Chemical Constituents and Pharmacological Activity of Agarwood and Aquilaria Plants
Abstract
:1. Introduction
2. Results and Discussion
2.1. New Compounds from Agarwood and Aquilaria Plants
2.1.1. 2-(2-Phenylethyl)chromones
2.1.2. Terpenoids
2.1.3. Flavonoids
2.1.4. Others
2.2. Pharmacological Activity of Fraction and Components from Agarwood and Aquilaria Trees
2.2.1. Neural Activity
2.2.2. Gastrointestinal Regulation
2.2.3. Antibacterial and Antifungal
2.2.4. Anti-Inflammatory
2.2.5. Analgesic Effect
2.2.6. Antiasthma
2.2.7. Cytotoxicity
2.2.8. Anti-Diabetes
2.2.9. Antioxidation
2.2.10. Others
3. Conclusions
Acknowledgments
Conflicts of Interest
References
- CITES. Amendments to appendices I and II of CITES. In Proceedings of the Thirteenth Meeting of the Conference of the Parties 2004, Bangkok, Thailand, 2 October 2004. [Google Scholar]
- CITES. Government of India Hosted Asian Regional Workshop on the Management of Wild and Planted Agarwood Taxa. Available online: https://www.Cites.Org/eng/2015_india_agarwood_workshop (accessed on 5 May 2015).
- CITES. Report on NDF of Agarwood for Sustainability Harvest in Indonesia. Available online: https://cites.Org/sites/default/files/ndf_material/agarwood_in_indonesia_ndf%5b1%5d.Pdf (accessed on 29 May 2015).
- Liu, Y.; Wei, J.; Gao, Z.; Zhang, Z.; Lyu, J. A review of quality assessment and grading for agarwood. Chin. Herb. Med. 2017, 9, 22–30. [Google Scholar] [CrossRef]
- The IUCN Red List of Threatened Species. Version 2017-3. Available online: www.Iucnredlist.Org (accessed on 17 December 2017).
- Kalra, R.; Kaushik, N. A review of chemistry, quality and analysis of infected agarwood tree (Aquilaria sp.). Phytochem. Rev. 2017, 16, 1045–1079. [Google Scholar] [CrossRef]
- Liu, Y.; Chen, H.; Yang, Y.; Zhang, Z.; Wei, J.; Meng, H.; Chen, W.; Feng, J.; Gan, B.; Chen, X.; et al. Whole-tree agarwood-inducing technique: An efficient novel technique for producing high-quality agarwood in cultivated Aquilaria sinensis trees. Molecules 2013, 18, 3086–3106. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Cai, C.H.; Dong, W.H.; Guo, Z.K.; Wang, H.; Mei, W.L.; Dai, H.F. 2-(2-phenylethyl)chromone derivatives from Chinese agarwood induced by artificial holing. Fitoterapia 2014, 98, 117–123. [Google Scholar] [CrossRef] [PubMed]
- Kalita, J.; Bhattacharyya, P.R.; Boruah, H.P.D.; Unni, B.G.; Lekhak, H.; Nath, S.C. Association of zeuzera conferta walker on agarwood formation in Aquilaria malaccensis Lamk. Asian J. Plant Sci. Res. 2015, 5, 4–9. [Google Scholar]
- Novriyanti, E.; Santosa, E.; Syafii, W.; Turjaman, M.; Sitepu, I.R. Antifungal activity of wood extract of Aquilaria crassna Pierre ex Lecomte against agarwood-inducing fungi, Fusarium solani. J. For. Res. 2010, 7, 155–165. [Google Scholar]
- Mohamed, R.; Jong, P.L.; Kamziah, A.K. Fungal inoculation induces agarwood in young Aquilaria malaccensis trees in the nursery. J. For. Res. 2014, 25, 201–204. [Google Scholar] [CrossRef]
- Peng, C.S.; Osman, M.F.; Bahar, N.; Nuri, E.A.K.; Zakaria, R.; Rahim, K.A. Agarwood inducement technology: A method for producing oil grade agarwood in cultivated Aquilaria malaccensis Lamk. J. Agrobiotechnol. 2015, 6, 1–16. [Google Scholar]
- National Pharmacopoeia Committee. Pharmacopoeia of the People’s Republic of China; 2015 Version; Chinese Medical Science and Technology Press: Beijing, China, 2015; Volume 1, pp. 185–186. [Google Scholar]
- Chen, H.Q.; Wei, J.H.; Yang, J.S.; Zhang, Z.; Yang, Y.; Gao, Z.H.; Sui, C.; Gong, B. Chemical constituents of agarwood originating from the endemic genus Aquilaria plants. Chem. Biodivers. 2012, 9, 236–250. [Google Scholar] [CrossRef] [PubMed]
- Hashim, Y.Z.; Kerr, P.G.; Abbas, P.; Mohd, S.H. Aquilaria spp. (agarwood) as source of health beneficial compounds: A review of traditional use, phytochemistry and pharmacology. J. Ethnopharmacol. 2016, 189, 331–360. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Qiao, L.; Xie, D.; Yuan, Y.; Chen, N.; Dai, J.; Guo, S. 2-(2-phenylethyl)chromones from Chinese eaglewood. Phytochemistry 2012, 76, 92–97. [Google Scholar] [CrossRef] [PubMed]
- Dai, H.F.; Liu, J.; Zeng, Y.B.; Han, Z.; Wang, H.; Mei, W.L. A new 2-(2-phenylethyl)chromone from Chinese eaglewood. Molecules 2009, 14, 5165–5168. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.H.; Liu, J.M.; Lu, H.X.; Wei, Z.X. Two new 2-(2-phenylethyl)chromen-4-ones from Aquilaria sinensis (Lour.) Gilg. Helv. Chim. Acta 2012, 95, 951–954. [Google Scholar] [CrossRef]
- Wu, B.; Kwon, S.; Hwang, G.S.; Park, J.H. Eight new 2-(2-phenylethyl)chromone (=2-(2-phenylethyl)-4H-1-benzopyran-4-one) derivatives from Aquilaria malaccensis agarwood. Helv. Chim. Acta 2012, 95, 1657–1665. [Google Scholar] [CrossRef]
- Liao, G.; Mei, W.L.; Dong, W.H.; Li, W.; Wang, P.; Kong, F.D.; Gai, C.J.; Song, X.Q.; Dai, H.F. 2-(2-phenylethyl)chromone derivatives in artificial agarwood from Aquilaria sinensis. Fitoterapia 2016, 110, 38–43. [Google Scholar] [CrossRef] [PubMed]
- Xiang, P.; Mei, W.; Chen, H.; Kong, F.; Wang, H.; Liao, G.; Zhou, L.; Dai, H. Four new bi-phenylethylchromones from artificial agarwood. Fitoterapia 2017, 120, 61–66. [Google Scholar] [CrossRef] [PubMed]
- Chen, D.; Xu, Z.; Chai, X.; Zeng, K.; Jia, Y.; Bi, D.; Ma, Z.; Tu, P. Nine 2-(2-phenylethyl)chromone derivatives from the resinous wood of Aquilaria sinensis and their inhibition of LPS-induced NO production in RAW264.7 cells. Eur. J. Org. Chem. 2012, 27, 5389–5397. [Google Scholar] [CrossRef]
- Liu, Y.Y.; Chen, D.L.; Wei, J.H.; Feng, J.; Zhang, Z.; Yang, Y.; Zheng, W. Four new 2-(2-phenylethyl)chromone derivatives from Chinese agarwood produced via the whole-tree agarwood-inducing technique. Molecules 2016, 21, 1433. [Google Scholar] [CrossRef] [PubMed]
- Huo, H.X.; Gu, Y.F.; Sun, H.; Zhang, Y.F.; Liu, W.J.; Zhu, Z.X.; Shi, S.P.; Song, Y.L.; Jin, H.W.; Zhao, Y.F.; et al. Anti-inflammatory 2-(2-phenylethyl)chromone derivatives from Chinese agarwood. Fitoterapia 2017, 118, 49–55. [Google Scholar] [CrossRef] [PubMed]
- Huo, H.X.; Zhu, Z.X.; Song, Y.L.; Shi, S.P.; Sun, J.; Sun, H.; Zhao, Y.F.; Zheng, J.; Ferreira, D.; Zjawiony, J.K.; et al. Anti-inflammatory dimeric 2-(2-phenylethyl)chromones from the resinous wood of Aquilaria sinensis. J. Nat. Prod. 2017. [Google Scholar] [CrossRef] [PubMed]
- Liao, G.; Mei, W.L.; Kong, F.D.; Li, W.; Yuan, J.Z.; Dai, H.F. 5,6,7,8-tetrahydro-2-(2-phenylethyl)chromones from artificial agarwood of Aquilaria sinensis and their inhibitory activity against acetylcholinesterase. Phytochemistry 2017, 139, 98–108. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.L.; Hwang, T.L.; Chung, M.I.; Sung, P.J.; Shu, C.W.; Cheng, M.J.; Chen, J.J. New flavones, a 2-(2-phenylethyl)-4H-chromen-4-one derivative, and anti-inflammatory constituents from the stem barks of Aquilaria sinensis. Molecules 2015, 20, 20912–20925. [Google Scholar] [CrossRef] [PubMed]
- Yang, D.L.; Mei, W.L.; Zeng, Y.B.; Guo, Z.K.; Zhao, Y.X.; Wang, H.; Zuo, W.J.; Dong, W.H.; Wang, Q.H.; Dai, H.F. 2-(2-phenylethyl)chromone derivatives in Chinese agarwood “qi-nan” from Aquilaria sinensis. Planta Med. 2013, 79, 1329–1334. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, A.; Miyake, K.; Saito, Y.; Rasyid, F.A.; Tokuda, H.; Takeuchi, M.; Suzuki, N.; Ichiishi, E.; Fujie, T.; Goto, M.; et al. Phenylethylchromones with in vitro antitumor promoting activity from Aquilaria filaria. Planta Med. 2017, 83, 300–305. [Google Scholar] [CrossRef] [PubMed]
- Huo, H.X.; Zhu, Z.X.; Pang, D.R.; Li, Y.T.; Huang, Z.; Shi, S.P.; Zheng, J.; Zhang, Q.; Zhao, Y.F.; Tu, P.F.; et al. Anti-neuroinflammatory sesquiterpenes from Chinese eaglewood. Fitoterapia 2015, 106, 115–121. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.; Peng, Q.; Han, Z.; Yang, L.; Wang, Z. Three new sesquiterpenoids and one new sesquiterpenoid derivative from Chinese eaglewood. Molecules 2016, 21, 281. [Google Scholar] [CrossRef] [PubMed]
- Yang, D.L.; Wang, H.; Guo, Z.K.; Li, W.; Mei, W.L.; Dai, H.F. Fragrant agarofuran and eremophilane sesquiterpenes in agarwood ‘qi-nan’ from Aquilaria sinensis. Phytochem. Lett. 2014, 8, 121–125. [Google Scholar] [CrossRef]
- Li, W.; Cai, C.H.; Guo, Z.K.; Wang, H.; Zuo, W.J.; Dong, W.H.; Mei, W.L.; Dai, H.F. Five new eudesmane-type sesquiterpenoids from Chinese agarwood induced by artificial holing. Fitoterapia 2015, 100, 44–49. [Google Scholar] [CrossRef] [PubMed]
- Yang, D.L.; Li, W.; Dong, W.H.; Wang, J.; Mei, W.L.; Dai, H.F. Five new 5,11-epoxyguaiane sesquiterpenes in agarwood “qi-nan” from Aquilaria sinensis. Fitoterapia 2016, 112, 191–196. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Liao, G.; Dong, W.H.; Kong, F.D.; Wang, P.; Wang, H.; Mei, W.L.; Dai, H.F. Sesquiterpenoids from Chinese agarwood induced by artificial holing. Molecules 2016, 21, 274. [Google Scholar] [CrossRef] [PubMed]
- Ma, C.T.; Eom, T.; Cho, E.; Wu, B.; Kim, T.R.; Oh, K.B.; Han, S.B.; Kwon, S.W.; Park, J.H. Aquilanols A and B, macrocyclic humulene-type sesquiterpenoids from the agarwood of Aquilaria malaccensis. J. Nat. Prod. 2017, 80, 3043–3048. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Qiao, L.R.; Zhang, J.J.; Dai, J.G.; Guo, S.X. Two new sesquiterpene derivatives from Chinese eaglewood. J. Asian Nat. Prod. Res. 2012, 14, 1054–1058. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Qiao, L.; Ji, C.; Xie, D.; Gong, N.B.; Lu, Y.; Zhang, J.; Dai, J.; Guo, S. Antidepressant abietane diterpenoids from Chinese eaglewood. J. Nat. Prod. 2013, 76, 216–222. [Google Scholar] [CrossRef] [PubMed]
- Peng, K.; Mei, W.L.; Zhao, Y.X.; Tan, L.H.; Wang, Q.H.; Dai, H.F. A novel degraded sesquiterpene from the fresh stem of Aquilaria sinensis. J. Asian Nat. Prod. Res. 2011, 13, 951–955. [Google Scholar] [CrossRef] [PubMed]
- Cheng, J.T.; Han, Y.Q.; He, J.; De Wu, X.; Dong, L.B.; Peng, L.Y.; Li, Y.; Zhao, Q.S. Two new tirucallane triterpenoids from the leaves of Aquilaria sinensis. Arch. Pharm. Res. 2013, 36, 1084–1089. [Google Scholar] [CrossRef] [PubMed]
- Korinek, M.; Wagh, V.D.; Lo, I.W.; Hsu, Y.M.; Hsu, H.Y.; Hwang, T.L.; Wu, Y.C.; Cheng, Y.B.; Chen, B.H.; Chang, F.R. Antiallergic phorbol ester from the seeds of Aquilaria malaccensis. Int. J. Mol. Sci. 2016, 17, 398. [Google Scholar] [CrossRef] [PubMed]
- Wagh, V.D.; Korinek, M.; Lo, I.W.; Hsu, Y.M.; Chen, S.L.; Hsu, H.Y.; Hwang, T.L.; Wu, Y.C.; Chen, B.H.; Cheng, Y.B.; et al. Inflammation modulatory phorbol esters from the seeds of Aquilaria malaccensis. J. Nat. Prod. 2017, 80, 1421–1427. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.B.; Feng, J.; Yang, X.W.; Zhao, B.; Liu, J.X. Aquisiflavoside, a new nitric oxide production inhibitor from the leaves of Aquilaria sinensis. J. Asian Nat. Prod. Res. 2012, 14, 867–872. [Google Scholar] [CrossRef] [PubMed]
- Feng, J.; Yang, X.W.; Wang, R.F. Bio-assay guided isolation and identification of α-glucosidase inhibitors from the leaves of Aquilaria sinensis. Phytochemistry 2011, 72, 242–247. [Google Scholar] [CrossRef] [PubMed]
- Qi, J.; Lu, J.J.; Liu, J.H.; Yu, B.Y. Flavonoid and a rare benzophenone glycoside from the leaves of Aquilaria sinensis. Chem. Pharm. Bull. (Tokyo) 2009, 57, 134–137. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.H.; Peng, K.; Tan, L.H.; Dai, H.F. Aquilarin A, a new benzenoid derivative from the fresh stem of Aquilaria sinensis. Molecules 2010, 15, 4011–4016. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Xia, F.; Wang, S.; Wang, K.Y.; Chen, J.M.; Tu, P.F. Structural elucidation of two new megastigmane glycosides from the leaves of Aquilaria sinensis. Chin. J. Nat. Med. 2015, 13, 290–294. [Google Scholar] [PubMed]
- Chinese Academy of Medical Sciences the Institute of Materia Medica. Modern Research of Chinese Herbal Medicine; Version 1; China Union Medical University Press: Beijing, China, 2010; Volume 3, pp. 156–158. [Google Scholar]
- Guo, J.; Wang, W.; Fang, H.; Liu, Q.; Zhang, W. United State Patent: Agarofuan Derivatives, Their Preparation, Pharmaceutical Composition Containing Them and Their Use as Medicine. U.S. Patent 6486201b1, 26 November 2002. [Google Scholar]
- Okugawa, H.; Ueda, R.; Matsumoto, K.; Kawanishi, K.; Kato, A. Effects of agarwood extracts on the central nervous system in mice. Planta Med. 1993, 59, 32–36. [Google Scholar] [CrossRef] [PubMed]
- Okugawa, H.; Ueda, R.; Matsumoto, K.; Kawanishi, K.; Kato, K. Effects of sesquiterpenoids from “oriental incenses” on acetic acid-induced writhing and D2 and 5-HT2a receptors in rat brain. Phytomedicine 2000, 7, 417–422. [Google Scholar] [CrossRef]
- Okugawa, H.; Ueda, R.; Matsumoto, K.; Kawanishi, K.; Kato, A. Effect of jinkoh-eremol and agarospirol from agarwood on the central nervous system in mice. Planta Med. 1996, 62, 2–6. [Google Scholar] [CrossRef] [PubMed]
- Takemoto, H.; Ito, M.; Shiraki, T.; Yagura, T.; Honda, G. Sedative effects of vapor inhalation of agarwood oil and spikenard extract and identification of their active components. J. Nat. Med. 2008, 62, 41–46. [Google Scholar] [CrossRef] [PubMed]
- Miyosh, T.; Ito, M.; Kitayama, T.; Isomori, S.; Yamashit, F. Sedative effects of inhaled benzylacetone and structural features contributing to its activity. Biol. Pharm. Bull. 2013, 36, 1474–1481. [Google Scholar] [CrossRef]
- Wang, S.; Wang, C.; Peng, D.; Liu, X.; Wu, C.; Guo, P.; Wei, J. Agarwood essential oil displays sedative-hypnotic effects through the GABAergic system. Molecules 2017, 22, 2190. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Zhou, Y.; Ma, F.; Zhang, Q.; Liu, Y.; Gong, B.; Guo, P.; Wei, J. Effect of agarwood produced by whole-tree agarwood-inducing technique on hypnotic and spontaneous activity inhibition of mice. J. Int. Pharm. Res. 2016, 43, 1082–1087. [Google Scholar]
- Liu, Q.; Wang, D.; Li, C.; Lv, D. The synthensis and centrol nervous system activity of agarofuran. Chin. J. Med. Chem. 2003, 13, 125–130. [Google Scholar]
- Zhang, Y.; Wang, W.; Zhang, J. Effects of novel anxiolytic 4-butyl-alpha-agarofuran on levels of monoamine neurotransmitters in rats. Eur. J. Pharmacol. 2004, 504, 39–44. [Google Scholar] [CrossRef] [PubMed]
- Li, N.; Zhang, J.; Zhou, T. Metabolic research of new antidepression drug AF-5 and its metabolin in human liver microsomes in vitro. Yao Xue Xue Bao 2001, 36, 528–531. [Google Scholar] [PubMed]
- Liu, Y.; Wang, S.; Zhou, Y.; Zhang, Q.; Ma, F.; Gong, B.; Guo, P.; Wei, J. Effect of agarwood extracts produced by the whole-tree agarwood-inducing technique on gastrointestinal motility and gastric ulcer. J. Int. Pharm. Res. 2016, 43, 1076–4081. [Google Scholar]
- Li, H.; Jiang, Z.; Mei, Q. Comparasion the intestinal propulsion effect of agarwood leaves and resion. Asia Pac. Tradit. Med. 2013, 9, 24–25. [Google Scholar]
- Kakino, M.; Izuta, H.; Ito, T.; Tsuruma, K.; Araki, Y.; Shimazawa, M.; Oyama, M.; Iinuma, M.; Hara, H. Agarwood induced laxative effects via acetylcholine receptors on loperamide-induced constipation in mice. Biosci. Biotechnol. Biochem. 2010, 74, 1550–1555. [Google Scholar] [CrossRef] [PubMed]
- Hara, H.; Ise, Y.; Morimoto, N.; Shimazawa, M.; Ichihashi, K.; Ohyama, M.; Iinuma, M. Laxative effect of agarwood leaves and its mechanism. Biosci. Biotechnol. Biochem. 2008, 72, 335–345. [Google Scholar] [CrossRef] [PubMed]
- Kakino, M.; Tazawa, S.; Maruyama, H.; Tsuruma, K.; Araki, Y.; Shimazawa, M.; Hara, H. Laxative effects of agarwood on low-fiber diet-induced constipation in rats. BMC Complement. Altern. Med. 2010, 10, 68. [Google Scholar] [CrossRef] [PubMed]
- Ito, T.; Kakino, M.; Tazawa, S.; Watara, T.; Oyama, M.; Maruyama, H. Quantification of polyphenols and pharmacological analysis of water and ethanol-based extracts of cultivated agarwood leaves. J. Nutr. Sci. Vitaminol. 2012, 58, 136–142. [Google Scholar] [CrossRef] [PubMed]
- Ogawa, K.; Ito, M. Appetite-enhancing effects of trans-cinnamaldehyde, benzylacetone and 1-phenyl-2-butanone by inhalation. Planta Med. 2016, 82, 84–88. [Google Scholar] [CrossRef] [PubMed]
- Ogawa, K.; Ito, M. Appetite-enhancing effects: The influence of concentrations of benzylacetone and trans-cinnamaldehyde and their inhalation time, as well as the effect of aroma, on body weight in mice. Biol. Pharm. Bull. 2016, 39, 794–798. [Google Scholar] [CrossRef] [PubMed]
- Kamonwannasit, S.; Nantapong, N.; Kumkrai, P.; Luecha, P.; Kupittayanant, S.; Chudapongse, N. Antibacterial activity of Aquilaria crassna leaf extract against Staphylococcus epidermidis by disruption of cell wall. Ann. Clin. Microbiol. Antimicrob. 2013, 12, 20. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Yang, Y.; Xue, J.; Wei, J.; Zhang, Z.; Chen, H. Comparison of compositions and antimicrobial activities of essential oils from chemically stimulated agarwood, wild agarwood and healthy Aquilaria sinensis (Lour.) Gilg trees. Molecules 2011, 16, 4884–4896. [Google Scholar] [CrossRef] [PubMed]
- Wetwitayaklung, P.; Thavanapong, N.; Pharmacognosy, D.O.; Charoenteeraboon, J. Chemical constituents and antimicrobial activity of essential oil and extracts of heartwood of Aquilaria crassna obtained from water distillation and supercritical fluid carbon dioxide extraction. Silpakorn Univ. Sci. Technol. J. 2009, 3, 25–33. [Google Scholar]
- Yadav, D.K.; Mudgal, V.; Agrawal, J.; Maurya, A.J.; Bawankule, D.U.; Chanotiya, C.S.; Khan, F.; Thul, S.T. Molecular docking and ADME studies of natural compounds of agarwood oil for topical anti-inflammatory activity. Curr. Comput. Aided Drug Des. 2013, 9, 360–370. [Google Scholar] [CrossRef] [PubMed]
- Lin, Z.; Li, H.; Mei, Q. Comparative study on antiinflammatory of agarwood leaves and resion. Chin. Ache. Tradit. Chin. Med. 2013, 31, 548–549. [Google Scholar]
- Peana, A.T.; D’Aquila, P.S.; Panin, F.; Serra, G.; Pippia, P.; Moretti, M.D. Anti-inflammatory activity of linalool and linalyl acetate constituents of essential oils. Phytomedicine 2002, 9, 721–726. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Xu, X.; Liang, Y. Comparative study on analgesic effects of different years of Chinese eaglewood. Hainan Med. J. 2014, 25, 2188–2190. [Google Scholar]
- Wu, X.; Li, H.; Mei, Q.; Lin, Z. Comparative study on preventing asthma effects of agarwood leaves and resion. Pharm. Today 2013, 23, 346–347. [Google Scholar]
- Hashim, Y.; Phirdaous, A.; Azura, A. Screening of anticancer activity from agarwood essential oil. Pharmacogn. Res. 2014, 6, 191–194. [Google Scholar] [CrossRef] [PubMed]
- Dahham, S.S.; Hassan, L.E.; Ahamed, M.B.; Majid, A.S.; Majid, A.M.; Zulkepli, N.N. In vivo toxicity and antitumor activity of essential oils extract from agarwood (Aquilaria crassna). BMC Complement. Altern. Med. 2016, 16, 236. [Google Scholar] [CrossRef] [PubMed]
- Dahham, S.; Tabana, Y.; Sandai, D.; Ahmed, M. In vitro anticancer and antiangiogenic activity of essential oils extracts from agarwood Aquilaria crassna. Med. Aromat. Plants 2016, 5, 256–268. [Google Scholar] [CrossRef]
- Ibrahim, A.; Rawi, S.; Abdul, M.; Rahman, N.N.A.; Salah, K.M.A.; AbKadir, M.O. Separation and fractionation of Aquilaria malaccensis oil using supercritical fluid extraction and tthe cytotoxic properties of the extracted oil. Procedia Food Sci. 2011, 1, 1953–1959. [Google Scholar] [CrossRef]
- Dahham, S.S.; Tabana, Y.M.; Iqbal, M.A.; Ahamed, M.B.; Ezzat, M.O.; Majid, A.S.; Majid, A.M. The anticancer, antioxidant and antimicrobial properties of the sesquiterpene β-caryophyllene from the essential oil of Aquilaria crassna. Molecules 2015, 20, 11808–11829. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Wu, J.; Zhao, Y.X.; Deng, Y.Y.; Mei, W.L.; Dai, H.F. A new cytotoxic 2-(2-phenylethyl)chromone from Chinese eaglewood. Chin. Chem. Lett. 2008, 19, 934–936. [Google Scholar] [CrossRef]
- Mei, Q.; Li, H.; Lin, Z.; Wu, X.; Liang, L. Comparative study on antidiabetes of agarwood leaves and resion. Lishizhen Med. Mater. Med. Res. 2013, 24, 1606–1607. [Google Scholar]
- Pranakhon, R.; Aromdee, C. Antihyperglycemic activity of agarwood leaf extracts in STZ-induced diabetic rats and glucose uptake enhancement activity in rat adipocytes. Songklanakarin J. Sci. Technol. 2011, 33, 405–410. [Google Scholar]
- Pranakhon, R.; Aromdee, C.; Pannangpetch, P. Effects of iriflophenone 3-c-β-glucoside on fasting blood glucose level and glucose uptake. Pharmacogn. Mag. 2015, 11, 82–89. [Google Scholar] [PubMed]
- Xiong, L.; Li, L.; Lin, L.; Chen, D.; Wu, J. Protective effect of lignum Aquilaria resionatum essential oil on H2O2-induced oxidative damage of PC12 cells. Tradit. Chin. Drug Res. Clin. Pharm. 2014, 25, 28–32. [Google Scholar]
- Sattayasai, J.; Bantadkit, J.; Aromdee, C.; Lattmann, E.; Airarat, W. Antipyretic, analgesic and anti-oxidative activities of Aquilaria crassna leaves extract in rodents. J. Ayurveda Integr. Med. 2012, 3, 175–179. [Google Scholar] [CrossRef] [PubMed]
- Tay, P.; Tan, C.; Abas, F.; Yim, H.; Ho, C. Assessment of extraction parameters on antioxidant capacity, polyphenol content, epigallocatechin gallate (EGCG), epicatechin gallate (ECG) and iriflophenone 3-c-β-glucoside of agarwood (Aquilaria crassna) young leaves. Molecules 2014, 19, 12304–12319. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dyary, H.O.; Arifah, A.K.; Sharma, R.S.; Rasedee, A.; Mohd-Aspollah, M.S.; Zakaria, Z.A.; Zuraini, A.; Somchit, M.N. Antitrypanosomal screening and cytotoxic effects of selected medicinal plants. Trop. Biomed. 2014, 31, 89–96. [Google Scholar] [PubMed]
- Suwannasing, C. Anti-ischemic effect of ethyl acetate extract of Aquilaria crassna by attenuation of p38-MAPK activation. J. Appl. Pharm. Sci. 2012, 2, 26–30. [Google Scholar] [CrossRef]
NO. | R1 | R2 | R3 | R4 | R5 | R6 | R7 | R8 |
---|---|---|---|---|---|---|---|---|
1 | H | OH | OCH3 | H | H | H | OH | OCH3 |
2 | H | OCH3 | OCH3 | H | H | H | OH | OCH3 |
3 | H | OCH3 | OH | H | H | H | OH | OCH3 |
4 | H | OCH3 | OCH3 | H | H | H | OCH3 | OH |
5 | H | OH | OH | H | H | H | H | OCH3 |
6 | H | OH | OCH3 | H | H | H | H | OH |
7 | H | OH | H | OH | H | H | OH | OCH3 |
9 | OH | OH | OH | OH | H | H | OH | OCH3 |
10 | H | OH | H | Cl | H | H | H | H |
11 | H | OH | H | Cl | H | H | H | OCH3 |
12 | H | OCH3 | OH | H | H | H | H | OCH3 |
20 | H | OH | OCH3 | H | H | H | H | OCH3 |
21 | H | OH | H | H | H | H | OCH3 | OCH3 |
22 | H | OH | H | OH | H | H | H | OCH3 |
23 | H | OH | H | Cl | H | H | OH | OCH3 |
24 | OCH3 | OH | H | H | H | H | OH | OCH3 |
25 | H | OCH3 | OCH3 | H | α-OH | H | H | H |
26 | H | OCH3 | OCH3 | H | β-OH | H | H | H |
27 | H | OCH3 | H | H | H | H | OH | OCH3 |
28 | OH | OCH3 | H | H | H | H | OH | OCH3 |
40 | H | OH | OCH3 | H | H | H | OCH3 | OH |
41 | H | OCH3 | H | H | H | H | H | OH |
42 | H | OH | H | H | H | H | OH | OCH3 |
43 | OH | H | OCH3 | H | H | H | H | OCH3 |
44 | OH | OCH3 | H | OH | H | H | H | H |
46 | H | OCH3 | H | H | H | OH | OH | OH |
47 | OH | OCH3 | OCH3 | H | H | H | H | OCH3 |
81 | H | OCH3 | OH | H | H | H | H | H |
82 | H | H | H | H | H | H | OH | OCH3 |
83 | H | H | H | H | H | H | OCH3 | OH |
84 | H | H | H | H | H | OH | H | OCH3 |
85 | H | H | H | H | H | H | H | OH |
86 | H | H | H | H | H | H | OH | H |
87 | H | H | H | H | H | OH | H | H |
88 | H | H | H | H | OH | H | H | H |
NO. | R1 | R2 | R3 | R4 | R5 | R6 |
---|---|---|---|---|---|---|
16 | α-OH | β-OH | β-OH | α-Cl | H | OCH3 |
17 | α-OH | β-OH | β-OH | α-Cl | OH | OCH3 |
18 | α-OH | α-OH | β-OH | H | H | H |
19 | α-OH | α-OH | β-OH | H | H | OCH3 |
34 | α-OH | α-OH | α-OH | β-OH | OH | OCH3 |
35 | α-OH | α-OH | α-OH | β-OH | H | H |
36 | α-OH | α-OH | α-OH | β-OH | H | OCH3 |
37 | α-OH | β-OH | α-OH | β-OH | OH | OCH3 |
38 | α-OH | β-OH | β-OH | α-OH | OH | OCH3 |
39 | α-OH | β-OH | β-OH | α-OH | H | OH |
48 | β-OH | β-OH | β-OH | α-Cl | H | OCH3 |
49 | α-OH | α-OH | α-OH | α-Cl | H | H |
50 | β-OH | β-OH | β-OH | β-Cl | H | OCH3 |
51 | β-OH | β-OH | β-OH | H | OCH3 | OH |
68 | α-OCH3 | β-OH | β-OH | α-OH | H | OCH3 |
69 | β-OCH3 | α-OH | α-OH | β-OH | H | OCH3 |
70 | α-OCH3 | β-OH | β-OH | α-OH | OH | OCH3 |
71 | α-OCH3 | β-OH | β-OH | α-Cl | H | OCH3 |
72 | α-OH | β-OH | β-OH | α-Cl | H | OCH3 |
73 | α-OCH3 | α-OH | α-OH | β-OH | H | OCH3 |
74 | β-OCH3 | β-OH | β-OH | α-OH | H | OCH3 |
75 | α-OCH3 | α-OH | α-OH | β-OH | OH | OCH3 |
76 | α-OCH3 | α-OH | α-OH | β-Cl | H | OCH3 |
77 | α-OCH3 | α-OH | α-OH | β-Cl | OH | OCH3 |
No. | Compound Class and Name | Source or Origin | Extraction * | Ref. |
---|---|---|---|---|
2-(2-Phenylethyl)chromones | ||||
1 | 7-Hydroxy-6-methoxy-2-[2-(3′-hydroxy-4′-ethoxyphenyl)ethyl]chromone | A. sinensis (China) | EtOH | [16] |
2 | 6,7-Dimethoxy-2-[2-(4′-hydroxy-3′-methoxyphenyl) ethyl]chromone | A. sinensis (China) | EtOH | [16] |
3 | 6,7-Dihydroxy-2-[2-(4′-methoxyphenyl)ethyl]chromone | A. sinensis (China) | EtOH | [16] |
4 | 6-Hydroxy-7-methoxy-2-[2-(4′-hydroxyphenyl)ethyl]chromone | A. sinensis (China) | EtOH | [16] |
5 | 6,8-Dihydroxy-2-[2-(3′-hydroxy4′-methoxyphenyl)ethyl]chromone | A. sinensis (China) | EtOH | [16] |
6 | 6-Hydroxy-2-[2-(4′-hydroxy-3′-methoxyphenyl)ethenyl]chromone | A. sinensis (China) | EtOH | [16] |
7 | 6-Hydroxy-7-methoxy2-[2-(3′-hydroxy-4′-methoxyphenyl)ethyl]chromone | A. sinensis (China) | EtOH | [16] |
8 | 6,7-Dimethoxy-2-[2-(3′-hydroxy-4′-xyphenyl)ethyl]chromone | A. sinensis (China) | EtOH | [16] |
9 | 5,6,7,8-Tetrahydroxy-2-(3-hydroxy-4-methoxyphenethyl)-5,6,7,8-tetrahydro-4H-chromen-4-one | A. sinensis (China) | EtOH–H2O | [17] |
10 | 8-Chloro-6-hydroxy-2-(2-phenylethyl)chromen-4-one | A. sinensis (China) | EtOH–EtOAc | [18] |
11 | 8-Chloro-6-hydroxy-2-[2-(4-methoxyphenyl)ethyl]chromen-4-one | A. sinensis (China) | EtOH–EtOAc | [18] |
12 | Rel-(5R,6S,7R)-5,6,7,8-Tetrahydro-5,6,7-trihydroxy-2-(2-phenylethyl)-4H-1-benzopyran-4-one | A. malaccensis (Laos) | EtOH–n-BuOH | [19] |
13 | Rel-(5R,6S,7R)-5,6,7,8-Tetrahydro-5,6,7-trihydroxy-2-[2-(4-methoxyphenyl)ethyl]-4H-1-benzopyran4-one | A. malaccensis (Laos) | EtOH–n-BuOH | [19] |
14 | 7-Hydroxy-6-methoxy-2-[2-(4-methoxyphenyl)ethyl]-4H-1-benzopyran-4-one | A. malaccensis (Laos) | EtOH–n-BuOH | [19] |
15 | Rel-(1aR,2R,3R,7bS)-1α,2,3,7β-Tetrahydro-2,3-dihydroxy-5-[2-(4-methoxyphenyl)ethyl]-7H-oxireno[f] [1]benzopyran-7-one | A. malaccensis (Laos) | EtOH–n-BuOH | [19] |
16 | Rel-(1aR,2R,3R,7bS)-1α,2,3,7β-Tetrahydro-2,3-dihydroxy-5-(2-phenylethyl)-7H-oxireno[f] [1]benzopyran-7-one | A. malaccensis (Laos) | EtOH–n-BuOH | [19] |
17 | Rel-(1aR,2R,3R,7bS)-1α,2,3,7β-Tetrahydro-2,3-dihydroxy-5-[2-(3-hydroxy-4-methoxyphenyl)ethyl]-7H-oxireno[f] [1]benzopyran-7-one | A. malaccensis (Laos) | EtOH–n-BuOH | [19] |
18 | Rel-(5R,6S,7S,8R)-8-Chloro-5,6,7,8-tetrahydro-5,6,7-trihydroxy-2-[2-(4-methoxyphenyl)ethyl]-4H-1-benzopyran-4-one | A. malaccensis (Laos) | EtOH–n-BuOH | [19] |
19 | Rel-(5R,6S,7S,8R)-8-Chloro-5,6,7,8-tetrahydro-5,6,7-trihydroxy-2-[2-(3-hydroxy-4-methoxyphenyl)ethyl]-4H-1-benzopyran-4-one | A. malaccensis (Laos) | EtOH–n-BuOH | [19] |
20 | 6-Hydroxy-7-methoxy-2-[2-(4-methoxyphenyl)ethyl]chromone | A. sinensis (China) | EtOH–EtOAc | [20] |
21 | 6-Hydroxy-2-[2-(3,4-dimethoxyphenyl)ethyl]chromone | A. sinensis (China) | EtOH–EtOAc | [20] |
22 | 6,8-Dihydroxy-2-[2-(4-methoxyphenyl)ethyl]chromone | A. sinensis (China) | EtOH–EtOAc | [20] |
23 | 8-Chloro-6-hydroxy-2-[2-(3-methoxy-4-hydroxyphenyl)ethyl]chromone | A. sinensis (China) | EtOH–EtOAc | [20] |
24 | 5-Methoxy-6-hydroxy-2-[2-(3-methoxy-4-hydroxyphenyl)ethyl]chromone | A. sinensis (China) | EtOH–EtOAc | [20] |
25 | (R)-6,7-Dimethoxy-2-(2-hydroxy-2-phenylethyl)chromone | A. sinensis (China) | EtOH–EtOAc | [20] |
26 | (S)-6,7-Dimethoxy-2-(2-hydroxy-2-phenylethyl)chromone | A. sinensis (China) | EtOH–EtOAc | [20] |
27 | 6-Methoxy-2-[2-(3-hydroxy-4-methoxyphenyl)ethyl]chromone | A. sinensis (China) | EtOH–EtOAc | [8] |
28 | 5-Hydroxy-6-methoxy-2-[2-(3-hydroxy-4-methoxyphenyl)ethyl]chromone | A. sinensis (China) | EtOH–EtOAc | [8] |
29 | 5,6-Epoxy-7β-hydroxy-8β-methoxy-2-(2-phenylethyl)chromone | A. sinensis (China) | EtOH–EtOAc | [8] |
30 | (5S,6R,7S,8R)-2-[2-(4-Methoxyphenyl)ethyl]-5,6,7-trihydroxy-5,6,7,8-tetrahydro-8-{6-methoxy-2-[2-(3‴-methoxy-4‴-hydroxypheny)ethyl]chromonyl-7-oxy}chromone | A. sinensis (China) | EtOH–EtOAc | [21] |
31 | (5S,6R,7S,8R)-2-[2-(4-Methoxyphenyl)ethyl]-5,6,7-trihydroxy-5,6,7,8-Tetrahydro-8-{2-[2-(4‴-methoxyphenyl)ethyl]chromonyl-6-oxy}chromone | A. sinensis (China) | EtOH–EtOAc | [21] |
32 | (5S,6R,7S,8R)-2-(2-Phenylethyl)-5,6,7-trihydroxy-5,6,7,8-tetrahydro-8-[2-(2-phenylethyl)chromonyl-6-oxy]chromone | A. sinensis (China) | EtOH–EtOAc | [21] |
33 | (5R,6R,7R,8S)-2-(2-Phenylethyl)-5,6,7-trihydroxy-5,6,7,8-tetrahydro-8-[2-(2-phenylethyl)chromonyl-6-oxy]chromone | A. sinensis (China) | EtOH–EtOAc | [21] |
34 | Aquilarone A | A. sinensis (China) | EtOH–CHCl3 | [22] |
35 | Aquilarone B | A. sinensis (China) | EtOH–CHCl3 | [22] |
36 | Aquilarone C | A. sinensis (China) | EtOH–CHCl3 | [22] |
37 | Aquilarone D | A. sinensis (China) | EtOH–CHCl3 | [22] |
38 | Aquilarone E | A. sinensis (China) | EtOH–CHCl3 | [22] |
39 | Aquilarone F | A. sinensis (China) | EtOH–CHCl3 | [22] |
40 | Aquilarone G | A. sinensis (China) | EtOH–CHCl3 | [22] |
41 | Aquilarone H | A. sinensis (China) | EtOH–CHCl3 | [22] |
42 | Aquilarone I | A. sinensis (China) | EtOH–CHCl3 | [22] |
43 | 5-Hydroxy-7-methoxy-2-[2-(4-methoxyphenyl)ethyl]chromone | A. sinensis (China) | EtOH–CH2Cl2 | [23] |
44 | 5,8-Dihydroxy-6-methoxy-2-(2-phenylethyl)chromone | A. sinensis (China) | EtOH–CH2Cl2 | [23] |
45 | 5α,6α-Epoxy-7β,8α,30-trihydroxy-40-methoxy-2-(2-phenylethyl)chromone | A. sinensis (China) | EtOH–CH2Cl2 | [23] |
46 | 6-Methoxy-2-[2-(20,30,40-trihydroxy)phenyl)ethyl]chromone | A. sinensis (China) | EtOH–CH2Cl2 | [23] |
47 | 5-Hydroxy-6,7-dimethoxy-2-[2-(4′-methoxyphenyl)ethyl]chromone | A. sinensis (China) | EtOH–EtOAc | [24] |
48 | (5R,6R,7R,8S)-8-Chloro-5,6,7-trihydroxy-2-(4-methoxyphenethyl)-5,6,7,8-tetrahydrochromone | A. sinensis (China) | EtOH–EtOAc | [24] |
49 | (5S,6S,7S,8S)-8-Chloro-5,6,7-trihydroxy-2-(2-phenylethyl)-5,6,7,8-tetrahydrochromone | A. sinensis (China) | EtOH–EtOAc | [24] |
50 | (5R,6R,7R,8R)-8-Chloro-5,6,7-trihydroxy-2-(4-methoxyphenethyl)-5,6,7,8-tetrahydrochromone | A. sinensis (China) | EtOH–EtOAc | [24] |
51 | (5R,6S,7S)-5,6,7-Trihydroxy-2-(4-hydroxy-3-methoxyphenethyl)-5,6,7,8-tetrahydrochromone | A. sinensis (China) | EtOH–EtOAc | [24] |
52 | (5S,6R,7S,8R) Aquisinenone A | A. sinensis (China) | EtOH–EtOAc | [25] |
53 | (5R,6S,7R,8S) Aquisinenone A | A. sinensis (China) | EtOH–EtOAc | [25] |
54 | (−)-4′-Methoxyaquisinenone A | A. sinensis (China) | EtOH–EtOAc | [25] |
55 | (5R,6S,7R,8S) Aquisinenone B | A. sinensis (China) | EtOH–EtOAc | [25] |
56 | (5S,6R,7S,8R)Aquisinenone B | A. sinensis (China) | EtOH–EtOAc | [25] |
57 | (−)-6″-Hydroxyaquisinenone B | A. sinensis (China) | EtOH–EtOAc | [25] |
58 | (+)-6″-Hydroxy-4′,4‴-dimethoxyaquisinenone B | A. sinensis (China) | EtOH–EtOAc | [25] |
59 | (5R,6S,7R,8S)Aquisinenone C | A. sinensis (China) | EtOH–EtOAc | [25] |
60 | (5S,6R,7S,8R)Aquisinenone C | A. sinensis (China) | EtOH–EtOAc | [25] |
61 | (−)-Aquisinenone D | A. sinensis (China) | EtOH–EtOAc | [25] |
62 | (5R,6S,7R,8S)4′-Demethoxyaquisinenone D | A. sinensis (China) | EtOH–EtOAc | [25] |
63 | (5S,6R,7S,8R)4′-Demethoxyaquisinenone D | A. sinensis (China) | EtOH–EtOAc | [25] |
64 | (+)-Aquisinenone E | A. sinensis (China) | EtOH–EtOAc | [25] |
65 | (−)-Aquisinenone F | A. sinensis (China) | EtOH–EtOAc | [25] |
66 | (−)-Aquisinenone G | A. sinensis (China) | EtOH–EtOAc | [25] |
67 | (+)-4′-Methoxyaquisinenone G | A. sinensis (China) | EtOH–EtOAc | [25] |
68 | Tetrahydrochromone A | A. sinensis (China) | EtOH–EtOAc | [26] |
69 | Tetrahydrochromone B | A. sinensis (China) | EtOH–EtOAc | [26] |
70 | Tetrahydrochromone C | A. sinensis (China) | EtOH–EtOAc | [26] |
71 | Tetrahydrochromone D | A. sinensis (China) | EtOH–EtOAc | [26] |
72 | Tetrahydrochromone E | A. sinensis (China) | EtOH–EtOAc | [26] |
73 | Tetrahydrochromone F | A. sinensis (China) | EtOH–EtOAc | [26] |
74 | Tetrahydrochromone G | A. sinensis (China) | EtOH–EtOAc | [26] |
75 | Tetrahydrochromone H | A. sinensis (China) | EtOH–EtOAc | [26] |
76 | Tetrahydrochromone I | A. sinensis (China) | EtOH–EtOAc | [26] |
77 | Tetrahydrochromone J | A. sinensis (China) | EtOH–EtOAc | [26] |
78 | Tetrahydrochromone K | A. sinensis (China) | EtOH–EtOAc | [26] |
79 | Tetrahydrochromone L | A. sinensis (China) | EtOH–EtOAc | [26] |
80 | Tetrahydrochromone M | A. sinensis (China) | EtOH–EtOAc | [26] |
81 | 7-Hydroxyl-6-methoxy-2-(2-phenylethyl)chromone | A. sinensis (China) | EtOH–EtOAc | [27] |
82 | Qinanone A | A. sinensis (China) | EtOH–Et2O | [28] |
83 | Qinanone B | A. sinensis (China) | EtOH–Et2O | [28] |
84 | Qinanone C | A. sinensis (China) | EtOH–Et2O | [28] |
85 | Qinanone D | A. sinensis (China) | EtOH–Et2O | [28] |
86 | Qinanone E | A. sinensis (China) | EtOH–Et2O | [28] |
87 | Qinanone G | A.sinensis (China) | EtOH–Et2O | [28] |
88 | 2-(2-Hydroxy-2-phenylethyl)-4H-chromen-4-one | A. filaria (Japan) | EtOH–MeOH | [29] |
Terpenoids | ||||
89 | (+)-9β-Hydroxyeudesma-4,11(13)-dien-12-al | A.sinensis (China) | EtOH–petroleum ether | [30] |
90 | (+)-Eudesma-4,11(13)-dien-8α,9β-diol | A.sinensis (China) | EtOH–petroleum ether | [30] |
91 | (+)-8α-Hydroxyeudesma-3,11(13)-dien-14-al | A.sinensis (China) | EtOH–petroleum ether | [30] |
92 | (+)-Eudesma-3,11(13)-dien-8α,9β-diol | A.sinensis (China) | EtOH–petroleum ether | [30] |
93 | (+)-Eudesma-4(14),11(13)-dien-8α,9β-diol | A.sinensis (China) | EtOH–petroleum ether | [30] |
94 | (4R,5R,7S,9S,10S)-(−)-Eudesma-11(13)-en-4,9-diol | A.sinensis (China) | EtOH–petroleum ether | [30] |
95 | (+)-9β,10β-Epoxyeremophila-11(13)-en | A.sinensis (China) | EtOH–petroleum ether | [30] |
96 | (+)-11-Hydroxyvalenc-1(10),8-dien-2-one | A.sinensis (China) | EtOH–petroleum ether | [30] |
97 | (−)-Eremophila-9-en-8β,11-diol | A.sinensis (China) | EtOH–petroleum ether | [30] |
98 | 1,10-Dioxo-4H-5H-7H-11H-1,10-secoguaia-2(3)-en-12,8-olide | A. sinensis (China) | EtOH | [31] |
99 | 1-Hydroxy-4H-5H-7H-11H-8,9-secoguaia-9(10)-en-8,12-olide | A. sinensis (China) | EtOH | [31] |
100 | 1-Hydroxy-4α,10α-dimethyl-5H-octahydro-azulen-8-one | A. sinensis (China) | EtOH | [31] |
101 | 1α-Hydroxy-4α,10α-dimethyl-5βH-octahydro-azulen-8-one | A. sinensis (China) | EtOH | [31] |
102 | 4-Hydroxyl-baimuxinol | A. sinensis (China) | EtOH–Et2O | [32] |
103 | 7β-H-9(10)-ene-11,12-Epoxy-8-oxoeremophilane | A. sinensis (China) | EtOH–Et2O | [32] |
104 | 7α-H-9(10)-ene-11,12-Epoxy-8-oxoeremophilane | A. sinensis (China) | EtOH–Et2O | [32] |
105 | (5S,7S,9S,10S)-(+)-9-Hydroxy-selina-3,11-dien-12-al | A. sinensis (China) | EtOH–EtOAc | [33] |
106 | (5S,7S,9S,10S)-(−)-9-Hydroxy-selina-3,11-dien-14-al | A. sinensis (China) | EtOH–EtOAc | [33] |
107 | (5S,7S,9S,10S)-(+)-9-Hydroxy-eudesma-3,11(13)-dien-12-methyl ester | A. sinensis (China) | EtOH–EtOAc | [33] |
108 | (7S,9S,10S)-(+)-9-Hydroxy-selina-4,11-dien-14-al | A. sinensis (China) | EtOH–EtOAc | [33] |
109 | (7S,8S,10S)-(+)-8,12-Dihydroxy-selina-4,11-dien-14-al | A. sinensis (China) | EtOH–EtOAc | [33] |
110 | Qinanol A | A. sinensis (China) | EtOH–Et2O | [34] |
111 | Qinanol B | A. sinensis (China) | EtOH–Et2O | [34] |
112 | Qinanol C | A. sinensis (China) | EtOH–Et2O | [34] |
113 | Qinanol D | A. sinensis (China) | EtOH–Et2O | [34] |
114 | Qinanol E | A. sinensis (China) | EtOH–Et2O | [34] |
115 | Qinanol F | A. sinensis (China) | EtOH–Et2O | [34] |
116 | 3-oxo-7-Hydroxylholosericin A | A. sinensis (China) | EtOH–EtOAc | [35] |
117 | 1,5,8,12-Diepoxy-guaia-12-one | A. sinensis (China) | EtOH–EtOAc | [35] |
118 | (+)-8β-Hydroxy-longicamphenylone | A. sinensis (China) | EtOH–petroleum ether | [37] |
119 | 11β-Hydroxy-13-isopropyl-dihydrodehydrocostus lactone | A. sinensis (China) | EtOH–petroleum ether | [37] |
120 | Aquilarabietic acid A | A. sinensis (China) | EtOH | [38] |
121 | Aquilarabietic acid B | A. sinensis (China) | EtOH | [38] |
122 | Aquilarabietic acid C | A. sinensis (China) | EtOH | [38] |
123 | Aquilarabietic acid D | A. sinensis (China) | EtOH | [38] |
124 | Aquilarabietic acid E | A. sinensis (China) | EtOH | [38] |
125 | Aquilarabietic acid F | A. sinensis (China) | EtOH | [38] |
126 | Aquilarabietic acid G | A. sinensis (China) | EtOH | [38] |
127 | Aquilarabietic acid H | A. sinensis (China) | EtOH | [38] |
128 | Aquilarabietic acid I | A. sinensis (China) | EtOH | [38] |
129 | Aquilarabietic acid J | A. sinensis (China) | EtOH | [38] |
130 | Aquilarabietic acid K | A. sinensis (China) | EtOH | [38] |
131 | Aquilarin B | A. sinensis (China) | EtOH–EtOAc | [39] |
132 | Aquilanol A | A. malaccensis (Laos) | EtOH–Et2O | [36] |
133 | Aquilanol B | A. malaccensis (Laos) | EtOH–Et2O | [36] |
134 | Daphnauranol D | A. malaccensis (Laos) | EtOH–Et2O | [36] |
135 | Chamaejasmone E | A. malaccensis (Laos) | EtOH–Et2O | [36] |
136 | Aquilacallane A | A. sinensis (China) | EtOH–EtOAc | [40] |
137 | Aquilacallane B | A. sinensis (China) | EtOH–EtOAc | [40] |
138 | Aquimavitalin | A. malaccensis (Taiwan) | EtOH–EtOAc | [41] |
139 | 12-O-(2′E,4′E)-6-oxohexa-2′,4′-Dienoylphorbol-13-acetate | A. malaccensis (Taiwan) | EtOH–EtOAc | [42] |
140 | 12-Deoxy-13-O-acetylphorbol-20-(9′Z)-octadecenoate | A. malaccensis (Taiwan) | EtOH–EtOAc | [42] |
141 | 12-O-(2′E,4′E)-6′,7′-(erythro)-dihydroxytetradeca-2′,4′-dienoylphorbol-13-acetate. | A. malaccensis (Taiwan) | EtOH–EtOAc | [42] |
142 | 12-O-(2′E,4′E)-6′,7′-(threo)-dihydroxytetradeca-2′,4′-dienoylphorbol-13-acetate. | A. malaccensis (Taiwan) | EtOH–EtOAc | [42] |
Flavonoids | ||||
143 | 4′-O-Geranyltricin | A. sinensis (Taiwan) | EtOH–EtOAc | [27] |
144 | 3′-O-Geranylpolloin | A. sinensis (Taiwan) | EtOH–EtOAc | [27] |
145 | Aquisiflavoside | A. sinensis (China) | EtOH–n-BuOH | [43] |
146 | Aquilarisinin | A. sinensis (China) | EtOH–n-BuOH and EtOAc | [44] |
147 | Aquilarisin | A. sinensis (China) | EtOH–n-BuOH and EtOAc | [44] |
148 | Aquilarixanthone | A. sinensis (China) | EtOH–n-BuOH and EtOAc | [44] |
149 | Hypolaetin 5-O-β-D-glucuronopyranoside | A. sinensis (China) | EtOH–n-BuOH and EtOAc | [44] |
150 | 7-β-D-Glucoside of 5-O-methylapigenin | A. sinensis (China) | EtOH–n-BuOH | [45] |
Others | ||||
151 | Aquilarinoside A | A. sinensis (China) | EtOH–n-BuOH | [45] |
152 | Aquilarin A | A. sinensis (China) | EtOH–EtOAc | [46] |
153 | (9S) Megastigma-4,7-diene-2,3,9-triol-9-O-β-D-glucopyranoside | A. sinensis (China) | EtOH–n-BuOH | [47] |
154 | (9S) Megastigma-4(13),7-diene-3,6,9-triol-9-O-β-D-glucopyranoside | A. sinensis (China) | EtOH–n-BuOH | [47] |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, S.; Yu, Z.; Wang, C.; Wu, C.; Guo, P.; Wei, J. Chemical Constituents and Pharmacological Activity of Agarwood and Aquilaria Plants. Molecules 2018, 23, 342. https://doi.org/10.3390/molecules23020342
Wang S, Yu Z, Wang C, Wu C, Guo P, Wei J. Chemical Constituents and Pharmacological Activity of Agarwood and Aquilaria Plants. Molecules. 2018; 23(2):342. https://doi.org/10.3390/molecules23020342
Chicago/Turabian StyleWang, Shuai, Zhangxin Yu, Canhong Wang, Chongming Wu, Peng Guo, and Jianhe Wei. 2018. "Chemical Constituents and Pharmacological Activity of Agarwood and Aquilaria Plants" Molecules 23, no. 2: 342. https://doi.org/10.3390/molecules23020342
APA StyleWang, S., Yu, Z., Wang, C., Wu, C., Guo, P., & Wei, J. (2018). Chemical Constituents and Pharmacological Activity of Agarwood and Aquilaria Plants. Molecules, 23(2), 342. https://doi.org/10.3390/molecules23020342