An Improved Weighted Partial Least Squares Method Coupled with Near Infrared Spectroscopy for Rapid Determination of Multiple Components and Anti-Oxidant Activity of Pu-Erh Tea
Abstract
:1. Introduction
2. Results
2.1. Near Infrared Spectra
2.2. NIR Calibration Model Establish
3. Discussion
4. Materials and Methods
4.1. Sample Preparations and Reagents
4.2. Analysis Main Components and Their Anti-Oxidant Activity
4.2.1. Extraction and Determination of Total Flavonoids
4.2.2. Extraction and Determination of Tea Polysaccharide
4.2.3. Extraction and Determination of Tea Polyphenols
4.2.4. Preparation and Determination of Theanine Content
4.2.5. TAA-DPPH Assay
4.3. NIR Spectroscopy Measurements
4.4. Weighted Partial Least Squares Model
Supplementary Materials
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Lin, Y.-S.; Tsai, Y.-J.; Tsay, J.-S.; Lin, J.-K. Factors affecting the levels of tea polyphenols and caffeine in tea leaves. J. Agric. Food Chem. 2003, 51, 1864–1873. [Google Scholar] [CrossRef] [PubMed]
- Haas, D.; Pfeifer, B.; Reiterich, C.; Partenheimer, R.; Reck, B.; Buzina, W. Identification and quantification of fungi and mycotoxins from pu-erh tea. Int. J. Food Microbiol. 2013, 166, 316–322. [Google Scholar] [CrossRef] [PubMed]
- Lv, H.-P.; Zhang, Y.-J.; Lin, Z.; Liang, Y.-R. Processing and chemical constituents of pu-erh tea: A review. Food Res. Int. 2013, 53, 608–618. [Google Scholar] [CrossRef]
- Zhao, L.; Jia, S.; Tang, W.; Sheng, J.; Luo, Y. Pu-erh tea inhibits tumor cell growth by down-regulating mutant p53. Int. J. Mol. Sci. 2011, 12, 7581–7593. [Google Scholar] [CrossRef] [PubMed]
- Cai, X.; Fang, C.; Hayashi, S.; Hao, S.; Zhao, M.; Tsutsui, H.; Nishiguchi, S.; Sheng, J. Pu-erh tea extract ameliorates high-fat diet-induced nonalcoholic steatohepatitis and insulin resistance by modulating hepatic IL-6/STAT3 signaling in mice. J. Gastroenterol. 2016, 51, 819–829. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.-S.; Yu, H.M.; Chang, L.-W.; Yen, W.-J.; Duh, P.-D. Protective effects of pu-erh tea on LDL oxidation and nitric oxide generation in macrophage cells. LWT-Food Sci. Technol. 2008, 41, 1122–1132. [Google Scholar] [CrossRef]
- Deng, Y.-T.; Lin-Shiau, S.-Y.; Shyur, L.-F.; Lin, J.-K. Pu-erh tea polysaccharides decrease blood sugar by inhibition of α-glucosidase activity in vitro and in mice. Food Funct. 2015, 6, 1539–1546. [Google Scholar] [CrossRef] [PubMed]
- Li, G.; Wang, Q.; Qian, Y.; Zhou, Y.; Wang, R.; Zhao, X. Component analysis of pu-erh and its anti-constipation effects. Mol. Med. Rep. 2014, 9, 2003–2009. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Luo, Y.; Wang, P.; Zhao, M.; Li, L.; Hu, X.; Chen, F. Simultaneous determination of free amino acids in pu-erh tea and their changes during fermentation. Food Chem. 2016, 194, 643–649. [Google Scholar] [CrossRef] [PubMed]
- Thakur, V.S.; Gupta, K.; Gupta, S. The chemopreventive and chemotherapeutic potentials of tea polyphenols. Curr. Pharm. Biotechnol. 2012, 13, 191–199. [Google Scholar] [CrossRef] [PubMed]
- Fujiki, H. Two stages of cancer prevention with green tea. J. Cancer Res. Clin. 1999, 125, 589–597. [Google Scholar] [CrossRef]
- Anesini, C.; Ferraro, G.E.; Filip, R. Total polyphenol content and antioxidant capacity of commercially available tea (Camellia sinensis) in Argentina. J. Agric. Food Chem. 2008, 56, 9225–9229. [Google Scholar] [CrossRef] [PubMed]
- Gupta, J.; Siddique, Y.; Beg, T.; Ara, G.; Afzal, M. A review on the beneficial effects of tea polyphenols on human health. Int. J. Pharmacol. 2008, 4, 314–338. [Google Scholar]
- Lv, H.-P.; Zhu, Y.; Tan, J.-F.; Guo, L.; Dai, W.-D.; Lin, Z. Bioactive compounds from pu-erh tea with therapy for hyperlipidaemia. J. Funct. Foods 2015, 19, 194–203. [Google Scholar] [CrossRef]
- Chen, H.; Qu, Z.; Fu, L.; Dong, P.; Zhang, X. Physicochemical properties and antioxidant capacity of 3 polysaccharides from green tea, oolong tea, and black tea. J. Food Sci. 2009, 74, C469–C474. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.; Yuan, Q.; Saeeduddin, M.; Ou, S.; Zeng, X.; Ye, H. Recent advances in tea polysaccharides: Extraction, purification, physicochemical characterization and bioactivities. Carbohydr. Polym. 2016, 153, 663–678. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Zhang, M.; Qu, Z.; Xie, B. Antioxidant activities of different fractions of polysaccharide conjugates from green tea (Camellia sinensis). Food Chem. 2008, 106, 559–563. [Google Scholar] [CrossRef]
- Turkmen, N.; Velioglu, Y.S.; Sari, F.; Polat, G. Effect of extraction conditions on measured total polyphenol contents and antioxidant and antibacterial activities of black tea. Molecules 2007, 12, 484–496. [Google Scholar] [CrossRef] [PubMed]
- Ye, J.; Wang, W.; Ho, C.; Li, J.; Guo, X.; Zhao, M.; Jiang, Y.; Tu, P. Differentiation of two types of pu-erh teas by using an electronic nose and ultrasound-assisted extraction-dispersive liquid–liquid microextraction-gas chromatography-mass spectrometry. Anal. Methods 2016, 8, 593–604. [Google Scholar] [CrossRef]
- Ku, K.M.; Kim, J.; Park, H.-J.; Liu, K.-H.; Lee, C.H. Application of metabolomics in the analysis of manufacturing type of pu-erh tea and composition changes with different postfermentation year. J. Agric. Food Chem. 2009, 58, 345–352. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Zhang, C.-X.; Shao, C.-F.; Li, C.-W.; Liu, S.-H.; Peng, X.-P.; Xu, Y.-Q. Chemical fingerprint analysis for the quality evaluation of deepure instant pu-erh tea by HPLC combined with chemometrics. Food Anal. Methods 2016, 9, 3298–3309. [Google Scholar] [CrossRef]
- Zhang, L.; Li, N.; Ma, Z.-Z.; Tu, P.-F. Comparison of the chemical constituents of aged pu-erh tea, ripened pu-erh tea, and other teas using HPLC-DAD-ESI-MSn. J. Agric. Food Chem. 2011, 59, 8754–8760. [Google Scholar] [CrossRef] [PubMed]
- Casale, M.; Bagnasco, L.; Zotti, M.; Di Piazza, S.; Sitta, N.; Oliveri, P. A NIR spectroscopy-based efficient approach to detect fraudulent additions within mixtures of dried porcini mushrooms. Talanta 2016, 160, 729–734. [Google Scholar] [CrossRef] [PubMed]
- Redaelli, R.; Alfieri, M.; Cabassi, G. Development of a NIRS calibration for total antioxidant capacity in maize germplasm. Talanta 2016, 154, 164–168. [Google Scholar] [CrossRef] [PubMed]
- Sisouane, M.; Cascant, M.M.; Tahiri, S.; Garrigues, S.; El Krati, M.; Boutchich, G.E.L.K.; Cervera, M.L.; de la Guardia, M. Prediction of organic carbon and total nitrogen contents in organic wastes and their composts by infrared spectroscopy and partial least square regression. Talanta 2017, 167, 352–358. [Google Scholar] [CrossRef] [PubMed]
- Wold, H. Nonlinear iterative partial least squares (NIPALS) modelling: Some current developments. In Proceedings of the Third International Symposium on Multivariate Analysis, Dayton, OH, USA, 19–24 June 1972; pp. 383–407. [Google Scholar]
- Yu, S.; Xue, X.; Hong, D.; Ge, X.; Li, H.; Jing, L. Weighted partial least squares based on the error and variance of the recovery rate in calibration set. Spectrochim. Acta A 2017, 183, 138–143. [Google Scholar] [CrossRef] [PubMed]
- Fu, Y.; Peng, J.; Dong, X. Partial least squares with a regularized weight. J. Math. Chem. 2016, 54, 403–415. [Google Scholar] [CrossRef]
- Saudland, A.; Wagner, J.; Nielsen, J.P.; Munck, L.; Norgaard, L.; Engelsen, S.B. Interval partial least-squares regression (IPLS): A comparative chemometric study with an example from near-infrared spectroscopy. Appl. Spectrosc. 2000, 54, 413–419. [Google Scholar]
- Zou, X.; Li, Y.; Zhao, J. Using genetic algorithm interval partial least squares selection of the optimal near infrared wavelength regions for determination of the soluble solids content of “Fuji” apple. In Proceedings of the IEEE International Conference on Information Science & Engineering, Singapore, 10–13 December 2007; pp. 2308–2311. [Google Scholar]
- Li, Q.; Yan, Y.; Wang, H. Discriminative weighted sparse partial least squares for human detection. IEEE Trans. Intell. Transp. Syst. 2016, 17, 1062–1071. [Google Scholar] [CrossRef]
- Liu, H.; Ma, Z.; Han, J.; Chen, Z.; Zheng, Z. Regularized partial least squares for multi-label learning. Int. J. Mach. Learn. Cybern. 2018, 9, 335–346. [Google Scholar] [CrossRef]
- Ksouri, R.; Falleh, H.; Megdiche, W.; Trabelsi, N.; Mhamdi, B.; Chaieb, K.; Bakrouf, A.; Magné, C.; Abdelly, C. Antioxidant and antimicrobial activities of the edible medicinal halophyte Tamarix gallica L. and related polyphenolic constituents. Food Chem. Toxicol. 2009, 47, 2083–2091. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.-Y.; Lin, Y.-C.; Hsieh, C.-L. Evaluation of antioxidant activity of aqueous extract of some selected nutraceutical herbs. Food Chem. 2007, 104, 1418–1424. [Google Scholar] [CrossRef]
- Su, J.J.; Wang, X.Q.; Song, W.J.; Bai, X.L.; Li, C.W. Reducing oxidative stress and hepatoprotective effect of water extracts from pu-erh tea on rats with high-fat diet. Food Sci. Hum. Wellness 2016, 5, 199–206. [Google Scholar] [CrossRef]
- Chang, C.-C.; Yang, M.-H.; Wen, H.-M.; Chern, J.-C. Estimation of total flavonoid content in propolis by two complementary colorimetric methods. J. Food Drug Anal. 2002, 10, 178–182. [Google Scholar]
- Wang, Y.; Yang, Z.; Wei, X. Antioxidant activities potential of tea polysaccharide fractions obtained by ultra filtration. Int. J. Biol. Macromol. 2012, 50, 558–564. [Google Scholar] [CrossRef] [PubMed]
- Perva-Uzunalić, A.; Škerget, M.; Knez, Ž.; Weinreich, B.; Otto, F.; Grüner, S. Extraction of active ingredients from green tea (Camellia sinensis): Extraction efficiency of major catechins and caffeine. Food Chem. 2006, 96, 597–605. [Google Scholar] [CrossRef]
- Pereira, E.; Barros, L.; Ferreira, I.C.F.R. Chemical characterization of Ginkgo biloba L. and antioxidant properties of its extracts and dietary supplements. Ind. Crops Prod. 2013, 51, 244–248. [Google Scholar] [CrossRef]
- Yu, L.; Haley, S.; Perret, J.; Harris, M.; Wilson, J.; Qian, M. Free radical scavenging properties of wheat extracts. J. Agric. Food Chem. 2002, 50, 1619–1624. [Google Scholar] [CrossRef] [PubMed]
Sample Availability: Samples of the compounds analysis results are available from the authors. |
Indexes | Calibration Dataset | Prediction Dataset | ||||
---|---|---|---|---|---|---|
Concentration Range | Mean Value | Standard Deviation | Concentration Range | Mean Value | Standard Deviation | |
Tea polyphenol | 7.02–13.55 | 11.59 | 1.13 | 10.79–13.56 | 11.62 | 0.58 |
Tea polysaccharide | 0.065–0.33 | 0.21 | 0.069 | 0.17–0.32 | 0.22 | 0.045 |
Total flavonoid | 0.568–1.798 | 1.072 | 0.31 | 0.93–1.44 | 1.12 | 0.23 |
Theanine content | 5.32–19.41 | 8.809 | 2.74 | 6.03–13.84 | 10.24 | 2.79 |
Antioxidant activities | 0.25–0.73 | 0.49 | 0.15 | 0.38–0.72 | 0.47 | 0.10 |
Indexes | Evaluations | Raw | MSC | SNV | Smooth | Smooth + SNV | Smooth + MSC |
---|---|---|---|---|---|---|---|
Tea polyphenol | RMSEC | 0.3948 | 0.2515 | 0.2324 | 0.3557 | 0.2203 | 0.2441 |
R2cal | 0.8771 | 0.9062 | 0.9313 | 0.8965 | 0.9362 | 0.9113 | |
RMSEP | 0.4306 | 0.4026 | 0.3635 | 0.4185 | 0.3406 | 0.3985 | |
R2pre | 0.7484 | 0.7800 | 0.8207 | 0.7691 | 0.8239 | 0.7845 | |
Tea polysaccharide | RMSEC | 0.0252 | 0.0179 | 0.0154 | 0.0198 | 0.0155 | 0.0179 |
R2cal | 0.8259 | 0.8997 | 0.9051 | 0.8763 | 0.9025 | 0.8913 | |
RMSEP | 0.0428 | 0.0315 | 0.0216 | 0.0376 | 0.0265 | 0.0353 | |
R2pre | 0.7281 | 0.8094 | 0.8217 | 0.7855 | 0.8203 | 0.8052 | |
Total Flavonoid | RMSEC | 0.1205 | 0.0987 | 0.1028 | 0.1126 | 0.1005 | 0.1023 |
R2cal | 0.8363 | 0.8955 | 0.8869 | 0.8579 | 0.8829 | 0.8932 | |
RMSEP | 0.1521 | 0.1495 | 0.1551 | 0.1598 | 0.1518 | 0.1505 | |
R2pre | 0.7561 | 0.8283 | 0.8174 | 0.8051 | 0.8123 | 0.8215 | |
Theanine content | RMSEC | 1.093 | 1.106 | 0.9705 | 1.183 | 1.135 | 0.9909 |
R2cal | 0.8756 | 0.8614 | 0.8686 | 0.8705 | 0.8579 | 0.8630 | |
RMSEP | 1.167 | 1.118 | 1.093 | 1.128 | 1.125 | 1.130 | |
R2pre | 0.8101 | 0.8254 | 0.8638 | 0.8046 | 0.8200 | 0.8574 | |
Antioxidant Activities | RMSEC | 0.0541 | 0.0425 | 0.0346 | 0.0458 | 0.0326 | 0.0456 |
R2cal | 0.8259 | 0.8875 | 0.9179 | 0.8442 | 0.9126 | 0.8824 | |
RMSEP | 0.0862 | 0.812 | 0.0634 | 0.0816 | 0.0687 | 0.0693 | |
R2pre | 0.7864 | 0.8196 | 0.8582 | 0.7954 | 0.8556 | 0.8423 |
Indexes | Evaluations | Raw | MSC | SNV | Smooth | Smooth + SNV | Smooth + MSC |
---|---|---|---|---|---|---|---|
Tea polyphenol | RMSEC | 0.4087 | 0.2970 | 0.2685 | 0.3715 | 0.2241 | 0.2436 |
R2cal | 0.8647 | 0.9279 | 0.9410 | 0.88775 | 0.9589 | 0.9514 | |
RMSEP | 0.4053 | 0.3264 | 0.4068 | 0.4249 | 0.4532 | 0.3251 | |
R2pre | 0.7669 | 0.8190 | 0.7523 | 0.7625 | 0.7726 | 0.8288 | |
Tea polysaccharide | RMSEC | 0.0214 | 0.0188 | 0.0184 | 0.0223 | 0.0163 | 0.0192 |
R2cal | 0.8428 | 0.8782 | 0.8832 | 0.8300 | 0.9084 | 0.8736 | |
RMSEP | 0.03281 | 0.0234 | 0.0216 | 0.02761 | 0.0192 | 0.0216 | |
R2pre | 0.7681 | 0.8021 | 0.8217 | 0.7855 | 0.8403 | 0.8152 | |
Total Flavonoid | RMSEC | 0.1152 | 0.1001 | 0.0991 | 0.1195 | 0.0956 | 0.0849 |
R2cal | 0.8488 | 0.8839 | 0.8879 | 0.8374 | 0.8960 | 0.9177 | |
RMSEP | 0.1896 | 0.1333 | 0.1479 | 0.1592 | 0.1528 | 0.1225 | |
R2pre | 0.7861 | 0.8283 | 0.8174 | 0.7967 | 0.8023 | 0.8415 | |
Theanine content | RMSEC | 1.093 | 0.8049 | 0.7453 | 0.8850 | 0.8421 | 0.7745 |
R2cal | 0.8756 | 0.9096 | 0.9225 | 0.8908 | 0.9011 | 0.9163 | |
RMSEP | 1.167 | 1.082 | 1.095 | 1.331 | 1.317 | 1.309 | |
R2pre | 0.8109 | 0.8283 | 0.8537 | 0.7821 | 0.7853 | 0.7881 | |
Antioxidant Activities | RMSEC | 0.0378 | 0.0319 | 0.0300 | 0.0420 | 0.0355 | 0.03702 |
R2cal | 0.8936 | 0.9245 | 0.9333 | 0.8690 | 0.9066 | 0.8985 | |
RMSEP | 0.0782 | 0.0678 | 0.0587 | 0.0862 | 0.0652 | 0.0693 | |
R2pre | 0.8211 | 0.8556 | 0.8682 | 0.8054 | 0.8596 | 0.8329 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Z.; Xie, H.-l.; Chen, L.; Huang, J.-h. An Improved Weighted Partial Least Squares Method Coupled with Near Infrared Spectroscopy for Rapid Determination of Multiple Components and Anti-Oxidant Activity of Pu-Erh Tea. Molecules 2018, 23, 1058. https://doi.org/10.3390/molecules23051058
Liu Z, Xie H-l, Chen L, Huang J-h. An Improved Weighted Partial Least Squares Method Coupled with Near Infrared Spectroscopy for Rapid Determination of Multiple Components and Anti-Oxidant Activity of Pu-Erh Tea. Molecules. 2018; 23(5):1058. https://doi.org/10.3390/molecules23051058
Chicago/Turabian StyleLiu, Ze, Hua-lin Xie, Lin Chen, and Jian-hua Huang. 2018. "An Improved Weighted Partial Least Squares Method Coupled with Near Infrared Spectroscopy for Rapid Determination of Multiple Components and Anti-Oxidant Activity of Pu-Erh Tea" Molecules 23, no. 5: 1058. https://doi.org/10.3390/molecules23051058
APA StyleLiu, Z., Xie, H. -l., Chen, L., & Huang, J. -h. (2018). An Improved Weighted Partial Least Squares Method Coupled with Near Infrared Spectroscopy for Rapid Determination of Multiple Components and Anti-Oxidant Activity of Pu-Erh Tea. Molecules, 23(5), 1058. https://doi.org/10.3390/molecules23051058