Anomaly in the Chain Length Dependence of n-Alkane Diffusion in ZIF-4 Metal-Organic Frameworks
Abstract
:1. Introduction
2. Diffusion Measurements
2.1. Single-Component Uptake Experiments
2.2. Two-Component Uptake Experiments
3. Molecular Configurations
4. Materials and Methods
4.1. Structure of ZIF-4
4.2. Molecular Simulations
4.3. Synthesis of ZIF-4
4.4. Adsorption Isotherms
4.5. Sample Activation
4.6. IRM Experimental Setup
4.7. Sample Aging
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Sarkisov, L.; Martin, R.L.; Haranczyk, M.; Smit, B. On the flexibility of metal–organic frameworks. J. Am. Chem. Soc. 2014, 136, 2228–2231. [Google Scholar] [CrossRef] [PubMed]
- Schneemann, A.; Bon, V.; Schwedler, I.; Senkovska, I.; Kaskel, S.; Fischer, R.A. Flexible metal-organic frameworks. Chem. Soc. Rev. 2014, 43, 6062–6096. [Google Scholar] [CrossRef] [PubMed]
- Park, K.S.; Ni, Z.; Côté, A.P.; Choi, J.Y.; Huang, R.; Uribe-Romo, F.J.; Chae, H.K.; O’Keeffe, M.; Yaghi, O.M. Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proc Natl. Acad. Sci. USA 2006, 103, 10186–10191. [Google Scholar] [CrossRef] [PubMed]
- Hartmann, M.; Böhme, U.; Hovestadt, M.; Paula, C. Adsorptive separation of olefin/paraffin mixtures with ZIF-4. Langmuir 2015, 31, 12382–12389. [Google Scholar] [CrossRef] [PubMed]
- Wharmby, M.T.; Henke, S.; Bennett, T.D.; Bajpe, S.R.; Schwedler, I.; Thompson, S.P.; Gozzo, F.; Simoncic, P.; Mellot-Draznieks, C.; Tao, H.; et al. Extreme flexibility in a zeolitic imidazolate framework: Porous to dense phase transition in desolvated ZIF-4. Angew. Chem. Int. Ed. 2015, 54, 6447–6451. [Google Scholar] [CrossRef] [PubMed]
- Beake, E.O.R.; Dove, M.T.; Phillips, A.E.; Keen, D.A.; Tucker, M.G.; Goodwin, A.L.; Bennett, T.D.; Cheetham, A.K. Flexibility of zeolitic imidazolate framework structures studied by neutron total scattering and the reverse monte carlo method. J. Phys. Condens. Matter 2013, 25, 395403. [Google Scholar] [CrossRef] [PubMed]
- Hovestadt, M.; Vargas Schmitz, J.; Weissenberger, T.; Reif, F.; Kaspereit, M.; Schwieger, W.; Hartmann, M. Scale-up of the synthesis of zeolitic imidazolate framework ZIF-4. Chem. Ing. Tech. 2017, 89, 1374–1378. [Google Scholar] [CrossRef]
- Gorring, R.L. Diffusion of normal paraffins in zeolite T: Occurrence of window effect. J. Catal. 1973, 31, 13–26. [Google Scholar] [CrossRef]
- Ruthven, D.M. The window effect in zeolitic diffusion. Microporous Mesoporous Mater. 2006, 96, 262–269. [Google Scholar] [CrossRef]
- Magalhães, F.D.; Laurence, R.L.; Conner, W.C. Transport of n-paraffins in zeolite T. AIChE J. 1996, 42, 68–86. [Google Scholar] [CrossRef]
- Cavalcante, C.L.; Eić, M.; Ruthven, D.M.; Occelli, M.L. Diffusion of n-paraffins in offretite-erionite type zeolites. Zeolites 1995, 15, 293–307. [Google Scholar] [CrossRef]
- Runnebaum, R.C.; Maginn, E.J. Molecular dynamics simulations of alkanes in the zeolite silicalite: Evidence for resonant diffusion effects. J. Phys. Chem. B 1997, 101, 6394–6408. [Google Scholar] [CrossRef]
- Tsekov, R.; Smirniotis, P. Resonant diffusion of normal alkanes in zeolites: Effect of the zeolite structure and alkane molecule vibrations. J. Phys. Chem. 1998, 102, 9385–9391. [Google Scholar] [CrossRef]
- Ghorai, P.K.; Yashonath, S.; Demontis, P.; Suffritti, G.B. Diffusion anomaly as a function of molecular length of linear molecules: Levitation effect. J. Am. Chem. Soc. 2003, 125, 7116–7123. [Google Scholar] [CrossRef] [PubMed]
- Ghorai, P.K.; Yashonath, S. Levitation effect: Distinguishing anomalous from linear regime of guests sorbed in zeolites through the decay of intermediate scattering function and wavevector dependence of self-diffusivity. J. Phys. Chem. B 2005, 109, 3979–3983. [Google Scholar] [CrossRef] [PubMed]
- Krishna, R.; van Baten, J.M. A molecular simulation study of commensurate–incommensurate adsorption of n-alkanes in cobalt formate frameworks. Mol. Simul. 2009, 35, 1098–1104. [Google Scholar] [CrossRef]
- Wu, H.; Gong, Q.; Olson, D.H.; Li, J. Commensurate adsorption of hydrocarbons and alcohols in microporous metal organic frameworks. Chem. Rev. 2012, 112, 836–868. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Yao, K.; Zhang, Z.; Jagiello, J.; Gong, Q.; Han, Y.; Li, J. The first example of commensurate adsorption of atomic gas in a MOF and effective separation of xenon from other noble gases. Chem. Sci. 2014, 5, 620–624. [Google Scholar] [CrossRef]
- Krishna, R.; van Baten, J.M. Commensurate-incommensurate adsorption and diffusion in ordered crystalline microporous materials. Phys. Chem. Chem. Phys. 2017, 19, 20320–20337. [Google Scholar] [CrossRef] [PubMed]
- Dubbeldam, D.; Smit, B. Computer simulation of incommensurate diffusion in zeolites: Understanding window effects. J. Phys. Chem. B 2003, 107, 12138–12152. [Google Scholar] [CrossRef]
- Dubbeldam, D.; Calero, S.; Maesen, T.L.M.; Smit, B. Incommensurate diffusion in confined systems. Phys. Rev. Lett. 2003, 90, 245901. [Google Scholar] [CrossRef] [PubMed]
- Daems, I.; Baron, G.V.; Punnathanam, S.; Snurr, R.Q.; Denayer, J.F.M. Molecular cage nestling in the liquid-phase adsorption of n-alkanes in 5A zeolite. J. Phys. Chem. C 2007, 111, 2191–2197. [Google Scholar] [CrossRef]
- Dubbeldam, D.; Calero, S.; Maesen, T.L.M.; Smit, B. Understanding the window effect in zeolite catalysis. Angew. Chem. Int. Ed. 2003, 42, 3624–3626. [Google Scholar] [CrossRef] [PubMed]
- Punnathanam, S.; Denayer, J.F.M.; Daems, I.; Baron, G.V.; Snurr, R.Q. Parallel tempering simulations of liquid-phase adsorption of n-alkane mixtures in zeolite LTA-5A. J. Phys. Chem. C 2011, 115, 762–769. [Google Scholar] [CrossRef]
- Kärger, J.; Ruthven, D.M.; Theodorou, D.N. Diffusion mechanisms. In Diffusion in Nanoporous Materials; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2012; pp. 85–110. [Google Scholar]
- Karger, J.; Ruthven, D.M. Diffusion in nanoporous materials: Fundamental principles, insights and challenges. New J. Chem. 2016, 40, 4027–4048. [Google Scholar] [CrossRef]
- Jobic, H.; Kärger, J.; Krause, C.; Brandani, S.; Gunadi, A.; Methivier, A.; Ehlers, G.; Farago, B.; Haeussler, W.; Ruthven, D.M. Diffusivities of n-alkanes in 5A zeolite measured by neutron spin echo, pulsed-field gradient NMR, and zero length column techniques. Adsorption 2005, 11, 403–407. [Google Scholar] [CrossRef]
- Jobic, H.; Méthivier, A.; Ehlers, G.; Farago, B.; Haeussler, W. Accelerated diffusion of long-chain alkanes between nanosized cavities. Angew. Chem. 2004, 116, 368–370. [Google Scholar] [CrossRef]
- Borah, B.J.; Jobic, H.; Yashonath, S. Levitation effect in zeolites: Quasielastic neutron scattering and molecular dynamics study of pentane isomers in zeolite NaY. J. Chem. Phys. 2010, 132, 144507. [Google Scholar] [CrossRef] [PubMed]
- Rajappa, C.; Krause, C.; Borah, B.J.; Adem, Z.; Galvosas, P.; Kärger, J.; Subramanian, Y. Diffusion of pentane isomers in faujasite-type zeolites: NMR and molecular dynamics study. Microporous Mesoporous Mater. 2013, 171, 58–64. [Google Scholar] [CrossRef]
- Paoli, H.; Méthivier, A.; Jobic, H.; Krause, C.; Pfeifer, H.; Stallmach, F.; Kärger, J. Comparative QENS and PFG NMR diffusion studies of water in zeolite NaCaA. Microporous Mesoporous Mater. 2002, 55, 147–158. [Google Scholar] [CrossRef]
- Feldhoff, A.; Caro, J.; Jobic, H.; Ollivier, J.; Krause, C.B.; Galvosas, P.; Kärger, J. Intracrystalline transport resistances in nanoporous zeolite X. ChemPhysChem 2009, 10, 2429–2433. [Google Scholar] [CrossRef] [PubMed]
- Kärger, J.; Binder, T.; Chmelik, C.; Hibbe, F.; Krautscheid, H.; Krishna, R.; Weitkamp, J. Microimaging of transient guest profiles to monitor mass transfer in nanoporous materials. Nat. Mater. 2014, 13, 333. [Google Scholar] [CrossRef] [PubMed]
- Kärger, J. Transport phenomena in nanoporous materials. ChemPhysChem 2015, 16, 24–51. [Google Scholar] [CrossRef] [PubMed]
- Heinke, L.; Chmelik, C.; Kortunov, P.; Shah, D.B.; Brandani, S.; Ruthven, D.M.; Kärger, J. Analysis of thermal effects in infrared and interference microscopy: N-butane-5A and methanol–ferrierite systems. Microporous Mesoporous Mater. 2007, 104, 18–25. [Google Scholar] [CrossRef]
- Chmelik, C.; Bux, H.; Caro, J.; Heinke, L.; Hibbe, F.; Titze, T.; Kärger, J. Mass transfer in a nanoscale material enhanced by an opposing flux. Phys. Rev. Lett. 2010, 104, 085902. [Google Scholar] [CrossRef] [PubMed]
- Kärger, J.; Ruthven, D.M.; Theodorou, D.N. Sorption kinetics. In Diffusion in Nanoporous Materials; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2012; pp. 143–189. [Google Scholar]
- Gutiérrez-Sevillano, J.J.; Calero, S.; Krishna, R. Selective adsorption of water from mixtures with 1-alcohols by exploitation of molecular packing effects in CuBTC. J. Phys. Chem. C 2015, 119, 3658–3666. [Google Scholar] [CrossRef]
- Mukherjee, S.; Joarder, B.; Desai, A.V.; Manna, B.; Krishna, R.; Ghosh, S.K. Exploiting framework flexibility of a metal–organic framework for selective adsorption of styrene over ethylbenzene. Inorg. Chem. 2015, 54, 4403–4408. [Google Scholar] [CrossRef] [PubMed]
- Kapteijn, F.; Moulijn, J.A.; Krishna, R. The generalized maxwell-stefan model for diffusion in zeolites: Sorbate molecules with different saturation loadings. Chem. Eng. Sci. 2000, 55, 2923–2930. [Google Scholar] [CrossRef]
- Chmelik, C.; Kärger, J. The predictive power of classical transition state theory revealed in diffusion studies with MOF ZIF-8. Microporous Mesoporous Mater. 2016, 225, 128–132. [Google Scholar] [CrossRef]
- Hibbe, F.; van Baten, J.M.; Krishna, R.; Chmelik, C.; Weitkamp, J.; Kärger, J. In-depth study of mass transfer in nanoporous materials by micro-imaging. Chem. Ing. Tech. 2011, 83, 2211–2218. [Google Scholar] [CrossRef]
- Titze, T.; Chmelik, C.; Kärger, J.; van Baten, J.M.; Krishna, R. Uncommon synergy between adsorption and diffusion of hexane isomer mixtures in MFI zeolite induced by configurational entropy effects. J. Phys. Chem. C 2014, 118, 2660–2665. [Google Scholar] [CrossRef]
- Lauerer, A.; Binder, T.; Chmelik, C.; Miersemann, E.; Haase, J.; Ruthven, D.M.; Kärger, J. Uphill diffusion and overshooting in the adsorption of binary mixtures in nanoporous solids. Nat. Commun. 2015, 6, 7697. [Google Scholar] [CrossRef] [PubMed]
- Accelrys Software Inc. Forcite module. In Materials Studio 5.0; Accelrys Software Inc.: San Diego, CA, USA, 2009. [Google Scholar]
- Willems, T.F.; Rycroft, C.H.; Kazi, M.; Meza, J.C.; Haranczyk, M. Algorithms and tools for high-throughput geometry-based analysis of crystalline porous materials. Microporous Mesoporous Mater. 2012, 149, 134–141. [Google Scholar] [CrossRef]
- Sarkisov, L.; Harrison, A. Computational structure characterisation tools in application to ordered and disordered porous materials. Mol. Simul. 2011, 37, 1248–1257. [Google Scholar] [CrossRef]
- Mayo, S.L.; Olafson, B.D.; Goddard, W.A. Dreiding: A generic force field for molecular simulations. J. Phys. Chem. 1990, 94, 8897–8909. [Google Scholar] [CrossRef]
- Martin, M.G.; Siepmann, J.I. Transferable potentials for phase equilibria. 1. United-atom description of n-alkanes. J. Phys. Chem. B 1998, 102, 2569–2577. [Google Scholar] [CrossRef]
- Dubbeldam, D.; Calero, S.; Ellis, D.E.; Snurr, R.Q. Raspa: Molecular simulation software for adsorption and diffusion in flexible nanoporous materials. Mol. Simul. 2016, 42, 81–101. [Google Scholar] [CrossRef]
Sample Availability: Samples of the compounds are not available from the authors. |
Alkane | −ΔHads (kJ moL−1) |
---|---|
ethane | −38.4 ± 2.01 |
propane | −44.9 ± 7.00 |
n-butane | −46.2 ± 7.57 |
n-pentane | −42.4 ± 6.83 |
Alkane | Fully Stretched End-To-End Distance (Å) |
---|---|
ethane | 5.29 |
propane | 6.83 |
n-butane | 7.67 |
n-pentane | 8.91 |
Property | Value |
---|---|
Density | 1.22 g cc−1 |
Accessible Surface Area | 771 m2 cc−1 |
Accessible Volume | 1776 m3 g−1 |
Void Fraction | 0.56 (zero probe) |
Channels | 1 (3 dimensional) |
Largest Cavity Diameter | 5.14 Å |
Pore Limiting Diameter | 2.45 Å |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hwang, S.; Gopalan, A.; Hovestadt, M.; Piepenbreier, F.; Chmelik, C.; Hartmann, M.; Snurr, R.Q.; Kärger, J. Anomaly in the Chain Length Dependence of n-Alkane Diffusion in ZIF-4 Metal-Organic Frameworks. Molecules 2018, 23, 668. https://doi.org/10.3390/molecules23030668
Hwang S, Gopalan A, Hovestadt M, Piepenbreier F, Chmelik C, Hartmann M, Snurr RQ, Kärger J. Anomaly in the Chain Length Dependence of n-Alkane Diffusion in ZIF-4 Metal-Organic Frameworks. Molecules. 2018; 23(3):668. https://doi.org/10.3390/molecules23030668
Chicago/Turabian StyleHwang, Seungtaik, Arun Gopalan, Maximilian Hovestadt, Frank Piepenbreier, Christian Chmelik, Martin Hartmann, Randall Q. Snurr, and Jörg Kärger. 2018. "Anomaly in the Chain Length Dependence of n-Alkane Diffusion in ZIF-4 Metal-Organic Frameworks" Molecules 23, no. 3: 668. https://doi.org/10.3390/molecules23030668
APA StyleHwang, S., Gopalan, A., Hovestadt, M., Piepenbreier, F., Chmelik, C., Hartmann, M., Snurr, R. Q., & Kärger, J. (2018). Anomaly in the Chain Length Dependence of n-Alkane Diffusion in ZIF-4 Metal-Organic Frameworks. Molecules, 23(3), 668. https://doi.org/10.3390/molecules23030668