Antioxidation and Cytoprotection of Acteoside and Its Derivatives: Comparison and Mechanistic Chemistry
Abstract
:1. Introduction
2. Results
2.1. Metal-Reducing Assays (FRAP & CUPRAC)
2.2. PTIO•-Scavenging Assay
2.3. ABTS+•-Scavenging and DPPH•-Scavenging Assays
2.4. UPLC−ESI−Q−TOF−MS/MS Analysis of DPPH• Reaction Products
2.5. UV-Vis-Spectra Analysis of Fe2+-Chelating Products
2.6. Pyrogallol Autooxidation Assay for Superoxide Anion (•O2−) Scavenging
2.7. Cytoprotective Effect towards Oxidatively Stressed bmMSCs (MTT Assay)
3. Discussion
4. Materials and Methods
4.1. Chemicals and Animals
4.2. Metal-Reducing Assays (FRAP & CUPRAC)
4.3. PTIO•-Scavenging Assay
4.4. ABTS+•-Scavenging and DPPH•-Scavenging Assays
4.5. UPLC−ESI−Q−TOF−MS/MS Analysis of DPPH• Reaction Products
4.6. UV-Vis-Spectra Analysis of Fe2+-Chelating Products
4.7. Pyrogallol Autooxidation Assay for Superoxide Anion (•O2−) Scavenging
4.8. Cytoprotective Effect Towards Oxidatively Stressed bmMSCs (MTT Assay)
4.9. Statistical Analysis
5. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
Abbreviations
ABTS+• | 2,2′-azino-bis (3-ethylbenzo-thiazoline-6-sulfonic acid) radical |
bmMSCs | bone marrow-derived mesenchymal stem cells |
CUPRAC | cupric reducing antioxidant capacity |
dAMP | 2’-deoxyadenosine-5’-monophosphate radical |
DMEM | Dulbecco’s modified Eagle’s medium |
dGMP | 2’-deoxyguanosine-5’-monophosphate radical |
DPPH• | 1,1-diphenyl-2-picryl-hydrazl radical |
ET | electron transfer; FBS: Fetal bovine serum |
FRAP | ferric ion reducing antioxidant power; |
HAT | hydrogen atom transfer |
MTT | 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl |
PCET | proton-coupled electron transfer |
PTIO• | 2-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl 3-oxide radical |
RAF | radical adduct formation |
ROS | reactive oxygen species |
SCNT | somatic cell nuclear transfer |
SEPT | sequential electron proton transfer |
SPLET | sequential proton loss single electron transfer |
TPTZ | 2,4,6-tripyridyl triazine |
Trolox | (±)-6-hydroxyl-2,5,7,8-tetramethlychromane-2-carboxylic acid |
References
- Kubica, P.; Szopa, A.; Ekiert, H. Production of verbascoside and phenolic acids in biomass of Verbena officinalis L. (vervain) cultured under different in vitro conditions. Nat. Prod. Res. 2017, 31, 1663–1668. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.H.; Chun, J.L.; Kim, K.J.; Kim, E.Y.; Kim, D.H.; Lee, B.M.; Han, K.W.; Park, K.S.; Lee, K.B.; Kim, M.K. Effect of Acteoside as a Cell Protector to Produce a Cloned Dog. PLoS ONE 2016, 11, e0159330. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.Q.; Xu, Y.X.; Yan, J.; Zhao, X.Y.; Sun, X.B.; Zhang, Y.P.; Guo, J.C.; Zhu, C.Q. Acteoside Protects Human Neuroblastoma SH-SY5Y Cells against β-amyloid-induced Cell Injury. Brain Res. 2009, 1283, 139–147. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.H.; Yan, Y.; Liu, H.B.; Wang, J.H.; Hu, J.P. Protective Effects of Acteoside against X-ray-Induced Damage in Human Skin Fibroblasts. Mol. Med. Rep. 2015, 12, 2301–2306. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.H.; Liu, T.S.; Luo, C.Q.; Zhang, J.; Zeng, X.Y.; Cui, L.; Xie, L.J. Determination of forsythiaside B and poliumoside in different origin and parts from Callicarpa kwangtungensis. Zhongguo Zhong Yao Za Zhi 2013, 38, 3324–3326. [Google Scholar] [PubMed]
- Jiang, W.L.; Tian, J.W.; Fu, F.H.; Zhu, H.B.; Hou, J. Neuroprotective Efficacy and Therapeutic Window of Forsythoside B: In a Rat Model of Cerebral Ischemia and Reperfusion Injury. Eur. J. Pharmacol. 2010, 640, 75–81. [Google Scholar] [CrossRef] [PubMed]
- Pan, N.; Hori, H. Antioxidant Action of Acteoside and Its Analogs on Lipid Peroxidation. Redox Rep. 1996, 2, 149–154. [Google Scholar] [CrossRef] [PubMed]
- Zheng, R.L.; Shi, Y.M.; Jia, Z.J.; Zhao, C.Y.; Zhang, Q.; Tan, X.R. Fast Repair of DNA Radicals. Chem. Soc. Rev. 2010, 39, 2827–2834. [Google Scholar] [CrossRef] [PubMed]
- Li, X.C.; Mai, W.Q.; Chen, D.F. Chemical Study on Protective Effect Against Hydroxyl-induced DNA Damage and Antioxidant Mechanism of Myricitrin. J. Chin. Chem. Soc. 2014, 61, 383–390. [Google Scholar] [CrossRef]
- Shi, Y.M.; Wang, W.F.; Huang, C.Y.; Jia, Z.J.; Yao, S.; Zheng, R.L. Fast Repair of Oxidative DNA Damage by Phenylpropanoid Glycosides and Their Analogues. Mutagenesis 2008, 23, 19–26. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Q.; Li, X.C.; Tian, Y.G.; Lin, Q.Q.; Xie, H.; Lu, W.B.; Chi, Y.G.; Chen, D.F. Lyophilized Aqueous Extracts of Mori Fructus and Mori Ramulus Protect Mesenchymal Stem Cells from •OH-Treated Damage: Bioassay and Antioxidant Mechanism. BMC Complement. Altern. Med. 2017, 17, 242. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.T.; Zeng, G.C.; Li, X.C.; Zeng, H.P. In Vitro Studies on the Antioxidant and Protective Effect of 2-Substituted-8-Hydroxyquinoline Derivatives Against H2O2-Induced Oxidative Stress in BMSCs. Chem. Biol. Drug Des. 2010, 75, 214–222. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.J.; Li, X.C.; Lin, J.; Li, Y.R.; Wang, T.T.; Jiang, Q.; Chen, D.F. Sarcandra Glabra (Caoshanhu) Protects Mesenchymal Stem Cells from Oxidative Stress: A Bioevaluation and Mechanistic Chemistry. BMC Complement. Altern. Med. 2016, 16, 423. [Google Scholar] [CrossRef] [PubMed]
- Li, X.C.; Han, L.; Li, Y.R.; Zhang, J.; Chen, J.M.; Lu, W.B.; Zhao, X.J.; Lai, Y.T.; Chen, D.F.; Wei, G. Protective Effect of Sinapine against Hydroxyl Radical-Induced Damage to Mesenchymal Stem Cells and Possible Mechanisms. Chem. Pharm. Bull. 2016, 64, 319–325. [Google Scholar] [CrossRef] [PubMed]
- Bertolo, A.; Capossela, S.; Frankl, G.; Baur, M.; Potzel, T.; Stoyanov, J. Oxidative Status Predicts Quality in Human Mesenchymal Stem Cells. Stem Cell Res. Ther. 2017, 8, 3. [Google Scholar] [CrossRef] [PubMed]
- Li, X.C. 2-Phenyl-4,4,5,5-Tetramethylimidazoline-1-oxyl 3-Oxide (PTIO•) Radical Scavenging: A New and Simple Antioxidant Assay In Vitro. J. Agric. Food Chem. 2017, 65, 6288–6297. [Google Scholar] [CrossRef] [PubMed]
- Li, X. Improved Pyrogallol Autoxidation Method: A Reliable and Cheap Superoxide-Scavenging Assay Suitable for All Antioxidants. J. Agric. Food Chem. 2012, 60, 6418–6424. [Google Scholar] [CrossRef] [PubMed]
- Li, X.C.; Jiang, Q.; Wang, T.T.; Liu, J.J.; Chen, D.F. Comparison of the Antioxidant Effects of Quercitrin and Isoquercitrin: Understanding the Role of the 6′′-OH Group. Molecules 2016, 21, 1246. [Google Scholar] [CrossRef] [PubMed]
- Leopoldini, M.; Marino, T.; Russo, N.; Toscano, M. Antioxidant Properties of Phenolic compounds: H-atom Versus Electron Transfer Mechanism. J. Phys. Chem. A 2004, 108, 4916–4922. [Google Scholar] [CrossRef]
- Benzie, I.F.F.; Strain, J.J. The Ferric Reducing Ability of Plasma (FRAP) as a Measure of “Antioxidant Power”: The FRAP assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef] [PubMed]
- Gulcin, I. Antioxidant Activity of Food Constituents: An Overview. Arch. Toxicol. 2012, 86, 345–391. [Google Scholar] [CrossRef] [PubMed]
- Goldstein, S.; Russo, A.; Samuni, A. Reactions of PTIO and Carboxy-PTIO with •NO, •NO2, and O2. J. Biol. Chem. 2003, 278, 50949–50955. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Han, W.J.; Mai, W.Q.; Wang, L. Antioxidant Activity and Mechanism of Tetrahydroamentoflavone in vitro. Nat. Prod. Commun. 2013, 8, 787–789. [Google Scholar]
- Zhang, H.Y.; Wu, W.; Mo, Y.R. Study of Proton-Coupled Electron Transfer (PCET) with Four Explicit Diabatic States at the ab Initio Level. Comput. Theor. Chem. 2017, 1116, 50–58. [Google Scholar] [CrossRef]
- Lin, J.; Li, X.C.; Chen, L.; Lu, W.Z.; Chen, X.W.; Han, L.; Chen, D.F. Protective Effect Against Hydroxyl Radical-induced DNA Damage and Antioxidant Mechanism of [6]-gingerol: A Chemical Study. Bull. Korean Chem. Soc. 2014, 35, 1633–1638. [Google Scholar] [CrossRef]
- Iuga, C.; Alvarez-Idaboy, J.R.; Russo, N. Antioxidant Activity of Trans-Resveratrol Toward Hydroxyl and Hydroperoxyl Radicals: A Quantum Chemical and Computational Kinetics Study. J. Org. Chem. 2012, 77, 3868–3877. [Google Scholar] [CrossRef] [PubMed]
- Li, X.C.; Hu, Q.P.; Jiang, S.X.; Li, F.; Lin, J.; Han, L.; Hong, Y.L.; Lu, W.B.; Gao, Y.X.; Chen, D.F. Flos Chrysanthemi Indici Protects against Hydroxyl-induced Damages to DNA and MSCs via Antioxidant Mechanism. J. Saudi Chem. Soc. 2015, 19, 454–460. [Google Scholar] [CrossRef]
- Amic, A.; Markovic, Z.; Markovic, J.M.D.; Stepanic, V.; Lucic, B.; Amic, D. Towards an Improved Prediction of the Free Radical Scavenging Potency of Flavonoids: The Significance of Double PCET Mechanisms. Food Chem. 2014, 152, 578–585. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.H.; Yoon, J.Y. UV Direct Photolysis of 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonate) (ABTS) in Aqueous Solution: Kinetics and Mechanism. J. Photochem. Photobiol. A 2008, 197, 232–238. [Google Scholar] [CrossRef]
- Aliaga, C.; Lissi, E.A. Reaction of 2,2′-Azinobis(3-Ethylbenzothiazoline-6-Sulfonic Acid (ABTS) Derived Radicals with Hydroperoxides. Kinetics and Mechanism. Int. J. Chem. Kinet. 1998, 30, 565–570. [Google Scholar] [CrossRef]
- Osman, A.M.; Wong, K.K.Y.; Fernyhough, A. ABTS Radical-Driven Oxidation of Polyphenols: Isolation and Structural Elucidation of Covalent Adducts. Biochem. Biophys. Res. Commun. 2006, 346, 321–329. [Google Scholar] [CrossRef] [PubMed]
- Osman, A.M. Multiple Pathways of the Reaction of 2,2-Diphenyl-1-Picrylhydrazyl Radical (DPPH•) with (+)-catechin: Evidence for the Formation of a Covalent Adduct between DPPH• and the Oxidized Form of the Polyphenol. Biochem. Biophys. Res. Commun. 2011, 412, 473–478. [Google Scholar] [CrossRef] [PubMed]
- Lopez-Munguia, A.; Hernandez-Romero, Y.; Pedraza-Chaverri, J.; Miranda-Molina, A.; Regla, I.; Martinez, A.; Castillo, E. Phenylpropanoid Glycoside Analogues: Enzymatic Synthesis, Antioxidant Activity and Theoretical Study of Their Free Radical Scavenger Mechanism. PLoS ONE 2011, 6, e20115. [Google Scholar] [CrossRef] [PubMed]
- Perron, N.R.; Brumaghim, J.L. A Review of the Antioxidant Mechanisms of Polyphenol Compounds Related to Iron Binding. Cell Biochem. Biophys. 2009, 53, 75–100. [Google Scholar] [CrossRef] [PubMed]
- Devos, D.; Moreau, C.; Devedjian, J.C.; Kluza, J.; Petrault, M.; Laloux, C.; Jonneaux, A.; Ryckewaert, G.; Garcon, G.; Rouaix, N.; et al. Targeting Chelatable Iron as a Therapeutic Modality in Parkinson’s Disease. Antioxid. Redox Signal. 2014, 21, 195–210. [Google Scholar] [CrossRef] [PubMed]
- Cekic, S.D.; Baskan, K.S.; Tutem, E.; Apak, R. Modified Cupric Reducing Antioxidant Capacity (CUPRAC) Assay for Measuring the Antioxidant Capacities of Thiol-containing Proteins in Admixture with Polyphenols. Talanta 2009, 79, 344–351. [Google Scholar] [CrossRef] [PubMed]
- Li, X.C.; Chen, D.F.; Mai, Y.; Wen, B.; Wang, X.Z. Concordance between Antioxidant Activities in vitro and Chemical Components of Radix Astragali (Huangqi). Nat. Prod. Res. 2012, 26, 1050–1053. [Google Scholar] [CrossRef] [PubMed]
- Chen, D.F.; Li, X.C.; Xu, Z.W.; Liu, X.B.; Du, S.H.; Li, H.; Zhou, J.H.; Zeng, H.P.; Hua, Z.C. Hexadecanoic Acid from Buzhong Yiqi Decoction Induced Proliferation of Bone Marrow Mesenchymal Stem Cells. J. Med. Food 2010, 13, 967–975. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Liu, J.J.; Lin, J.; Wang, T.T.; Huang, J.Y.; Lin, Y.Q.; Chen, D.F. Protective Effects of Dihydromyricetin against •OH-Induced Mesenchymal Stem Cells Damage and Mechanistic Chemistry. Molecules 2016, 21, 604. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.R.; Li, X.C.; Zeng, H.P. Synthesis, Antioxidation Activity of (E)-9-p-Tolyl-3-2-(8-hydroxy-quinol-2-yl)vinyl-carbazole and (E)-9-(p-Anisyl)-3-2-(8-hydroxy-quinol-2-yl)vinyl-carbazole and Their Induction Proliferation of Mesenchymal Stem Cells. Acta Chim. Sin. 2009, 67, 974–982. [Google Scholar]
- Li, X.; Wei, G.; Wang, X.; Liu, D.; Deng, R.; Li, H.; Zhou, J.; Li, Y.; Zeng, H.; Chen, D. Targeting of the Shh Pathway by atractylenolides promotes chondrogenic differentiation of mesenchymal stem Cells. Biol. Pharm. Bull. 2012, 35, 1328–1335. [Google Scholar] [CrossRef]
- Li, X.C.; Gao, Y.X.; Li, F.; Liang, A.F.; Xu, Z.M.; Bai, Y.; Mai, W.Q.; Han, L.; Chen, D.F. Maclurin protects against hydroxyl radical-induced damages to mesenchymal stem cells: Antioxidant evaluation and mechanistic insight. Chem. Biol. Interact. 2014, 219, 221–228. [Google Scholar] [CrossRef] [PubMed]
Sample Availability: Sample of the compound poliumoside is available from the authors. |
Assays | Acteoside μM | Forsythoside B μM | Poliumoside μM | Trolox μM |
---|---|---|---|---|
FRAP | 5.4 ± 0.6 a | 7.7 ± 0.2 c | 8.1 ± 0.2 d | 6.8 ± 0.4 b |
CUPRAC | 4.8 ± 0.4 a | 6.1 ± 0.5 b | 6.5 ± 0.3 c | 7.8 ± 0.2 d |
PTIO•-scavenging (pH 4.5) | 247.3 ± 21.2 b,B | 352.2 ± 20.8 c,B | 219.5 ± 10.4 b,B | 164.0 ± 7.5 a |
PTIO•-scavenging (pH 7.4) | 120.8 ± 2.5 a,A | 125.5 ± 6.5 b,A | 127.2 ± 2.1 c,A | 223.7 ± 6.5 d |
ABTS+•-scavenging | 12.5 ± 1.9 a | 14.0 ± 2.6 b | 19.9 ± 1.7 c | 25.8 ± 4.8 d |
DPPH•-scavenging | 7.6 ± 0.1 a | 8.7 ± 0.1 b | 10.9 ± 0.6 c | 24.2 ± 0.3 d |
•O2−-scavenging | 731.0 ± 1.7 b | 262.6 ± 3.3 a | 266.3 ± 4.6 a | 1205.2 ± 19.8 c |
Groups | Acteoside | Forsythoside B | Poliumoside |
---|---|---|---|
Control | 0.64 ± 0.05 | 0.64 ± 0.05 | 0.64 ± 0.05 |
Model | 0.07 ± 0.01 | 0.07 ± 0.01 | 0.07 ± 0.01 |
10 μg/mL | 0.07 ± 0.01 | 0.08 ± 0.01 | 0.10 ± 0.01 |
30 μg/mL | 0.09 ± 0.01 a | 0.09 ± 0.01 a | 0.13 ± 0.01 b,* |
50 μg/mL | 0.09 ± 0.01 a | 0.11 ± 0.01 b,* | 0.14 ± 0.01 c,* |
100 μg/mL | 0.13 ± 0.01 a,* | 0.18 ± 0.01 b,* | 0.24 ± 0.01c,* |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, X.; Xie, Y.; Li, K.; Wu, A.; Xie, H.; Guo, Q.; Xue, P.; Maleshibek, Y.; Zhao, W.; Guo, J.; et al. Antioxidation and Cytoprotection of Acteoside and Its Derivatives: Comparison and Mechanistic Chemistry. Molecules 2018, 23, 498. https://doi.org/10.3390/molecules23020498
Li X, Xie Y, Li K, Wu A, Xie H, Guo Q, Xue P, Maleshibek Y, Zhao W, Guo J, et al. Antioxidation and Cytoprotection of Acteoside and Its Derivatives: Comparison and Mechanistic Chemistry. Molecules. 2018; 23(2):498. https://doi.org/10.3390/molecules23020498
Chicago/Turabian StyleLi, Xican, Yulu Xie, Ke Li, Aizhi Wu, Hong Xie, Qian Guo, Penghui Xue, Yerkingul Maleshibek, Wei Zhao, Jiasong Guo, and et al. 2018. "Antioxidation and Cytoprotection of Acteoside and Its Derivatives: Comparison and Mechanistic Chemistry" Molecules 23, no. 2: 498. https://doi.org/10.3390/molecules23020498
APA StyleLi, X., Xie, Y., Li, K., Wu, A., Xie, H., Guo, Q., Xue, P., Maleshibek, Y., Zhao, W., Guo, J., & Chen, D. (2018). Antioxidation and Cytoprotection of Acteoside and Its Derivatives: Comparison and Mechanistic Chemistry. Molecules, 23(2), 498. https://doi.org/10.3390/molecules23020498