Recent Developments in Vinylsulfonium and Vinylsulfoxonium Salt Chemistry
Abstract
:1. Introduction
2. Sulfur is Special
3. Early Contributions
4. Synthesis of Vinylsulfonium and Vinylsulfoxonium Salts
4.1. Synthesis of Diphenylvinylsulfonium Triflate (1)
4.2. Synthesis of Vinylsulfoxonium Salts (16)
5. Reactions of Vinylsulfonium Salts
5.1. Three-Membered Heterocycle Synthesis
5.2. Four-Membered Heterocycle Synthesis
5.3. Five-Membered Heterocycle Synthesis
5.4. Six-Membered Heterocycle Synthesis
5.5. Seven-Membered Heterocycle Synthesis
5.6. Johnson–Corey–Chaykovsky-Type Reactions for Fused Heterocycle Synthesis
6. Reactions of Vinylsulfoxonium Salts
6.1. Asymmetric Synthesis of Anti-Homopropargylic Alcohols
6.2. Asymmetric Synthesis of Unsaturated, Fused Bicyclic Proline Analogues
6.3. Asymmetric Synthesis of 2,3-Dihydrofurans and Unsaturated Bicyclic Tetrahydrofurans.
6.4. Asymmetric Synthesis of Unsaturated Prolines, β,γ-Dehydro Amino Acids, and Cyclopentanoid Keto Aminosulfoxonium Ylides
6.5. Diastereoselective Synthesis of γ-Lactones through Reaction of Enediolates with α,β-Unsaturated Sulfoxonium Salts
6.6. Asymmetric Synthesis of γ-Lactones through Koga Amine-Controlled Addition of Enediolates to α,β-Unsaturated Sulfoxonium Salts
7. Conclusions
Acknowledgments
Conflicts of Interest
References
- Johnson, A.W.; LaCount, R.B. The Chemistry of Ylids. VI. Dimethylsulfonium Fluorenylide—A Synthesis of Epoxides. J. Am. Chem. Soc. 1961, 83, 417–423. [Google Scholar] [CrossRef]
- Corey, E.J.; Chaykovsky, M. Dimethyloxosulfonium Methylide ((CH3)2SOCH2) and Dimethylsulfonium Methylide ((CH3)2SCH2). Formation and Application to Organic Synthesis. J. Am. Chem. Soc. 1965, 87, 1353–1364. [Google Scholar] [CrossRef]
- Li, A.-H.; Dai, L.-X.; Aggarwal, V.K. Asymmetric Ylide Reactions: Epoxidation, Cyclopropanation, Aziridination, Olefination, and Rearrangement. Chem. Rev. 1997, 97, 2341–2372. [Google Scholar] [CrossRef] [PubMed]
- Block, E. Reactions of Organosulfur Compounds; Academic Press: New York, NY, USA, 1978; ISBN 0121070506. [Google Scholar]
- Trost, B.M.; Melvin, L.S., Jr. Sulfur Ylides: Emerging Synthetic Intermediates; Academic Press: New York, NY, USA, 1975; ISBN 0127010602. [Google Scholar]
- Doering, W.V.E.; Hoffmann, A.K. d-Orbital Resonance. III. Deuterium Exchange in Methyl “Onium” Salts and in Bicyclo [2.2.1]heptane-1-sulfonium Iodide. J. Am. Chem. Soc. 1955, 77, 521–526. [Google Scholar] [CrossRef]
- Doering, W.V.E.; Schreiber, K.C. d-Orbital Resonance. II. Comparative Reactivity of Vinyldimethylsulfonium and Vinyltrimethylammonium Ions. J. Am. Chem. Soc. 1955, 77, 514–520. [Google Scholar] [CrossRef]
- Mitchell, K.A.R. The Use of Outer d Orbitals in Bonding. Chem. Rev. 1969, 69, 157–178. [Google Scholar] [CrossRef]
- Lehn, J.-M.; Wipff, G. Stereoelectronic Properties, Stereospecificity, and Stabilization of α-Oxa and α-Thia Carbanion. J. Am. Chem. Soc. 1976, 98, 7498–7505. [Google Scholar] [CrossRef]
- Bernardi, F.; Csizmadia, I.G.; Mangini, A.; Schlegel, H.B.; Whangbo, M.H.; Wolfe, S. The Irrelevance of d-Orbital Conjugation. I. The α-Thiocarbanion. A Comparative Quantum Chemical Study of the Static and Dynamic Properties and Proton Affinities of Carbanions Adjacent to Oxygen and to Sulfur. J. Am. Chem. Soc. 1975, 97, 2209–2218. [Google Scholar] [CrossRef]
- Streitwieser, A., Jr.; Williams, J.E., Jr. Ab initio SCF-MO calculations of thiomethyl anion. Polarization in stabilization of carbanions. J. Am. Chem. Soc. 1975, 97, 191–192. [Google Scholar] [CrossRef]
- Hoffmann, R.; Howell, J.M.; Muetterties, E.L. Molecular Orbital Theory of Pentacoordinate Phosphorus. J. Am. Chem. Soc. 1972, 94, 3047–3058. [Google Scholar] [CrossRef]
- Zbang, X.-M.; Bordwell, F.G. Equilibrium Acidities and Homolytic Bond Dissociation Energies of the Acidic C-H Bonds in P-Substituted Triphenylphosphonium Cations. J. Am. Chem. Soc. 1994, 116, 968–972. [Google Scholar] [CrossRef]
- Dobado, J.A.; Martınez-Garcıa, H.; Molina, J.M.; Sundberg, M.R. Chemical Bonding in Hypervalent Molecules Revised. 3. Application of the Atoms in Molecules Theory to Y3X-CH2 (X = N, P, or As; Y = H or F) and H2X-CH2 (X = O, S, or Se) Ylides. J. Am. Chem. Soc. 2000, 122, 1144–1149. [Google Scholar] [CrossRef]
- Gosselck, J.; Béress, L.; Schenk, H. Reactions of Substituted Vinylsulfonium Salts with CH-Acidic Compounds–A new Route to Polysubstituted Cyclopropanes. Angew. Chem. Int. Ed. Engl. 1966, 5, 596–597. [Google Scholar] [CrossRef]
- Gosselck, J.; Albrecht, H.; Dost, F.; Schenk, H.; Schmidt, G. Eine Stereospezifische Synthese fur H1-H2-trans-cyclopropane. Tetrahedron Lett. 1968, 9, 995–998. [Google Scholar] [CrossRef]
- Gosselck, J.; Schmidt, G. Zur Stereochemie der cyclopropansynthbsen uber 1,4-sulfoniumbetaine. Tetrahedron Lett. 1969, 10, 2615–2618. [Google Scholar] [CrossRef]
- Schmidt, G.; Gosselck, J. Cyclopropyl-sulfoniumsalze durch umsetzung von sulfonium-yliden mit dimethyl-vinyl-sulfonium-bromid. Tetrahedron Lett. 1969, 10, 3445–3448. [Google Scholar] [CrossRef]
- Johnson, C.R.; Lockard, J.P. (Dimethylamino)-Phenyl-(2-phenylvinyl)-oxosulfonium fluoroborate. A Model reagent for ethylene transfer to dibasic nucleophiles. Tetrahedron Lett. 1971, 12, 4589–4592. [Google Scholar] [CrossRef]
- Johnson, C.R.; Rogers, P.E. Chemistry of sulfoxides and related compounds. XL. Preparation and reactions of stabilized (dialkylamino)methyloxosulfonium methylides. Synthesis of 1,3-oxathiole 3-oxides. J. Org. Chem. 1973, 38, 1798–1803. [Google Scholar] [CrossRef]
- Johnson, C.R.; Lockard, J.P.; Kennedy, E.R. S-Ethenylsulfoximine derivatives. Reagents for ethylenation of protic nucleophiles. J. Org. Chem. 1980, 45, 264–271. [Google Scholar] [CrossRef]
- Koep, S.; Gais, H.-J.; Raabe, G. Asymmetric synthesis of unsaturated, fused bicyclic proline analogues through amino alkylation of cyclic bis(allylsulfoximine)titanium complexes and migratory cyclization of δ-amino alkenyl aminosulfoxonium salts. J. Am. Chem. Soc. 2003, 125, 13243–13251. [Google Scholar] [CrossRef] [PubMed]
- Gais, H.-J.; Reddy, L.R.; Babu, G.S.; Raabe, G. Asymmetric synthesis of 2,3-dihydrofurans and of unsaturated bicyclic tetrahydrofurans through α-elimination and migratory cyclization of silyloxy alkenyl aminosulfoxonium salts. Generation and intramolecular O,Si-bond insertion of chiral disubstituted β-silyloxy alkylidene carbenes. J. Am. Chem. Soc. 2004, 126, 4859–4864. [Google Scholar] [CrossRef] [PubMed]
- Tiwari, S.K.; Gais, H.-J.; Lindenmaier, A.; Babu, G.S.; Raabe, G.; Reddy, L.R.; Köhler, F.; Günter, M.; Koep, S.; Iska, V.B.R. Functionalized Chiral Vinyl Aminosulfoxonium Salts: Asymmetric Synthesis and Application to the Synthesis of Enantiopure Unsaturated Prolines, β,γ-Dehydro Amino Acids, and Cyclopentanoid Keto Aminosulfoxonium Ylides. J. Am. Chem. Soc. 2006, 128, 7360–7373. [Google Scholar] [CrossRef] [PubMed]
- Yar, M.; McGarrigle, E.M.; Aggarwal, V.K. Sulfonium, Ethenyldiphenyl-1,1,1-Trifluoromethanesulfonate. In e-EROS Encyclopedia of Reagents for Organic Synthesis; John Wiley & Sons, Ltd.: Hoboken, NY, USA, 2012; pp. 1–6. [Google Scholar] [CrossRef]
- Matlock, J.V.; Aggarwal, V.K.; McGarrigle, E.M. (2-Bromoethyl)diphenylsulfonium Trifluoromethanesulfonate. In e-EROS Encyclopedia of Reagents for Organic Synthesis; John Wiley & Sons, Ltd.: Hoboken, NY, USA, 2016; pp. 1–5. [Google Scholar] [CrossRef]
- Johnson, C.R.; Haake, M.; Schroeck, C.W. Chemistry of sulfoxides and related compounds. XXVI. Preparation and synthetic applications of (dimethylamino)phenyloxosulfonium methylide. J. Am. Chem. Soc. 1970, 92, 6594–6598. [Google Scholar] [CrossRef]
- Gais, H.-J.; Hainz, R.; Müller, H.; Bruns, P.; Giesen, N.; Raabe, G.; Runsink, J.; Nienstedt, S.; Decker, J.; Schleusner, M.; et al. N-Methylsulfonimidoyl-Substituted (2-Alkenyl)titanium Complexes: Application to the Synthesis of β- and δ-Sulfonimidoyl-Substituted Chiral Homoallylic Alcohols, X-ray Crystal Structure Analysis, and Fluxional Behavior. Eur. J. Org. Chem. 2000, 3973–4009. [Google Scholar] [CrossRef]
- Yar, M.; Unthank, M.G.; McGarrigle, E.M.; Aggarwal, V.K. Remote Chiral Induction in Vinyl Sulfonium Salt-Mediated Ring Expansion of Hemiaminals into Epoxide-Fused Azepines. Chem. Asian J. 2011, 6, 372–375. [Google Scholar] [CrossRef] [PubMed]
- Kokotos, C.G.; McGarrigle, E.M.; Aggarwal, V.K. Sulfur Ylide Mediated Three-Component Aziridination and Epoxidation Reactions Using Vinyl Sulfonium Salts. Synlett 2008, 2191–2195. [Google Scholar] [CrossRef]
- Unthank, M.G.; Hussain, N.; Aggarwal, V.K. The Use of Vinyl Sulfonium Salts in the Stereocontrolled Asymmetric Synthesis of Epoxide- and Aziridine-Fused Heterocycles: Application to the Synthesis of (−)-Balanol. Angew. Chem. Int. Ed. 2006, 45, 7066–7069. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.F.; Zhang, W.H.; Colandrea, V.J.; Jimenez, L.S. Reactivity and rearrangements of dialkyl- and diarylvinylsulfonium salts with indole-2- and pyrrole-2-carboxaldehydes. Tetrahedron 1999, 55, 10659–10672. [Google Scholar] [CrossRef]
- Xie, C.; Han, D.; Hu, Y.; Liu, J.; Xie, T. Synthesis of pyrrolidin-2-ones via tandem reactions of vinyl sulfonium salts under mild conditions. Tetrahedron Lett. 2010, 51, 5238–5241. [Google Scholar] [CrossRef]
- Matsuo, J.-I.; Yamanaka, H.; Kawana, A.; Mukaiyama, T. A Convenient Method for the Synthesis of 2-Arylaziridines from Styrene Derivatives via 2 Arylethenyl(diphenyl)sulfonium Salts. Chem. Lett. 2003, 32, 392–393. [Google Scholar] [CrossRef]
- Yamanaka, H.; Matsuo, J.-I.; Kawana, A.; Mukaiyama, T. New methods for the preparations of 2-arylaziridines, α-imidostyrenes, and allylamines from olefins via diphenylvinylsulfonium triflates. ARKIVOC 2004, 3, 42–65. [Google Scholar]
- Zhou, M.; En, K.; Hu, Y.; Xu, Y.; Shenb, H.C.; Qian, X. Zinc triflate-mediated cyclopropanation of oxindoles with vinyl diphenyl sulfonium triflate: A mild reaction with broad functional group compatibility. RSC Adv. 2017, 7, 3741–3745. [Google Scholar] [CrossRef]
- Yamanaka, H.; Yamane, Y.; Mukaiyama, T. A New Method for the Preparation of Nitrogen-containing Heterocycles Using Diphenylsulfonium Triflates. Heterocycles 2004, 63, 2813–2826. [Google Scholar] [CrossRef]
- Fritz, S.P.; Moya, J.F.; Unthank, M.G.; McGarrigle, E.M.; Aggarwal, V.K. An Efficient Synthesis of Azetidines with (2-Bromoethyl)sulfonium Triflate. Synthesis 2012, 44, 1584–1590. [Google Scholar] [CrossRef]
- Xie, C.; Han, D.; Liu, J.; Xie, T. Novel Syntheses of N-Aryloxazolidin-2-ones via Tandem Reactions of Vinyl Sulfonium Salts. Synlett 2009, 3155–3158. [Google Scholar] [CrossRef]
- McGarrigle, E.M.; Fritz, S.P.; Favereau, L.; Yar, M.; Aggarwal, V.K. An Efficient Synthesis of Imidazolinium Salts Using Vinyl Sulfonium Salts. Org. Lett. 2011, 13, 3060–3063. [Google Scholar] [CrossRef] [PubMed]
- Yar, M.; Fritz, S.P.; Gates, P.J.; McGarrigle, E.M.; Aggarwal, V.K. Synthesis of N-Vinyloxazolidinones and Morpholines from Amino Alcohols and Vinylsulfonium Salts: Analysis of the Outcome’s Dependence on the N-Protecting Group by Nanospray Mass Spectrometry. Eur. J. Org. Chem. 2012, 160–166. [Google Scholar] [CrossRef]
- Yar, M.; McGarrigle, E.M.; Aggarwal, V.K. An Annulation Reaction for the Synthesis of Morpholines, Thiomorpholines, and Piperazines from β-Heteroatom Amino Compounds and Vinyl Sulfonium Salts. Angew. Chem. Int. Ed. 2008, 47, 3784–3786. [Google Scholar] [CrossRef] [PubMed]
- Yar, M.; McGarrigle, E.M.; Aggarwal, V.K. Bromoethylsulfonium Salt—A More Effective Annulation Agent for the Synthesis of 6- and 7-Membered 1,4-Heterocyclic Compounds. Org. Lett. 2009, 11, 257–260. [Google Scholar] [CrossRef] [PubMed]
- Fritz, S.P.; Mumtaz, A.; Yar, M.; McGarrigle, E.M.; Aggarwal, V.K. Sulfinamides as Highly Effective Amine Protecting Groups and Their Use in the Conversion of Amino Alcohols into Morpholines. Eur. J. Org. Chem. 2011, 3156–3164. [Google Scholar] [CrossRef]
- Bornholdt, J.; Felding, J.; Kristensen, J.L. Synthesis of Enantiopure 3-Substituted Morpholines. J. Org. Chem. 2010, 75, 7454–7457. [Google Scholar] [CrossRef] [PubMed]
- An, J.; Chang, N.-J.; Song, L.-D.; Jin, Y.-Q.; Ma, Y.; Chen, J.-R.; Xiao, W.-J. Efficient and general synthesis of oxazino[4,3-a]indoles by cascade addition-cyclization reactions of (1H-indol-2-yl)methanols and vinyl sulfonium salts. Chem. Commun. 2011, 47, 1869–1871. [Google Scholar] [CrossRef] [PubMed]
- Matlock, J.V.; Svejstrup, T.D.; Songara, P.; Overington, S.; McGarrigle, E.M.; Aggarwal, V.K. Synthesis of 6- and 7-Membered N-Heterocycles Using α-Phenylvinylsulfonium Salts. Org. Lett. 2015, 17, 5044–5047. [Google Scholar] [CrossRef] [PubMed]
- Karahan, S.; Tanyeli, C. Organocatalytic enantioselective construction of isatin-derived N-alkoxycarbonyl 1,3-aminonaphthols via sterically encumbered hydrocarbon-substituted quinine-based squaramide. New J. Chem. 2017, 41, 9192–9202. [Google Scholar] [CrossRef]
- Kim, K.; Jimenez, L.S. A camphor-derived vinylsulfonium salt as a reagent for a cycloannulation. Tetrahedron Asymmetry 2001, 12, 999–1005. [Google Scholar] [CrossRef]
- Fritz, S.P.; Ali, Z.; Unthank, M.G.; McGarrigle, E.M.; Aggarwal, V.K. (2-Bromoethyl)sulfonium Trifluoromethanesulfonates in Stereoselective Annulation Reactions for the Formation of Fused Bicyclic Epoxides and Aziridines. Helv. Chim. Acta 2012, 95, 2384–2398. [Google Scholar] [CrossRef]
- Unthank, M.G.; Tavassoli, B.; Aggarwal, V.K. Epoxy-Annulations by Reactions of α-Amido Ketones with Vinyl Sulfonium Salts. Reagent versus Substrate Control and Kinetic Resolution. Org. Lett. 2008, 10, 1501–1504. [Google Scholar] [CrossRef] [PubMed]
- Fritz, S.P.; West, T.H.; McGarrigle, E.M.; Aggarwal, V.K. Diastereoselective Synthesis of CF3-Substituted, Epoxide-Fused Heterocycles with β-(Trifluoromethyl)vinylsulfonium Salts. Org. Lett. 2012, 14, 6370–6373. [Google Scholar] [CrossRef] [PubMed]
- Matlock, J.V.; Fritz, S.P.; Harrison, S.A.; Coe, D.M.; McGarrigle, E.M.; Aggarwal, V.K. Synthesis of α-Substituted Vinylsulfonium Salts and Their Application as Annulation Reagents in the Formation of Epoxide- and Cyclopropane-Fused Heterocycles. J. Org. Chem. 2014, 79, 10226–10239. [Google Scholar] [CrossRef] [PubMed]
- Frazier, C.P.; Sandoval, D.; Palmer, L.I.; de Alaniz, J.R. Electrophilic α-oxygenation reaction of β-ketoesters using N-hydroxycarbamates: Control of the ambident reactivity of nitrosoformate intermediates. Chem. Sci. 2013, 4, 3857–3862. [Google Scholar] [CrossRef]
- Fritz, S.P.; Matlock, J.V.; McGarrigle, E.M.; Aggarwal, V.K. Efficient Synthesis of Cyclopropane-Fused Heterocycles with Bromoethylsulfonium Salt. Chem. Eur. J. 2013, 19, 10827–10831. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Siegel, S. Comprehensive Organic Synthesis; Trost, B.M., Fleming, I., Eds.; Pergamon Press: Oxford, UK, 1991; Volume 8, p. 417. [Google Scholar]
- Reddy, L.R.; Gais, H.-J.; Woo, C.-W.; Raabe, G. Asymmetric synthesis of anti-homopropargylic alcohols from aldehydes and chiral sulfonimidoyl substituted bis(allyl)titanium complexes through generation and elimination of novel chiral alkylidenecarbene (dimethylamino)sulfoxonium ylides. J. Am. Chem. Soc. 2002, 124, 10427–10434. [Google Scholar] [CrossRef] [PubMed]
- Seitz, M.; Reiser, O. Synthetic approaches towards structurally diverse gamma-butyrolactone natural-product-like compounds. Curr. Opin. Chem. Biol. 2005, 9, 285–292. [Google Scholar] [CrossRef] [PubMed]
- Hoffman, H.M.R.; Rabe, J. Synthesis and Biological Activity of α-Methylene-γ-butyrolactones. Angew. Chem. Int. Ed. 1985, 24, 94–110. [Google Scholar] [CrossRef]
- Koch, S.S.C.; Chamberlain, A.R. Studies in Natural Products Chemistry; Atta-ur-Rahman, Ed.; Elsevier Science: New York, NY, USA, 1995; Volume 16, pp. 687–725. ISBN 978-0-444-82264-2. [Google Scholar]
- De March, P.; Figueredo, M.; Font, J.; Raya, J. Highly Efficient, Enantioselective Synthesis of (+)-Grandisol from a C2-Symmetric Bis(α,β-butenolide). Org. Lett. 2000, 2, 163–165. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, A.K.; Swanson, L. Enantioselective Synthesis of (+)-Cryptophycin 52 (LY355703), a Potent Antimitotic Antitumor Agent. J. Org. Chem. 2003, 68, 9823–9826. [Google Scholar] [CrossRef] [PubMed]
- Peraino, N.J.; Wheeler, K.A.; Kerrigan, N.J. Diastereoselective Synthesis of γ-Lactones through Reaction of Enediolates with α,β-Unsaturated Sulfoxonium Salts. Org. Lett. 2015, 17, 1735–1737. [Google Scholar] [CrossRef] [PubMed]
- Mondal, M.; Ho, H.-J.; Peraino, N.J.; Gary, M.A.; Wheeler, K.A.; Kerrigan, N.J. Diastereoselective Reaction of Sulfoxonium Ylides, Aldehydes and Ketenes: An Approach to trans-γ-Lactones. J. Org. Chem. 2013, 78, 4587–4593. [Google Scholar] [CrossRef] [PubMed]
- Marino, J.P.; Neisser, M. Stereospecific reactions of dichloroketene with vinyl sulfoxides: A new type of polar cycloaddition. J. Am. Chem. Soc. 1981, 103, 7687–7689. [Google Scholar] [CrossRef]
- Peraino, N.J.; Ho, H.-J.; Mondal, M.; Kerrigan, N.J. Asymmetric synthesis of γ-lactones through reaction of sulfoxonium ylides, aldehydes, and ketenes. Tetrahedron Lett. 2014, 55, 4260–4263. [Google Scholar] [CrossRef]
- Lu, P.; Jackson, J.J.; Eickhoff, J.A.; Zakarian, A. Direct Enantioselective Conjugate Addition of Carboxylic Acids with Chiral Lithium Amides as Traceless Auxiliaries. J. Am. Chem. Soc. 2015, 137, 656–659. [Google Scholar] [CrossRef] [PubMed]
- Oare, D.A.; Heathcock, C. Acyclic stereoselection. 47. Stereochemistry of the Michael addition of ester and ketone enolates to alpha,beta-unsaturated ketones. J. Org. Chem. 1990, 55, 157–172. [Google Scholar] [CrossRef]
- Kwan, E.E.; Evans, D.A. Intermolecular Michael Reactions: A Computational Investigation. Org. Lett. 2010, 12, 5124–5127. [Google Scholar] [CrossRef] [PubMed]
- Peraino, N.J.; Kaster, S.H.; Wheeler, K.A.; Kerrigan, N.J. Asymmetric Synthesis of γ-Lactones through Koga Amine-Controlled Addition of Enediolates to α,β-Unsaturated Sulfoxonium Salts. J. Org. Chem. 2017, 82, 606–615. [Google Scholar] [CrossRef] [PubMed]
- Masamune, S.; Choy, W.; Petersen, J.S.; Sita, L.R. Double Asymmetric Synthesis and a New Strategy for Stereochemical Control in Organic Synthesis. Angew. Chem. Int. Ed. Engl. 1985, 24, 1–30. [Google Scholar] [CrossRef]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mondal, M.; Chen, S.; Kerrigan, N.J. Recent Developments in Vinylsulfonium and Vinylsulfoxonium Salt Chemistry. Molecules 2018, 23, 738. https://doi.org/10.3390/molecules23040738
Mondal M, Chen S, Kerrigan NJ. Recent Developments in Vinylsulfonium and Vinylsulfoxonium Salt Chemistry. Molecules. 2018; 23(4):738. https://doi.org/10.3390/molecules23040738
Chicago/Turabian StyleMondal, Mukulesh, Shi Chen, and Nessan J. Kerrigan. 2018. "Recent Developments in Vinylsulfonium and Vinylsulfoxonium Salt Chemistry" Molecules 23, no. 4: 738. https://doi.org/10.3390/molecules23040738
APA StyleMondal, M., Chen, S., & Kerrigan, N. J. (2018). Recent Developments in Vinylsulfonium and Vinylsulfoxonium Salt Chemistry. Molecules, 23(4), 738. https://doi.org/10.3390/molecules23040738