Determination of Biogenic Amines in Seawater Using Capillary Electrophoresis with Capacitively Coupled Contactless Conductivity Detection
Abstract
:1. Introduction
2. Results
2.1. Chemicals and Reagents
2.2. Preparation of Standard Solutions
2.3. Seawater Samples
2.4. Preparation of Samples
2.5. Instrumentation and Electrophoretic Conditions
3. Results and Discussion
3.1. Capillary Electrophoresis Method Development
3.1.1. Selection of Background Electrolyte
3.1.2. Effect of the pH and Concentration of Background Electrolyte
3.1.3. Effect of Organic Modifiers
3.1.4. Effect of Instrumental Parameters
Effect of Separation Voltage
Effect of Capillary Temperature
Optimization of C4D Parameters
3.2. Analytical Characteristics of the Method
3.3. Analysis of Seawater Samples
4. Conclusions
Supplementary Materials
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Shalaby, A.R. Significance of biogenic amines to food safety and human health. Food Res. Int. 1996, 29, 675–690. [Google Scholar] [CrossRef]
- Erim, F.B. Recent analytical approaches to the analysis of biogenic amines in food samples. Trends Anal. Chem. 2013, 52, 239–247. [Google Scholar] [CrossRef]
- Önal, A.; Tekkeli, S.E.K.; Önal, C. A review of the liquid chromatographic methods for the determination of biogenic amines in foods. Food Chem. 2013, 138, 509–515. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Pan, Y.; Liu, Y.; Zhang, X.; Ye, J.; Chu, Q. Simultaneous determination of eight typical biogenic amines by CZE with capacitively coupled contactless conductivity detection. Chromatographia 2014, 77, 287–292. [Google Scholar] [CrossRef]
- Li, W.L.; Ge, J.Y.; Pan, Y.L.; Chu, Q.C.; Ye, J.N. Direct analysis of biogenic amines in water matrix by modified capillary zone electrophoresis with 18-crown-6. Microchim. Acta 2012, 177, 75–80. [Google Scholar] [CrossRef]
- Marks, H.S.; Anderson, C.R. Rapid determination and confirmation of biogenic amines in tuna loin by gas chromatography/mass spectrometry using ethylchloroformate derivative. J. AOAC Int. 2006, 89, 1591–1599. [Google Scholar] [PubMed]
- Płotka-Wasylka, J.; Simeonov, V.; Namieśnik, J. An in situ derivatization-dispersive liquid-liquid microextraction combined with gas-chromatography-mass spectrometry for determining biogenic amines in home-made fermented alcoholic drinks. J. Chromatogr. A 2016, 1453, 10–18. [Google Scholar] [CrossRef] [PubMed]
- Saaid, M.; Saad, B.; Hashim, N.H.; Ali, A.S.M.; Saleh, M.I. Determination of biogenic amines in selected Malaysian food. Food Chem. 2009, 113, 1356–1362. [Google Scholar] [CrossRef]
- Gosetti, F.; Mazzucco, E.; Gennaro, M.C.; Marengo, E. Simultaneous determination of sixteen underivatized biogenic amines in human urine by HPLC-MS/MS. Anal. Bioanal. Chem. 2013, 405, 907–916. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.S.; Chen, S.; Xu, Y.Z.; Du, W.; Liu, B.F. Determination of biogenic amines by capillary electrophoresis coupling with continuous wave-based multiphoton excited fluorescence detection. J. Sep. Sci. 2008, 37, 1006–1009. [Google Scholar]
- An, D.; Chen, Z.; Zheng, J.; Chen, S.; Wang, L.; Huang, Z.; Weng, L. Determination of biogenic amines in oysters by capillary electrophoresis coupled with electrochemiluminescence. Food Chem. 2015, 168, 1–6. [Google Scholar] [CrossRef] [PubMed]
- De La Torre, C.A.L. Chromatographic methods for biogenic amines determination in foods of animal origin. Braz. J. Vet. Res. Anim. Sci. 2013, 50, 430–446. [Google Scholar]
- Kvasnička, F.; Voldřich, M. Determination of biogenic amines by capillary zone electrophoresis with conductometric detection. J. Chromatogr. A 2006, 1103, 145–149. [Google Scholar] [CrossRef] [PubMed]
- Mark, J.J.P.; Kumar, A.; Demattio, H.; Hoffmann, W.; Malik, A.; Matysik, F.M. Combination of headspace single-drop microextraction, microchip electrophoresis and contactless conductivity detection for the determination of aliphatic amines in the biodegradation process of seafood samples. Electroanalysis 2011, 23, 161–168. [Google Scholar] [CrossRef]
- Lecoeur-Lorin, M.; Delépée, R.; Morin, P. Sensitivity improvement by using contactless conductivity rather than indirect UV detection for the determination of enantiomeric purity of amines by CE. Electrophoresis 2009, 30, 487–498. [Google Scholar] [CrossRef] [PubMed]
- Adımcılar, V.; Öztekin, N.; Erim, F.B. A direct and sensitive analysis method for biogenic amines in dairy products by capillary electrophoresis coupled with contactless conductivity detection. Food Anal. Methods 2018, 11, 1374–1379. [Google Scholar] [CrossRef]
- Gong, X.Y.; Hauser, P.C. Determination of different classes of amines with capillary zone electrophoresis and contactless conductivity detection. Electrophoresis 2006, 27, 468–473. [Google Scholar] [CrossRef] [PubMed]
- Hai, N.D.; Tuan, V.Q.; Loc, D.Q.; Hai, N.H.; Trinh, C.D. Differential C4D sensor for conductive and non-conductive fluidic channel. Microsyst. Technol. 2016, 22, 2511–2520. [Google Scholar] [CrossRef]
- Donthuan, J.; Yunchalard, S.; Srijaranai, S. Vortex-assisted surfactant-enhanced-emulsification liquid-liquid microextraction of biogenic amines in fermented foods before their simultaneous analysis by high-performance liquid chromatography. J. Sep. Sci. 2014, 37, 3164–3173. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Li, C.; Li, Y.; Hu, Z.; Chen, X. Rapid and ultrasensitive determination of ephedrine and pseudoephedrine derivatizated with 5-(4,6-dichloro-s-triazin-2-ylamino) fluorescein by micellar electrokinetic chromatography with laser-induced fluorescence detection. J. Chromatogr. A 2006, 1102, 273–279. [Google Scholar] [CrossRef] [PubMed]
- Lin, W.-C.; Lin, C.-E.; Lin, E.C. Capillary zone electrophoretic separation of biogenic amines influence of organic modifier. J. AOAC Int. 1996, 755, 142–146. [Google Scholar] [CrossRef]
- Dossi, N.; Toniolo, R.; Pizzariello, A.; Susmel, S.; Bontempelli, G. A modified electrode for the electrochemical detection of biogenic amines and their amino acid precursors separated by microchip capillary electrophoresis. Electrophoresis 2011, 32, 906–912. [Google Scholar] [CrossRef] [PubMed]
- Gugliucci, A. Polyamines as clinical laboratory tools. Clin. Chim. Acta 2004, 344, 23–35. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Yu, H.; Li, H.; Ding, F.; He, P.; Fang, Y. Simultaneous determination of food-related biogenic amines and precursor amino acids by micellar electrokinetic capillary chromatography with electrochemical detection. Food Chem. 2003, 83, 311–317. [Google Scholar] [CrossRef]
- Cinquina, A.L.; Calì, A.; Longo, F.; de Santis, L.; Severoni, A.; Abballe, F. Determination of biogenic amines in fish tissues by ion-exchange chromatography with conductivity detection. J. Chromatogr. A 2004, 1032, 73–77. [Google Scholar] [CrossRef] [PubMed]
- Fang, H.; Vickrey, T.L.; Venton, B.J. Analysis of biogenic amines in a single Drosophila larva brain by capillary electrophoresis with fast-scan cyclic voltammetry detection. Anal. Chem. 2011, 83, 2258–2264. [Google Scholar] [CrossRef] [PubMed]
- Daniel, D.; dos Santos, V.B.; Vidal, D.T.R.; do Lago, C.L. Determination of biogenic amines in beer and wine by capillary electrophoresis-tandem mass spectrometry. J. Chromatogr. A 2015, 1416, 121–128. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.; Yang, X.; Wang, E. Determination of biogenic amines by capillary electrophoresis with pulsed amperometric detection. J. Chromatogr. A 2003, 1005, 189–195. [Google Scholar] [CrossRef]
- Chu, Q.C.; Guan, Y.Q.; Geng, C.H.; Ye, J.N. Miniaturized capillary electrophoresis with amperometric detection: Fast separation and detection of bioactive amines. Anal. Lett. 2006, 39, 729–740. [Google Scholar] [CrossRef]
Sample Availability: Samples of the compounds are not available from the authors. |
BA | Structure | pK Value |
---|---|---|
Putrescine (PUT) | pK1 = 10.8; pK2 = 9.4 | |
Cadaverine (CAD) | pK1 = 11.0; pK2 = 9.9 | |
Spermidine (SPD) | pK1 = 9.5; pK2 = 10.8; pK3 = 11.6 | |
Spermine (SPM) | pK1 = 11.50; pK2 = 10.95; pK3 = 9.79; pK4 = 8.90 | |
Histamine (HIS) | pK1 = 9.8; pK2 = 6.0 | |
Tryptamine (TRY) | pK = 10.2 | |
Tyramine (TYR) | pK = 9.6 | |
Phenylethylamine (PEA) | pK = 10.0 |
Background electrolyte | 400 mmol L−1 malic acid |
Applied voltage | 25 kV (normal polarity) |
Capillary temperature | 24 °C |
Capillary | Bare fused silica (50 µm i.d. × 87 cm length) |
Injection time | 5 s |
C4D parameters | Amplitude, 50 V; frequency, 600 kHz |
BAs | Linear Range (mg L−1) | Regression Equation | R2 | LOD (µg L−1) |
---|---|---|---|---|
PUT | 1.0–100 | y = 0.375x + 3.715 | 0.988 | 27 |
CAD | 1.0–50 | y = 0.465x + 2.400 | 0.989 | 22 |
HIS | 5.0–100 | y = 0.367x + 6.082 | 0.981 | 28 |
SPD | 1.0–100 | y = 0.362x + 3.519 | 0.982 | 29 |
SPM | 1.0–100 | y = 0.430x + 3.725 | 0.991 | 24 |
PEA | 2.0–100 | y = 0.490x + 2.849 | 0.982 | 21 |
TYR | 5.0–100 | y = 0.626x + 0.104 | 0.985 | 16 |
TRY | 2.0–100 | y = 0.473x + 1.193 | 0.996 | 27 |
BAs | Spiked Concentration, mg L−1 | ||
---|---|---|---|
10 | 25 | 50 | |
PUT | 78.6 | 83.4 | 89.3 |
CAD | 80.5 | 82.3 | 92.7 |
HIS | 86.0 | 87.4 | 85.7 |
SPD | 76.6 | 80.0 | 89.9 |
SPM | 82.5 | 80.6 | 88.4 |
PEA | 84.3 | 87.8 | 91.9 |
TYR | 87.6 | 88.4 | 90.8 |
TRY | 90.0 | 91.6 | 89.2 |
Matrix | BAs | Detector | LOD | Recovery (%) | References |
---|---|---|---|---|---|
Rice spirit | TYR, TRY | Electrochemical | 1.8 × 10−7 mol L−12.3 × 10−7 mol L−1 | 102 | [24] |
Tuna fish | PUT, CAD, SPD, HIS | Conductivity | 0.15–50 mg kg−1 | 92–102 | [25] |
Drosophila brains | TYR | Cyclic Voltammetry | 2.5 nM | - | [26] |
Beer | TYR | Electrochemical | 4.3 mg L−1 | - | [22] |
BeerWine | PUT, CAD, HIS, SPD, SPM, PEA, TYR, TRY | MS/MS | 1–2 µg L−1 | 87–113 | [27] |
Water | PUT, CAD, HIS, SPD, SPM, PEA, TYR, TRY | C4D | 44.3–149 µg L−1 | 86.9–104 | [4] |
Milk | PUT, CAD, SPD, SPM | Amperometry | 10−7–4 × 10−7 M | - | [28] |
Water | CAD, HIS, SPD, SPM, PEA, TYR, TRY | Amperometry | 10.1–42.6 µg L−1 | 71.6–101 | [5] |
BeerWineSalamiCheese | PUT, CAD, HIS, TRY, TYR | Conductometry | 2–5 µmol L−1 | 86–103 | [13] |
BeerWine | TRY, TYR | Amperometry | 5.8 × 10−7 M15.0 × 10−7 M | 97.596 | [29] |
Fermented dairy products | CAD, HIS, SPD, TYR, PUT | C4D | 41–98 µg L−1 | 89–103 | [16] |
Sea water | PUT, CAD, HIS, SPD, SPM, PEA, TYR, TRY | C4D | 16–29 µg L−1 | 77–93 | This study |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gubartallah, E.A.; Makahleh, A.; Quirino, J.P.; Saad, B. Determination of Biogenic Amines in Seawater Using Capillary Electrophoresis with Capacitively Coupled Contactless Conductivity Detection. Molecules 2018, 23, 1112. https://doi.org/10.3390/molecules23051112
Gubartallah EA, Makahleh A, Quirino JP, Saad B. Determination of Biogenic Amines in Seawater Using Capillary Electrophoresis with Capacitively Coupled Contactless Conductivity Detection. Molecules. 2018; 23(5):1112. https://doi.org/10.3390/molecules23051112
Chicago/Turabian StyleGubartallah, Elbaleeq A., Ahmad Makahleh, Joselito P. Quirino, and Bahruddin Saad. 2018. "Determination of Biogenic Amines in Seawater Using Capillary Electrophoresis with Capacitively Coupled Contactless Conductivity Detection" Molecules 23, no. 5: 1112. https://doi.org/10.3390/molecules23051112
APA StyleGubartallah, E. A., Makahleh, A., Quirino, J. P., & Saad, B. (2018). Determination of Biogenic Amines in Seawater Using Capillary Electrophoresis with Capacitively Coupled Contactless Conductivity Detection. Molecules, 23(5), 1112. https://doi.org/10.3390/molecules23051112