145.1 | - | 144.8 |
4′’ | - | 146.9 | - | 145.4 | - | 145.5 | - | 145.5 |
5′’ | 6.70 d (8.0) | 116.1 | 6.72 d 8.0 | 115.6 | 6.72 d 8.0 | 115.6 | 6.72 d (8.0) | 115.4 |
6′’ | 6.65 m | 119.9 | 6.43 br d (8.0) | 116.7 | 6.55 m | 117.0 | 6.55 m | 116.9 |
7′’ | 5.92 d (11.0) | 88.4 | 5.67 br d (3.0) | 85.8 | 5.65 br d (4.0) | 86.0 | 5.65 brd (4.0) | 85.9 |
8′’ | 4.76 d (11.0) | 54.7 | 4.36 br d (3.0) | 55.4 | 4.43 br d (4.0) | 54.9 | 4.43 br d (4.0) | 55.1 |
9′’ | - | 171.5 | - | 170.1 | - | 170.3 | - | 170.1 |
1′′′ | - | 129.5 | - | 128.1 | - | 126.2 | - | 127.0 |
2′′′ | 6.57 br d (1.5) | 118.1 | 6.55 m | 116.4 | 6.55 m | 116.5 | 6.58 br d (2.0) | 116.4 |
3′′′ | - | 144.9 | - | 144.9 | - | 143.9 | - | 145.4 |
4′′′ | - | 145.0 | - | 144.1 | - | 144.2 | - | 145.1 |
5′′′ | 6.60 d (8.0) | 121.7 | 6.57 d (8.0) | 115.6 | 6.57 d (8.0) | 115.6 | 6.54 d (8.0) | 115.5 |
6′′′ | 6.42 dd (8.0, 1.5) | 122.4 | 6.34 br d (8.0) | 120.0 | 6.32 m | 120.1 | 6.31 dd (8.0, 2.0) | 120.0 |
7′’’ | 2.38 dd (13.5, 6.0) 2.47 dd (13.5, 6.0) | 37.7 | 2.95 dd (14.0, 3.0) 2.80 dd (14.0, 9.0) | 36.3 | 35.8 | 2.86 dd (14.0, 4.5) 2.82 dd (14.0, 8.0) | 35.9 | |
8′′′ | 4.37 t (6.0) | 78.2 | 4.93 dd (9.0, 3.0) | 75.3 | 5.14 dd (8.0, 5.0) | 73.9 | 5.00 dd (8.5, 4.5) | 74.2 |
9′′′ | - | 177.5 | - | 170.7 | - | 169.2 | - | 170.1 |
9′-OCH3 | - | - | 3.60 s | 52.0 | - | - | 3.58 s | 51.0 |
9‴-OCH3 | - | - | - | - | 3.55 s | 51.9 | - | - |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jin, Q.; Hu, X.; Deng, Y.; Hou, J.; Lei, M.; Ji, H.; Zhou, J.; Qu, H.; Wu, W.; Guo, D. Four New Depsides Isolated from Salvia miltiorrhiza and Their Significant Nerve-Protective Activities. Molecules 2018, 23, 3274. https://doi.org/10.3390/molecules23123274
Jin Q, Hu X, Deng Y, Hou J, Lei M, Ji H, Zhou J, Qu H, Wu W, Guo D. Four New Depsides Isolated from Salvia miltiorrhiza and Their Significant Nerve-Protective Activities. Molecules. 2018; 23(12):3274. https://doi.org/10.3390/molecules23123274
Chicago/Turabian StyleJin, Qinghao, Xinyi Hu, Yanping Deng, Jinjun Hou, Min Lei, Hongjian Ji, Jing Zhou, Hua Qu, Wanying Wu, and Dean Guo. 2018. "Four New Depsides Isolated from Salvia miltiorrhiza and Their Significant Nerve-Protective Activities" Molecules 23, no. 12: 3274. https://doi.org/10.3390/molecules23123274
APA StyleJin, Q., Hu, X., Deng, Y., Hou, J., Lei, M., Ji, H., Zhou, J., Qu, H., Wu, W., & Guo, D. (2018). Four New Depsides Isolated from Salvia miltiorrhiza and Their Significant Nerve-Protective Activities. Molecules, 23(12), 3274. https://doi.org/10.3390/molecules23123274