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Abstract: With their versatile molecular topology and aromaticity, porphyrinoid systems combine
remarkable chemistry with interesting photophysical properties and nonlinear optical properties.
Hence, the field of application of porphyrinoids is very broad ranging from near-infrared dyes to
opto-electronic materials. From previous experimental studies, aromaticity emerges as an important
concept in determining the photophysical properties and two-photon absorption cross sections of
porphyrinoids. Despite a considerable number of studies on porphyrinoids, few investigate the
relationship between aromaticity, UV/vis absorption spectra and nonlinear properties. To assess
such structure-property relationships, we performed a computational study focusing on a series
of Hückel porphyrinoids to: (i) assess their (anti)aromatic character; (ii) determine the fingerprints
of aromaticity on the UV/vis spectra; (iii) evaluate the role of aromaticity on the NLO properties.
Using an extensive set of aromaticity descriptors based on energetic, magnetic, structural, reactivity
and electronic criteria, the aromaticity of [4n+2] π-electron porphyrinoids was evidenced as was
the antiaromaticity for [4n] π-electron systems. In agreement with previous studies, the absorption
spectra of aromatic systems display more intense B and Q bands in comparison to their antiaromatic
homologues. The nature of these absorption bands was analyzed in detail in terms of polarization,
intensity, splitting and composition. Finally, quantities such as the average polarizability and its
anisotropy were found to be larger in aromatic systems, whereas first and second hyperpolarizability
are influenced by the interplay between aromaticity, planarity and molecular symmetry. To conclude,
aromaticity dictates the photophysical properties in porphyrinoids, whereas it is not the only factor
determining the magnitude of NLO properties.
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1. Introduction

Porphyrinoids are macrocyclic compounds consisting of five-membered rings connected either
directly or by bridging atoms, which usually exhibit a high degree of π-conjugation [1]. The constituent
rings are pyrrole, furan, thiophene or other heterocyclic subunits, whereas the meso bridges are usually
carbon atoms or linear chains thereof. As such, the term “porphyrinoid” covers a large number of
compounds that share some distinctive structural features with the parent porphyrin, a tetrapyrrolic
macrocycle with a meso-carbon bridge [2]. Among porphyrinoids, expanded porphyrins consisting of
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more than four pyrrole rings or related heterocyclic subunits have attracted considerable attention in
the last decade due to their exceptional nonlinear optical properties, rich coordination properties and
versatile aromaticity [3]. The extended π-conjugation system of expanded porphyrins enhances their
conformational flexibility and they are ideal platforms to realize Möbius aromatic and antiaromatic
species as well as figure-eight structures [4]. This huge structural diversity has led to a range of
applications, including ion sensors [5], near-infrared (NIR) dyes [6], materials with two-photon
absorption [7] and other nonlinear optical (NLO) properties [8] and molecular switches [9]. Given the
tunable electronic, optical and photophysical properties of porphyrinoids, these systems constitute a
promising building block for molecular optoelectronic devices [10].

Nowadays, expanded porphyrins are recognized as the test bed for investigating the correlation
between molecular properties and (anti)aromaticity, since they provide congeneric macrocycles with
[4n+2] and [4n] π-electrons that can be reversibly interconverted by two-electron redox reactions.
This unique feature has been used to explore the relationship between aromaticity and various
photophysical properties, including absorption and emission spectral features, excited-state lifetime
and fluorescence [11]. Through these experimental studies, it is recognized that aromatic expanded
porphyrins exhibit a very distinct absorption spectrum with intense and sharp B-like bands, also known
as the Soret-like band, together with weak Q-like bands [12]. On the other hand, antiaromatic expanded
porphyrins exhibit significantly attenuated absorption bands in the visible region with characteristic
absorption tailing over the NIR region. These spectroscopic features are usually understood in
terms of the symmetry and degeneracy of the frontiers molecular orbitals (MO) [13]. Moreover,
excited-state dynamics of expanded porphyrins are dependent on their aromaticity, in such a way
that larger excited-state lifetimes and fluorescence behavior is linked to aromatic structures [14].
In fact, the spectral changes measured upon excitation of the singlet ground state to the triplet-excited
state in several expanded porphyrins proved experimentally Baird´s rule for the first time [15].
As such, expanded porphyrins provide the elusive “yin yang pair” to prove the reversal of Hückel
(anti)aromaticity in the lowest triplet state [16].

In addition to spectroscopic features, aromaticity emerges as the key concept determining the
NLO properties of porphyrinoids. For a series of closely related expanded porphyrins, a strong
correlation between two-photon absorption (TPA) cross-sections values and the Nucleus-Independent
Chemical Shift (NICS) values was found [14,17]. Specifically, compounds with greater aromatic
character were found to give rise to higher TPA cross-section values, which is a third-order NLO
process. Relative to the parent porphyrin, expanded porphyrins exhibit spectacularly high TPA
cross-section values [7,18,19], so they are very promising candidates for biomedical applications,
such as photodynamic therapy [20]. Moreover, several studies found a close relationship between
molecular topology, aromaticity and NLO properties in expanded porphyrins [11,12] and demonstrate
that Hückel-to-Möbius topological switches behave as efficient optical switches [21–23]. Besides NLO
properties, our recent work highlights the importance of the macrocyclic aromaticity in determining
the electron transport properties of expanded porphyrins; so redox-triggered aromaticity switches act
as efficient conductance switching elements for molecular electronic devices [24].

From all these experimental and theoretical studies, aromaticity emerges as a guiding concept
determining the electronic, photophysical and NLO properties of expanded porphyrins [11,25].
Nevertheless, aromaticity is not an observable and it lacks a rigorous definition [26–28]. Overall,
aromatic species exhibit substantial energetic stabilization [29], low reactivity [30], bond-length
equalization [31], highly negative nucleus-independent chemical shifts (NICS), exalted magnetic
susceptibility, diatropic induced ring currents [32] and electron delocalization [33]. Its different
manifestations of aromaticity have led to multiple ways for assessing the aromatic or antiaromatic
character of molecules, resulting in a plethora of aromaticity indices based on energetic, reactivity
structural, magnetic and electronic criteria. Accordingly, most of the authors advise to use a
set of aromaticity descriptors based on different physical properties to characterize (anti)aromatic
compounds [27,34,35]. When using a large set of aromaticity indicators, conclusions regarding the
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aromaticity are much reliable, especially if all criteria provide the same trends. Recently, the aromaticity
of porphyrinoids was shown to be particularly “multifaceted”, resulting in large discrepancies between
energetic and magnetic descriptors [36]. Thus, the quantification of aromaticity in porphyrinoids
remains challenging.

In our recent computational research on expanded porphyrins, we have proposed a set of
descriptors for measuring the global aromaticity of porphyrinoids based on energetic, structural,
magnetic and reactivity criteria [37–39]. Although some discrepancies exist between the different
indices, overall the energetic, reactivity, structural, magnetic and electronic indices nicely agree
on the general (anti)aromatic features of these compounds in agreement with the annulene
model [40,41]. Nowadays, the annulene model is widely used to predict qualitatively the aromaticity
of porphyrinoids [42–44]. According to this model, the ring system of a porphyrinoid is treated as a
bridged heteroannulene, so aromaticity can be predicted in a qualitative way by formally applying
the [4n+2] Hückel rule to the annulene substructure [45,46]. In the case of all-pyrrole porphyrinoids
containing no confused rings, the annulene-type conjugation pathway (CP) passes through the iminic
nitrogens and bypasses the amino NH groups [47]. Nevertheless, these macrocycles sustain multiple
conjugation pathways and, in principle, Hückel´s rule should not be applied to polycyclic π-systems.
By this reason, we have investigated the conjugated pathways in porphyrinoid compounds using
several local aromaticity indicators [48], including the recently introduced AV1245 [49] and AVmin [50]
electronic indices. All indices agree on the general features of these compounds such as the fulfilment
of Hückel´s rule, but only AVmin is capable of recognizing the annulene pathway as the most aromatic
one in all studied porphyrinoids. A careful examination of our results shows that some indices
overestimate the aromaticity in the pathways because they are based on average values and, therefore,
conceal disconnected fragments that are responsible for the loss of aromaticity.

Herein, we examine the aromaticity of Hückel porphyrinoids with varying number of π-electrons
(Figure 1). The selected porphyrinoids involves tetra- and pentapyrrolic macrocycles in which
the preferred conformation is expected to be a convex conformation with all inward-pointing
pyrrole subunits [1]. While the polygon closed by the smallest macrocyclic circuit is actually
concave, the polygon formed by meso positions and centroids of cyclic subunits is convex (Figure 2).
Among tetraphyrins, the archetypal porphyrin (18P) and porphycene (18Py) are considered together
with the unstable norcorrole (16N). Besides, the doubly oxidized [51] and reduced [52] congeners
of the regular porphyrin are also investigated with 16 π- and 20 π-electronic structures (16P and
20P), respectively. Among pentapyrrolic macrocycles, orangarin (20O), smaragdyrin (22S) and
isosmaragdyrin (22I) were selected since the free curvature values are smaller than that of porphyrins
and consequently yield only convex conformations that are nearly planar [1]. Additionally, sapphyrin
with four meso-carbon bridges (22Sp) was also included in the test set since this is one of the most
extensively investigated expanded porphyrins from the experimental point of view [53]. However,
the conformational preferences of sapphyrins do not follow a simple pattern, and two conformations
have been observed experimentally, corresponding to a convex and a concave structure, the later
containing an inverted pyrrole ring. The relative stability of these conformers depends on peripheral
substitution, core modifications, and protonation state, among others [1,54]. Porphyrinoids with
large conformational flexibility such as regular pentaphyrins and hexaphyrins are not considered
here since Hückel, Möbius and twisted-Hückel topologies are feasible depending on the conditions
and substitution.
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Figure 1. Selected Hückel porphyrinoids and their expected aromaticity according to the annulene 
model. The annulene-type conjugation pathway is depicted with bold colored bonds. 

 
Figure 2. Hückel conformations computed for different porphyrinoids (top and side views). Red five-
membered rings are linked to aromatic structures, whereas green ones to antiaromatic configurations. 
The symmetry point group together with a schematic representation of the convex conformer are also 
shown. 

First, the aromaticity of the selected Hückel porphyrinoids has been quantified using a large set 
of aromaticity descriptors based on energetic, magnetic, structural, reactivity and electronic criteria. 
As such, the validity of the annulene model and the performance of the different indices to describe 
Hückel aromaticity in prototypical porphyrinoids are first assessed in detail. Secondly, we investigate 
the fingerprints of (anti)aromaticity on the spectroscopic features, particularly on the absorption 
spectra. Finally, motivated by the invoked influence of the aromaticity on the TPA cross-section 
values [14,17], the structure–property relationship between aromaticity and nonlinear optical 
properties have been established for these porphyrinoids. Our main aim is to assess the role of 
aromaticity in determining the photophysical and NLO properties of Hückel porphyrinoids. 
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Figure 1. Selected Hückel porphyrinoids and their expected aromaticity according to the annulene
model. The annulene-type conjugation pathway is depicted with bold colored bonds.

Molecules 2018, 23, x 4 of 27 

 

 
Figure 1. Selected Hückel porphyrinoids and their expected aromaticity according to the annulene 
model. The annulene-type conjugation pathway is depicted with bold colored bonds. 

 
Figure 2. Hückel conformations computed for different porphyrinoids (top and side views). Red five-
membered rings are linked to aromatic structures, whereas green ones to antiaromatic configurations. 
The symmetry point group together with a schematic representation of the convex conformer are also 
shown. 

First, the aromaticity of the selected Hückel porphyrinoids has been quantified using a large set 
of aromaticity descriptors based on energetic, magnetic, structural, reactivity and electronic criteria. 
As such, the validity of the annulene model and the performance of the different indices to describe 
Hückel aromaticity in prototypical porphyrinoids are first assessed in detail. Secondly, we investigate 
the fingerprints of (anti)aromaticity on the spectroscopic features, particularly on the absorption 
spectra. Finally, motivated by the invoked influence of the aromaticity on the TPA cross-section 
values [14,17], the structure–property relationship between aromaticity and nonlinear optical 
properties have been established for these porphyrinoids. Our main aim is to assess the role of 
aromaticity in determining the photophysical and NLO properties of Hückel porphyrinoids. 
  

N

NH N

HN

18P

[18]
T 
E 
T 
R 
A 

N
HN

NH

N

HN

20O

HN
H
N

NH

HNN

[20]

P 
E 
N 
T 
A 

22S

smaragdyrin

[22]

orangarin

porphyrin

22I

isosmaragdyrin

aromatic

antiaromatic

N
NH

NH

HN

HN

[22]
H
N

N

HN

NH

N

[22]

sapphyrin

N

N N

N

16P

[16]

oxidized porphyrin
20P

reduced porphyrin

NH

NH HN

HN

[20]

N

NH N

HN

18Py

[18]

porphycene

N

NH N

HN

16N

[16]

norcorrole

22Sp

Figure 2. Hückel conformations computed for different porphyrinoids (top and side views).
Red five-membered rings are linked to aromatic structures, whereas green ones to antiaromatic
configurations. The symmetry point group together with a schematic representation of the convex
conformer are also shown.

First, the aromaticity of the selected Hückel porphyrinoids has been quantified using a large set
of aromaticity descriptors based on energetic, magnetic, structural, reactivity and electronic criteria.
As such, the validity of the annulene model and the performance of the different indices to describe
Hückel aromaticity in prototypical porphyrinoids are first assessed in detail. Secondly, we investigate
the fingerprints of (anti)aromaticity on the spectroscopic features, particularly on the absorption spectra.
Finally, motivated by the invoked influence of the aromaticity on the TPA cross-section values [14,17],
the structure–property relationship between aromaticity and nonlinear optical properties have been
established for these porphyrinoids. Our main aim is to assess the role of aromaticity in determining
the photophysical and NLO properties of Hückel porphyrinoids.
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2. Results and Discussion

2.1. Structure-Aromaticity Relationship in Hückel Porphyrinoids

The three-dimensional structures of the most stable conformations of porphyrin (18P), porphycene
(18Py), oxidized porphyrin (16P), reduced porphyrin (20P), norcorrole (16N), sapphyrin (22Sp),
orangarin (20O), smaragdryin (22S) and isosmaragdyrin (22I) are shown in Figure 2. The symmetry
point group of the different structures is D2h for 18P, C2h for 18Py, C2v for 20O, C2 for 16N, Cs for
22I and 22Sp and C1 for 22S. Upon two-electron redox reactions, the symmetry point group of the
porphyrin changes to an S4 structure for 16P and Ci for 20P. In all the porphyrinoids, a Hückel
untwisted topology is preferred with no inverted pyrrole rings. In the case of the sapphyrin
(22Sp), two different conformations were considered, as well different tautomers for each conformer
(Figure S1). According to our relative energies, the convex structure with no inverted pyrrole rings is
the most stable for the unsubstituted neutral sapphyrin and the inversion of a pyrrole ring increases
by ca. 10 kcal mol−1 the energy. The convex conformations of 18P, 18Py, 20O and 22Sp are totally
planar and ring-strain free (Φp = 0 and Π = 1), while the structures of 16N and 16P are highly distorted
from planarity as indicated by the torsional strain descriptors Φp and Π (Table 1). The smallest
porphyrinoid included in our set 16N, containing just two meso-bridges, increases the torsional ring
strain and precludes an effective π-conjugation (Φp = 31.7 and Π = 0.49), what can be linked to the
instability of this macrocycle. For the pentapyrrolic macrocycles, all the energy minima are relatively
planar with an efficient π-conjugation, as denoted by the low Φp and large π-conjugation index (Π).
Since the number of π-electrons along the annulene-type conjugation pathway is different, the selected
porphyrinoids provide an optimum test bed for investigating the correlation between (anti)aromaticity
and nonlinear optical properties and spectroscopic features.

To provide further insight into the structure-aromaticity relationship in Hückel porphyrinoids,
several aromaticity descriptors based on distinct criteria were computed for the different systems.
The degree of global aromaticity in tetrapyrroles (18P, 18Py, 16P, 20P and 16N) and pentapyrroles
(20O, 22S, 22I and 22Sp) has been quantified using reactivity (∆η) and magnetic [Λ, NICS(0), NICS(1)
and NICSzz(1)] descriptors and they are collected in Table 1, together with the torsional descriptors
(Π and Φp) and the HOMO-LUMO energy gap (∆EH-L). Each of these aromaticity descriptors has
their advantages and limitations [35,41], so it is advisable to use a set of indices based on different
physicochemical properties to characterize (anti)aromatic compounds. When a large set of aromaticity
indicators is used, conclusions are much more reliable, especially when the different criteria agree on
the (anti)aromatic character for the set of compounds analyzed [41].

In agreement with the annulene model, all the Hückel porphyrinoids with [4n+2] π-electrons
(18P, 18Py, 22S, 22Sp and 22I) are highly aromatic, with positive ∆η values, highly negative Λ and
NICS values as well as bond-delocalized structures with HOMA values close to 0.9. By contrast, 16P,
20P, 16N and 20O are antiaromatic with negative ∆η values and paratropic ring currents, as denoted
by the positive NICS-based indices and Λ. From all the aromaticity descriptors, the energetic index is
the less reliable. The uncorrected ISE values are positive (Table S1) for all Hückel porphyrinoids, which
is mainly due to the unbalanced syn-anti diene conformations at both sides of the reaction scheme.
As such, the application of syn-anti corrections is needed for the evaluation of the energetic descriptor,
which are evaluated as the energy difference between the dihydrogen derivative of the meso-methyl
octaphyrin and its respective nonaromatic isomer [55]. However, most of the dihydrogen derivatives
of the methylene isomers suffer drastic structural changes during the optimization step, resulting
in biased ISEcorr values. By this reason, 16N and 20O exhibits a positive ISEcorr values despite its
antiaromaticity. By contrast, the evaluation of the Λ and ∆η does not require syn/anti corrections,
so the isomerization method is a more effective approach for evaluating the exaltation and relative
hardness of porphyrinoids. As such, 16N and 20O exhibit negative relative hardness and positive
exaltation in full agreement with the positive NICS-based indices.
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Besides energetic, magnetic and structural descriptors, the recently-developed electronic indices
for large circuits [AV1245 and AVmin] have been evaluated (Table 1). AV1245 index measures the
average delocalization in bonds 1–2 and 4–5 along a ring of more than six members [49]. The four-center
multicenter indices (including atoms in positions 1, 2, 4 and 5) of each consecutive five-atom fragment
in the circuit are averaged out in the AV1245 index. In our recent study, AVmin, the minimal absolute
value of the aforementioned four-center MCI values along the ring, was shown to be even a better
electronic descriptor of aromaticity since it is not based on average values [48]. Both indices do not
rely on reference values and they do not suffer from large numerical precision errors. As can be
inferred from the electronic indices in Table 1, aromatic porphyrinoids (18P, 18Py, 22Sp, 22S and 22I)
exhibit values of AV1245 larger than 2, together with large AVmin values. By contrast, antiaromatic 16P,
20P, 16N and 20O present low values for both indices, supporting that the extent of transferability of
the delocalized electrons between bonds 1–2 and 4–5 is small, as expected in antiaromatic systems.
In addition, from the ∆EH-L values, it is clear that aromatic porphyrinoids exhibit significantly larger
HOMO-LUMO gap than antiaromatic porphyrinoids, in agreement with previous studies [8,13,24].

Table 1. Energetic, reactivity, magnetic, structural and electronic properties of unsubstituted
porphyrinoids a.

πe b ∆η Λ NICS(0) NICS(1) NICSzz(1) HOMA Π Φp ∆EH-L
c AV1245 d AV min

d

16N −3.0 78.8 23.1 18.9 62.3 0.610 0.44 31.7 3.76 1.262 0.136
16P −11.9 27.5 9.4 7.6 29.2 0.634 0.74 20.2 4.15 0.732 0.294
18P 9.2 −175.8 −14.9 −13.7 −38.5 0.880 1.00 0.0 4.75 2.139 1.271

18Py 9.8 −147.0 −13.3 −12.5 −13.9 0.878 0.99 0.0 4.07 2.114 1.399
20P −17.8 156.3 18.7 16.7 52.4 0.641 0.93 2.8 3.71 1.226 0.856
20O −13.9 128.6 16.3 14.0 44.6 0.780 1.00 0.0 3.27 1.352 0.267
22S 2.2 −140.6 −9.6 −9.2 −24.6 0.892 0.88 10.3 4.25 2.066 0.794

22Sp 13.7 −249.6 −14.3 −13.4 −37.7 0.882 1.00 0.0 4.03 2.124 1.137
22I 1.9 −249.1 −13.6 −12.8 −35.7 0.901 0.91 8.8 3.85 2.435 0.963

a ∆η are given in kcal mol−1, Λ in ppm cgs and NICS indices in ppm. b Number of π-electrons along the
classical conjugation pathway. c HOMO-LUMO energy difference (in eV) evaluated from CAM-B3LYP single-point
calculations. d The electronic aromaticity indices were computed along the annulene conjugation pathway.

To further assess the (anti)aromaticity of the different Hückel porphyrinoids, the so-called AICD
(anisotropy of the induced current density) plots were evaluated (Figure 3 and Figure S2) [56]. These
plots display the density and the direction of the induced ring current when an external magnetic
field is applied, usually perpendicularly to the π-system [57]. To distinguish between diatropic and
paratropic ring currents, the current density vectors are plotted onto the AICD isosurface. From these
plots, it is clear that aromatic species (18P, 18Py, 22S, 22Sp and 22I) display diatropic ring currents
(clockwise current density vectors), while antiaromatic porphyrinoids (16P, 20P, 16N and 20O) display
paratropic ring currents (anticlockwise current density vectors). Therefore, there is a strong relationship
between the number of π-electrons on the annulene-type conjugation pathway and the aromaticity of
our selected porphyrinoids.

Beside the direction of the current density vectors, the AICD plot of aromatic and antiaromatic
systems differ in global shape and in its evolution upon increasing the isosurface values. For instance,
the AICD plot of 16N and 20O are characterized by a significantly higher density in the inner circuit
than their aromatic counterparts. This trend is enhanced upon increasing gradually the isovalue from
0.03 a.u. to 0.11 a.u. Until an isovalue of 0.09 a.u., the annulene pathway is still continuous for 18P
(Figure 4), whereas the AICD surface of the inner circuit passing through the pyrrole ring starts to
break for an isovalue equal to 0.07 a.u. By contrast, the AICD plot of 20O going through the annulene
pathway is already discontinuous at 0.07 a.u. while the inner circuit is still intact at 0.11 a.u.
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2.2. Photophysical Properties of Porphyrinoids

In the discussion of the photophysical properties, first the UV/vis spectra of 16N, 18P, 20O, 22S
and 22I are discussed and the fingerprints of (anti)aromaticity of the absorption spectra are elucidated.
Then, our findings are validated for the other set of Hückel porphyrinoids, namely 16P, 20P, 18Py
and 22Sp. Tables 2–6 collect the characteristic properties of the first five electronic transitions and
the most intense electronic transitions of porphyrinoids 16N, 18P, 20O, 22S and 22I. As can be seen
in Figure 5, the absorption spectrum of aromatic macrocycles consists of intense and sharp peaks,
while broader and weaker absorption bands are found in the absorption spectrum of antiaromatic
systems. For the most intense absorption band, we observe the following order according to the molar
extinction coefficient, which is related to the oscillator strength (f osc) of the transition: 22I ≥ 22S > 18P
> 20O > 16N. As expected, the absorption bands become more intense for larger conjugation pathways
in the selected porphyrinoids. Nevertheless, the effect of larger conjugation pathway is less important
than the aromaticity or antiaromaticity of the π-conjugated system.
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Table 2. Properties of the main electronic transitions of neutral unsubstituted (16)norcorrole (16N) a.

Excitation Transition Contribution (%) λ b f osc
c E d Polarization Assignment

1 H→L 98.69 1052.37 0.000 1.18 z Q
2 H−4→L−4 6.96 400.45 0.083 3.10 z

H−2→L+1 3.33 x,y
H−1→L 84.53 x,y

3 H−7→L 5.70 388.11 0.000 3.19 x,y
H−2→L 85.09 z

H−1→L+1 4.69 z
4 H−4→L 2.11 365.39 0.436 3.39 z B

H→L+2 94.22 z
5 H−5→L+2 2.51 330.87 0.013 3.73 x,y

H−4→L 2.36 z
H−3→L 90.21 x,y

7 H→L+4 41.38 314.52 0.327 3.38 z
10 H−4→L 81.08 271.66 0.426 3.81 z
13 H→L+4 81.19 242.94 0.496 4.00 z

a Computed at the TDDFT/CAM-B3LYP level of theory using the IEFPCM scheme (solvent = CH2Cl2) on ground
state geometries optimized in vacuum; b Absorption wavelength (λ in nm); c Oscillator strength (f osc); d Vertical
transition energies (E in eV).

Table 3. Properties of the main electronic transitions of neutral unsubstituted (18)porphyrin (18P) a.

Excitation Transition Contribution (%) λ b f osc
c E d Polarization Assignment

1 H−1→L 47.52 559.66 0.008 2.22 x Qx
H→L+1 52.62 x

2 H−1→L+1 51.15 514.30 0.002 2.41 y Qy
H→L 48.60 y

3 H−4→L+1 12.58 346.60 0.937 3.58 x Bx
H−1→L 48.22 x
H→L+1 39.86 x
L+1→H 2.46 x

4 H−1→L+1 49.12 338.53 1.202 3.66 y By
H→L 52.30 y

5 H−3→L+2 4.98 314.18 0.000 3.95 /
H−2→L+1 91.50 /

H→L+2 2.08 z
6 H−5→L 80.03 291.26 0.461 4.26 y

16 H−5→L 85.33 250.14 0.149 4.96 y
18 H−4→L 96.34 235.80 0.140 5.26 x

a Computed at the TDDFT/CAM-B3LYP level of theory using the IEFPCM scheme (solvent = CH2Cl2) on ground
state geometries optimized in vacuum; b Absorption wavelength (λ in nm); c Oscillator strength (f osc); d Vertical
transition energies (E in eV).

Table 4. Properties of the main electronic transitions of neutral unsubstituted (20)orangarin (20O) a.

Excitation Transition Contribution (%) λ b f osc
c E d Polarization Assignment

1 H→L 97.55 954.1 0.007 1.29 y Q
2 H−1→L+1 98.45 389.6 0.652 3.18 z B
3 H−1→L 6.86 375.1 0.192 3.31 y

H−4→L 83.88 y
4 H−3→L 42.60 344.5 0.154 3.60 z

H−2→L 28.92 z
5 H−3→L 27.26 330.3 0.369 3.75 z

H−2→L 66.51 z
6 H−4→L 67.52 301.6 0.329 4.11 y
12 H→L+2 93.84 269.0 0.653 4.61 y

a Computed at the TDDFT/CAM-B3LYP level of theory using the IEFPCM scheme (solvent = CH2Cl2) on ground
state geometries optimized in vacuum; b Absorption wavelength (λ in nm); c Oscillator strength (f osc); d Vertical
transition energies (E in eV).
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Table 5. Properties of the main electronic transitions of neutral unsubstituted (22)smaragdyrin (22S) a.

Excitation Transition Contribution (%) λ b f osc
c E d Polarization Assignment

1 H−1→L 52.81 566.44 0.008 2.19 y Qy
H→L+1 42.44

2 H−1→L+1 27.12 542.5 0.056 2.29 x Qx
H→L 68.23

3 H−1→L 44.57 375.78 1.420 3.30 y By
H→L+1 55.86

4 H−1→L+1 69.40 362.30 1.168 3.42 x Bx
H→L 28.69

5 H−3→L 9.47 307.14 0.081 4.04 x
H−2→L 77.50

8 H→L+3 61.17 265.99 0.094 4.66 x
H−1→L+6 9.28

11 H−5→L 24.76 257.92 0.046 4.81 x
H−2→L+1 11.93
H−9→L 9.68

H−1→L+4 15.21
a Computed at the TDDFT/CAM-B3LYP level of theory using the IEFPCM scheme (solvent = CH2Cl2) on ground
state geometries optimized in vacuum; b Absorption wavelength (λ in nm); c Oscillator strength (f osc); d Vertical
transition energies (E in eV).

Table 6. Properties of the main electronic transitions of neutral unsubstituted (22)isosmaragdyrin (22I)
a.

Excitation Transition Contribution (%) λ b f osc
c E d Polarization Assignment

1 H−1→L+1 28.61 667.43 0.103 1.86 z Q
H→L 70.93 z

2 H−1→L 72.54 584.78 0.105 2.12 x,y Q
H→L+1 26.94 x,y

3 H−1→L 28.57 375.89 1.321 3.30 x,y B
H→L+1 73.62 x,y

4 H−1→L+1 69.35 369.59 1.195 3.35 z B
H→L 28.97 z

5 H−2→L 93.02 322.38 0.180 3.85 z
H−1→L+1 2.46 z

9 H−4→L 29.11 261.61 0.124 4.69 z
H−4→L+4 29.54 x,y
H−4→L+5 14.13 x,y

12 H−8→L 9.18 258.16 0.061 4.80 z
H−6→L 38.48 z

a Computed at the TDDFT/CAM-B3LYP level of theory using the IEFPCM scheme (solvent = CH2Cl2) on ground
state geometries optimized in vacuum; b Absorption wavelength (λ in nm); c Oscillator strength (f osc); d Vertical
transition energies (E in eV).

In aromatic porphyrinoids, the most intense absorption, namely the Soret or B band, corresponds
to electronic transitions involving H, H−1, L and L+1 orbitals (Tables 3, 5 and 6). By contrast, the main
electronic transitions in antiaromatic systems correspond to high-energy transitions (Tables 2 and 4) [58].
Nevertheless, the first high-intensity band of 20O is dominantly of HOMO−1→LUMO+1 character.
In addition, the absorption spectrum of aromatic macrocycles displays very weak absorption bands in
near-infrared (IR) region, the so-called Q bands. As such, the absorption spectra of aromatic systems
are characterized by the presence of weak Q bands (λ > 500 nm) and very intense B bands (300 nm
< λ < 400 nm and f osc > 0.9). In comparison to 22S and 22I, the oscillator strength associated to the
Q band in 18P is particularly small. By contrast, the B bands and the absorption bands associated
to high-energy electronic transitions are significantly weaker (f osc < 0.9) in the absorption spectra of
antiaromatic systems and the Q bands (f osc < 0.008) are either nonexistent or too weak to be measured.
Aside (20)orangarin, the most intense absorption band of aromatic macrocycles are red-shifted with
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respect to those of antiaromatic systems. Consequently, the overall features of all absorption spectra in
those macrocycles demonstrate a close structure-property relationship between (anti)aromaticity and
absorption, in excellent agreement with the experimental observations [11–13].Molecules 2018, 23, x 10 of 27 
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As can be inferred from Figure 6 and Tables 2–6, the shape and the composition of B and Q bands
differ significantly in aromatic and antiaromatic systems. In aromatic systems, B and Q bands are
split. These splitting results from the quasi-degeneracy of H, H−1 and L, L+1 orbitals since the B
and Q bands correspond to transitions involving those four orbitals (Figure 7). The splitting of B and
Q bands in x,y component is also reflected in the polarization under which the associated electronic
transitions are allowed. As shown in Table 3, the fourth electronic transition of 18P is associated
with the y component of the B band. The symmetry of the initial and final orbitals involved in this
electronic transition indicates that the fourth transition is allowed under y-polarization. In addition,
the large magnitude of y-component of the electronic transition dipole moment allows for high
intensity. A similar analysis for the third electronic transition at 347 nm yields an intense x-polarized
B band. In 18P, 22S and 22I, the three main absorption bands correspond to the B bands and one
high-energy electronic transition. The most important high-energy electronic transitions in 22I and
22S correspond to transitions between H−4→L+4, H−4→L and H→L+3, H−1→L+6, respectively.
By contrast, the most intense high-energy electronic transition in 18P involves the H−5→L transition.
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Figure 6. Theoretical UV/vis absorption spectra of unsubstituted Hückel porphyrinoids together
with the TDDFT/CAM-B3LYP oscillator strengths: (a) (20)orangarin, (b) (22)smaragdyrin, (c)
(22)isosmaragdyrin, (d) (22)sapphyrin, (e) (16)norcorrole, (f) (16)porphyrin, (g) (18)porphyrin, (h)
(20)porphyrin and (i) porphycene.
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antiaromatic porphyrinoids. The HOMO-LUMO gap (in eV) is also shown [59].

On the other hand, B and Q are not split and they are significantly weaker in antiaromatic species
than in aromatic systems. This phenomenon is a consequence of the low symmetry of the molecule and
the non-degeneracy of H, H−1 and L, L+1 orbitals, respectively (Figure 7) [60]. As indicated by their
non-zero associated oscillator strength, the Q band of 20O and 16N is not fully forbidden. The most
intense absorption bands correspond to high-energy electronic transitions in the B band. In Table 3,
the fourth electronic transition of 16N (B band, f osc = 0.436) is only slightly weaker than the tenth
electronic transition (high-energy electronic transition, f osc = 0.496). In 16N, the three most intense
absorption bands are associated to the following electronic transitions involving large differences in
orbital sequence: H→L+4 > H→L+2 > H−4→L. In the case of 20O, the B band and 12th electronic
transition have nearly the same intensity (f osc = 0.65), as can be seen in Table 5 and Figure 6. However,
the B band of 20O is associated to H−1→L+1 transition under z-polarization, while the 12th electronic
transition corresponds to a H→L+2 transition, which is allowed under y polarization. The third main
absorption band in 20O is associated to H−2→L transition.

To gain more insight in the intensity of electronic transitions and the nature of the involved
orbitals, we applied the perimeter model [61]. The perimeter or free-electron model is an extension of
the one-dimensional particle in a box problem to a particle in a ring model. The electrons are confined
to a ring of constant negative potential with zero potential outside [62]. The number of nodal planes
k of an orbital is half of the number of nodes q of the wave function, which in turn determines the
absolute value of the angular momentum. Within the frame of the perimeter model, the number
of nodal planes of the frontier orbitals is employed to determine whether a transition is allowed or
not. If the difference in number of nodal planes between the initial and final orbitals equals 0 or ±1,
then the transition is allowed. Otherwise, the transition is predicted to be forbidden (i.e., ∆k > 1) in
case of absorption. Despite its very elegant formulation, the perimeter model suffers from several
shortcomings that mostly impact antiaromatic systems and to a lesser extent aromatic systems. As in
aromatic systems, the most important electronic transitions (B bands) involve H−1, H and L, L+1
orbitals, ∆k values 0 or 1 show up, leading to allowed transitions in the model in accordance with the
symmetry analysis. Finer details for aromatics cannot be completely reproduced by the perimeter
model. As can be seen in Figure 8, H−1 and H orbitals of 22S exhibit five nodal planes, whereas L
and L+1 present six nodal planes. The transition H−2 to L is forbidden according to the FMO model
because ∆k equals 2. Nevertheless, it appears with a non-zero, albeit small intensity (f osc = 0.08).
In Table 4, we observe that the electronic transition H→L+2 (f osc = 0.65, ∆k = 3) in 20O is forbidden
according the perimeter model but allowed according to symmetry analysis. In antiaromatic systems,
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high-energy electronic transitions are important and those do not fulfill the criterion ∆k = 0, ±1 of the
perimeter model. As a conclusion, the FMO model is too approximated for our porphyrinoid systems,
although it works significantly better for explaining allowed transitions in Hückel aromatics than for
Hückel antiaromatic systems.
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To generalize these observations, the UV-vis spectra of 16P, 20P, 18Py and 22Sp were also
computed and carefully analyzed. The characteristic properties of the main electronic transitions
of these porphyrinoids are collected in Tables S7–S10. Figure 9 shows the overlay of the absorption
spectra for aromatic and antiaromatic Hückel porphyrinoids. For the aromatic 22Sp, a very intense
B band is observed corresponding to electronic transitions involving H, H−1, L and L+1 orbitals.
As compared to the pentapyrrolic macrocycles, the B band of aromatic (18)Py is blue shifted and
lower in intensity, but similarly it involves the electronic transitions between the quasi degenerate H
and H−1 to L/L+1 orbitals. In addition, the B and Q bands in both aromatic systems are split in x,y
components. Remarkably, the Q band of the 18Py is very intense among aromatic systems.

To assess the effect of the aromaticity on the photophysical spectra, we additionally investigate
the changes in the UV-vis spectra of the archetypal (18)porphyrin upon oxidation and reduction of the
macrocycle. The (16)porphyrin and (20)porphyrin are antiaromatic according to the Hückel rule and
aromaticity descriptors, in contrast to the parent macrocycle which is clearly aromatic. The overlay of
the absorption spectra of 18P, 16P and 20P together with the MO energy diagram is shown in Figure 10.
From the spectra, it is clear that 16P and 20P exhibit a unique blue-shifted Soret-like band at around
300 nm and no Q band. These observations are in good agreement with the experimental spectra for
16 π-electron porphyrins [63]. For 16P and 20P, the electronic transition between HOMO and LUMO
is symmetry forbidden by the selection rule and the perimeter model with an oscillator strength of
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0.00 (Tables S9 and S10). By contrast, the HOMO-LUMO transition in 18P is allowed by symmetry
and the perimeter model (Table S3). As a consequence, the most intense absorption band correspond
to a H−8→L transition in 16P and H−2→L and H→L+3 transitions in 20P. From the schematic MO
diagram, it can be inferred that the quasi-degeneracy of the frontier MOs in 18P is broken in the
antiaromatic counterparts. These findings are in line with the photophysical features ascribed to
antiaromatic porphyrinoids. However, the intensity of the B-band in 16P and 20P is exceptionally high
as compared with the remaining antiaromatic systems (20O and 16N) (Figure 9).
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2.3. Polarizability and Nonlinear Optical Properties in Hückel Porphyrinoids

At the molecular level, the quantities of interest are the polarizability (α) as well as the first (β)
and second hyperpolarizability (γ), associated with second- and third-order nonlinear optical effects,
respectively. Table 7 contains the average polarizability (α) and anisotropy (∆α) in both static and
dynamic regime at different frequencies. As can be seen, the dynamic α and ∆α values hardly depend
on the incident wavelength in the selected frequency range.

From Table 7, it is clear that polarizability increases with the macrocycle size, so the polarizability
of pentapyrrolic macrocycles is larger than that of tetrapyrrolic compounds. Regarding the average
polarizability (Figure 11), the following sequence is found: 22Sp > 22I > 22S > 20O > 18Py > 18P
> 20P > 16P > 16N. Therefore, beside the effect of the macrocycle size, polarizability increases with
aromaticity, in such a way that aromatic systems are characterized by larger average polarizability and
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anisotropy in both static and dynamic regime than antiaromatic homologues with a similar ring size.
In all cases, solvation significantly enhances both the isotropic and anisotropic polarizability.

Table 7. Average polarizability α and ∆α (in a.u.) of unsubstituted Hückel porphyrinoids computed at
different frequencies (ω in eV) a.

System
α(−ω,ω) ∆α (−ω,ω)

0 0.413 0.583 0.653 0 0.583 0.653 0.413

16N (C2) 274
(348)

275.5
(325)

277
(327)

277
(353)

237
(329)

239
(301)

242
(304)

243
(339)

16P (S4) 306
(381)

307
(358)

308
(385)

309
(386)

263
(344)

264
(322)

266
(350)

267
(352)

18P (D2h) 349
(458)

333
(424)

353
(427)

354
(467)

333
(465)

336
(425)

339
(430)

341
(479)

18Py (C2h) 364
(488)

367
(495)

371
(502)

373
(506)

360
(519)

365
(529)

370
(539)

373
(545)

20P (Ci)
332

(424)
333

(427)
335

(430)
336

(432)
310

(428)
313

(433)
315

(438)
317

(440)

20O (C2v) 368
(472)

370
(476)

373
(480)

374
(483)

354
(497)

358
(553)

361
(504)

363
(508)

22S (Ci)
431

(573)
434

(579)
438

(585)
439

(589)
419

(595)
424

(604)
429

(614)
432

(619)

22I (Cs)
466

(637)
471

(647)
476

(657)
479

(663)
475

(693)
482

(707)
489

(723)
493

(732)

22Sp (Cs)
476

(641)
480

(649)
484

(657)
486

(661)
487

(698)
493

(709)
499

(721)
502

(728)
a α(−ω,ω) and ∆α (−ω,ω) were evaluated at the CAM-B3LYP/6-311+G(d,p) level of theory, both in gas-phase and
in solvent (values in parenthesis).
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Regarding first hyperpolarizabilities, we focus on two measurable second-order NLO responses:
the hyper-Rayleigh scattering (HRS) response (βHRS) and the electric-field-induced second harmonic
generation EFISHG response (β//) [64,65]. We also computed the depolarization ratio (DR), since it
provides information on the geometry of the chromophore, i.e., the part of the molecule responsible
for the NLO response [66]. These first hyperpolarizability characteristics both in static and dynamic
regime for the different Hückel porphyrinoids are collected in Table 8.

Table 8. Hyper-Rayleigh scattering (HRS) first hyperpolarizability characteristics (βHRS) and
depolarization ratio (DR), longitudinal (//) component and second hyperpolarizability (β// of
unsubstituted Hückel porphyrinoids a.

System
βHRS DR β//(−2ω,ω,ω) γ//(2ω,ω,ω,0)

0 0.653 0 0.653 0 0.653 0 0.653

16N (C2) 115
(211)

119
(226)

1.53
(1.54)

1.15
(1.18)

25
(−53)

−29
(−59)

111
(247)

25
(−1)

16P (S4) 118
(198)

134
(229)

1.50
(1.50)

1.50
(1.50)

0
(0)

0
(0)

162
(355)

204
(461)

18P (D2h) 0
(0)

0
(0) -b -b 0

(0)
0

(0)
89

(20)
102

(240)

18Py (C2h) 1
(3)

2
(6) -b -b 2

(4)
2

(8)
−34

(−246)
−94

(−528)

20P (Ci)
0

(0)
2

(3) -b -b 0
(0)

0
(1)

199
(499)

728
(1722)

20O (C2v) 1308
(2982)

23376 c

(86032)
3.67

(3.89)
1.73 c

(1.65)
−1692

(−3956)
−22466 c

(−81580)
254

(649)
5087 c

(37351)

22S (C1) 1281
(3846)

1967
(6307)

6.22
(6.15)

6.18
(6.29)

−1937
(−5762)

−2947
(−9373)

322
(976)

476
(1601)

22I (Cs) 1150
(3002)

2255
(6629)

3.41
(2.77)

3.83
(2.90)

−1369
(−3201)

−2783
(−1067)

78
(61)

65
(−122)

22Sp (Cs)
516

(1279)
623

(1652)
1.66

(1.78)
1.77

(2.11)
−232

(−686)
310

(−1061)
168

(475)
230

(735)
a βHRS and β//(−2ω,ω,ω) (in a.u.) and γ//(−2ω,ω,ω,0) (in 103 a.u.) were evaluated at the
CAM-B3LYP/6-311+G(d,p) level of theory, both in gas-phase and in solvent (values in parenthesis); b DR is
not reported since βHRS = 0; c 20O is at resonance at 0.653 eV.

From Table 8, it is clear that βHRS depends on the molecular symmetry, while the
relationship between βHRS and aromaticity of the π-conjugation system is not unambiguous.
For centrosymmetric structures, such as 18P, 18Py and 20P, βHRS, β// and β_|_ values equal zero.
For non-centrosymmetric structures, the length of the conjugation pathway influences the magnitude
of the first hyperpolarizability, in such a way that pentapyrrolic macrocycles exhibit larger βHRS values
than tetraphyrins. For non-centrosymmetric systems with a similar ring size and aromaticity, such as
22S, 22I and 22Sp the factor determining the first hyperpolarizability is the planarity of the ring system
(Figure 12). The totally planar 22Sp (ΦP = 0◦) exhibit smaller |βHRS|, |β//| and |β_|_| values than 22I
(ΦP = 8.8◦), which in turns show smaller first hyperpolarizability values than 22S (ΦP = 10.3◦). As such,
besides the molecular symmetry and the conjugation pathway length, non-planar structures exhibit
enhanced first hyperpolarizabilities. It is important to note that the exalted magnitude of βHRS, β//,
γ_|_, γ// and γ_|_ of 20O at 1900 nm indicates that the system is close to resonance. The first resonance
equals the half of the first excitation energy. In our selected systems, the first excitation energy is
associated with the Q band (16N: 1.18 eV, 20O: 1.29 eV, 20P: 1.33 eV, 16P: 1.63 eV, 22I: 1.86 eV, 22Sp:1.91
eV, 18Py: 2.17 eV, 22S: 2.19, 18P: 2.22 eV). Therefore, the first resonance energy of 16N (0.59 eV), 20O
(0.65 eV) and 20P (0.67 eV) are significantly smaller than those of 18P (1.11 eV), 22S (1.10 eV) and
22I (0.93 eV). Though the first resonance energy of both 16N and 20O is close to the energy of the
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incident light (0.654 eV), resonance is only observed for 20O because the oscillator strength of the first
electronic transition of 16N and 20P is zero, whereas it is non-zero for 20O (fosc = 0.007). Similar to the
polarizability, solvation enhances the magnitude of first and second hyperpolarizability.Molecules 2018, 23, x 17 of 27 
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Figure 12. Dependence of the static βHRS values (in a.u.) with the macrocycle size and the planarity
of the macrocycle, as denoted by the torsional strain (Φp in ◦). For centrosymmetric structures, βHRS

equals 0.

The effect of aromaticity on the depolarization ratio (DR) seems to be more straightforward,
in such a way that aromatic porphyrinoids exhibit larger DR values than antiaromatic ones for
non-centrosymmetric structures. In the off-resonance region (e.g., 2128 nm, Figure 13) the DR value
decreases in the following order: 22S > 22I > 20O > 22Sp > 16P > 16N. From this order, it seems
that pentapyrrolic macrocycles exhibit larger DR than tetrapyrrolic systems. In contrast to βHRS,
the depolarization ratio does not vary significantly upon solvation.
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Regarding the second hyperpolarizability, we observe two different trends in the static and in
dynamic regime, as shown in Figure 14. For instance, 22S is characterized by the largest γ// value in
the static regime, followed by 20O and 20P. However, in the dynamic regime, the following decreasing
order for γ// is found: 20O > 20P > 22S > 22Sp > 16P > 18P > 22I > 16N > 18Py. Here, it should be
again noted that 20O is close to resonance at 1900 nm. In contrast to the rest of porphyrinoids, 18Py
exhibits a negative value for γ// in both static and dynamic regime. From these results, it is difficult to
assess the role of aromaticity, π-conjugation length and symmetry on the second hyperpolarizability
γ//. Even in the static regime, it does not seem to be a clear structure-property relationship for γ//.
Nevertheless, it is clear that solvation and the wavelength of the incident light largely influences the
value of the second hyperpolarizability.
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From the frequency-dispersion plots (Figures S3–S8) and the NLO properties computed at
different wavelengths (Tables S10 and S11), it is clear that βHRS and DR values are more dependent
on the wavelength of the incident light than properties associated to the polarizability. Moreover,
the properties associated to the first and second hyperpolarizability are more frequency-dependent
than the DR. As shown in Table 8, we observe exalted βHRS, β// and γ// for 20O, whereas this
enhancement is associated to a slight variation in DR value. Given the energy of the first resonance
in 16N, 16P, 18P, 18Py, 20P, 20O, 22S, 22Sp and 22I, we can assume that all the systems are far from
resonance between 0 and 0.413 eV. For the region between 0.583 eV (2128 nm) and 0.653 eV (1900 nm),
the frequency dispersion of the first and second hyperpolarizability of antiaromatic systems (16N,
20P and 20O) is found to be more important than in aromatic ones (18P, 18Py, 22Sp, 22I and 22S).
As mentioned above, this phenomenon results from the similitude between the energy of the first
resonance of 16N and 20O and the energy of the incident light at 1900 nm, respectively. Hence, these
second-order properties can be tuned by varying the range of the incident wavelength.

Summarizing, for the selected set of Hückel porphyrinoids, aromatic porphyrinoids are found
to display larger α and ∆α than antiaromatic ones with a similar ring size. However, βHRS, β// and
γ// depend on three main molecular factors (molecular symmetry, macrocycle size and planarity)
in addition to the incident wavelength and solvation, what makes difficult to establish a clear
rationalization of NLO properties in terms of (anti)aromaticity.

2.4. Substituent Effect on the Structure-Property Relationships

As meso-substitution can lead to significant change in properties of porphyrinoids [3,41], we have
investigated the evolution of the aromaticity, absorption spectrum and nonlinear optical properties
of meso-pentafluorophenyl-substituted 16N, 18P, 20O, 22S and 22I. These aryl substituents are
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commonly used in the synthesis of expanded porphyrins [3]. In this section, it is important to
note that our goal is to assess if the devised structure-property relationships hold for real-world
meso-substituted porphyrinoids. A detailed investigation of the effect of peripheral substituents on
the NLO properties is out of the scope of the present article, although it is expected that the presence
of strong electron-withdrawing and -releasing groups located on opposite sides of the porphyrinoid
skeleton will led to a dramatic increase of the NLO responses [22]. Here, only a subset of porphyrinoids
is considered, namely 16N, 18P, 20O, 22I and 22S.

The optimized geometries of meso-substituted porphyrinoids are shown in Figure 15 and the
aromaticity descriptors are collected in Table 9. Aside 16N, which becomes more planar, the planarity
of the remaining Hückel systems decreases upon meso-substitution. Despite a closure of HOMO-LUMO
gap, we observe the same trends as for the unsubstituted systems: 18P, 22S and 22I are aromatic
(diatropic) whereas 16N and 20O are antiaromatic (paratropic). Therefore, the (anti)aromaticity of the
macrocycles hardly changes upon attachment of the pentafluorophenyl groups.

Table 9. Energetic, structural, magnetic properties of selected meso-substituted porphyrinoids a.

System π b NICS(0) NICS(1) NICSzz(1) HOMA Π Φp ∆EH-L

16N 16 20.1 16.4 51.9 0.580 0.49 20.4 3.65
18P 18 −13.9 −12.8 −35.5 0.860 1.00 1.1 4.59
20O 20 17.2 15.1 50.0 0.780 1.00 0.0 3.52
22S 22 −9.8 −9.3 −24.7 0.890 0.89 15.0 4.14
22I 22 −17.1 −15.0 −40.4 0.888 0.87 12.0 3.79

a NICS-based indices are in ppm, Φp in ◦, and HOMO-LUMO energy difference in eV; b Number of π-electrons
along the classical conjugation pathway.
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Red five-membered rings are linked to aromatic structures, whereas green ones to
antiaromatic configurations.

Regarding the absorption spectra, we observe that the intensity of the absorption bands of
16N, 18P, 20O, 22S and 22I are enhanced upon meso-substitution, irrespective of the aromaticity or
antiaromaticity (Figure 16). In addition, the absorption bands are red-shifted, indicating that the
excitation energies are slightly reduced. For instance, the energy associated to the first electronic
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transition of 16N and 22S change from 1.18 to 1.16 eV and from 2.19 to 2.07 eV, respectively, upon
substitution. Nevertheless, the absorption spectra of meso-substituted macrocycles share the same
features as those of unsubstituted porphyrinoids and the fingerprints of (anti)aromaticity on the
photophysical properties are very similar.Molecules 2018, 23, x 20 of 27 
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Table 10 reports the non-linear optical properties (βHRS, DR, β// and γ//) of meso-substituted
16N, 18P, 20O, 22S and 22I in gas and solvent-phase. In the static and dynamic regime, we can classify
the meso-substituted macrocycles according to decreasing βHRS and β// as 22I > 22S > 20O > 16N >
18P. This change in trends can be related to the change of symmetry induced by meso-substitution.
The meso-substitution increases the asymmetry of the systems especially for the macrocycles with
an odd number of substituents (22S and 22I). In addition, due to the presence of meso-aryl groups,
excitation energies of the porphyrinoids are shifted. As a result, the energy of the first resonance
of meso-substituted 16N and 20O thus do not correspond exactly to 0.653 eV. As in unsubstituted
porphyrinoids, solvation enhances the magnitude of βHRS and β//. Interestingly, we found distinct
tendencies for DR values of meso-substituted porphyrinoids in the static and in the dynamic regime.
In the dynamic regime, the DR is correlated with the aromaticity of the system, while the DR of
20O and 16N exceed the DR of 22S and 18P in the static regime, respectively. In addition, aromatic
meso-substituted systems are characterized by larger γ// values in the dynamic regime. However, in
the static regime, 16N exhibits larger γ// values than 18P. This might be related to the predominance
of the lack of symmetry in 16N to the aromaticity of 18P. However, according to γ// in the static
regime, we found 22S > 22I > 20O > 16N > 18P. This order suggests that a lack of symmetry is the key
factor to obtain large γ// in combination with aromaticity. Nevertheless, in case of a large difference in
the molecular symmetry, the lack of symmetry is the predominant factor.

Table 10. βHRS and depolarization ratio (DR), longitudinal component of first and second
hyperpolarizability (β// and γ// of meso-substituted porphyrinoids in the static and dynamic regime a.

βHRS DR β//(−2ω,ω,ω) γ//(−2ω,ω,ω,0)

ω 0 0.653 0 0.653 0 0.653 0 0.653

16N (C2) 3
(6)

6
(12) -b -b −1

(−1)
−1

(−1)
375

(749)
229

(376)

18P (D2h) 0
(0)

0
(1.0) -b -b 0

(0)
0

(0)
219

(458)
268

(580)
a All quantities (in a.u. for β and 103 a.u. for γ) were evaluated at the CAM-B3LYP/6-311+G(d,p) level of theory,
both in gas-phase and in solvent (values in parenthesis); b DR is not reported since βHRS = 0.
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Table 10. Cont.

βHRS DR β//(−2ω,ω,ω) γ//(−2ω,ω,ω,0)

ω 0 0.653 0 0.653 0 0.653 0 0.653

20O (C2v) 1385
(3146)

3373
(6628)

3.64
(3.92)

0.40
(0.27)

1785
(4185)

−1614
(−2007)

413
(964)

−363
(−831)

22S (C1) 2073
(4961)

3448
(8763)

3.50
(3.96)

3.15
(3.69)

−1240
(−5045)

−1810
(−8372)

825
(2078)

1324
(3644)

22I (Cs)
2509

(5771)
5191

(13727)
4.14

(3.85)
4.46

(4.07)
3314

(7097)
6725

(16649)
447

(1058)
7325

(1946)
a All quantities (in a.u. for β and 103 a.u. for γ) were evaluated at the CAM-B3LYP/6-311+G(d,p) level of theory,
both in gas-phase and in solvent (values in parenthesis); b DR is not reported since βHRS = 0.

3. Computational Details

All the calculations were carried out with Gaussian 09.D01 software package using the
M06 [67] or CAM-B3LYP [68] functionals together with the split-valence basis sets [6-31G(d,p) and
6-311+G(d,p)] [69]. Geometry optimization and vibrational frequency calculations were performed
at the M06/6-31G(d,p) level of theory. All the structures correspond to minima on the potential
energy surface with no imaginary frequencies. The performance of the M06 hybrid functional on the
geometries and relative conformational energies of expanded porphyrins was assessed in our previous
benchmarks from comparison with experiment [40,41].

The harmonic oscillator model of aromaticity (HOMA) was evaluated as a structural descriptor of
aromaticity [31]:

HOMA = 1− α

n

n

∑
i=1

(Ropt − Ri)
2 (1)

where α is an empirical constant fixed for each type of bond and n corresponds to the number of bonds
taken into account in the summation. Ri denotes the running bond length along the annulene-type
conjugation pathway. HOMA equals 0 for non-aromatic systems, whereas HOMA = 1 for fully aromatic
ones with all bonds equal to the optimal value Ropt. For C-C bonds, α = 257.7 and Ropt = 1.388 Å,
whereas α = 93.52 and Ropt = 1.334 Å for C-N bonds [70].

The isomerization method was applied to compute the isomerization stabilization energies
(ISE) [55], magnetic susceptibility exaltation (Λ) [71] and relative hardness (∆η) [72] of unsubstituted
species (Scheme 1). This method is based on the difference in properties between a methyl derivative
of the conjugated system and its nonaromatic exocyclic methylene isomer. For the energetic descriptor,
syn-anti corrections are required due to the cis-trans diene mismatches in the methyl and methylene
isomer [55]. The syn-anti corrections were calculated as the energy difference between the dihydrogen
derivative of meso-methyl species and its respective nonaromatic isomer. To obtain the susceptibility
exaltation (Λ), the magnetic susceptibilities were evaluated using the CGST method [73] at the
CAM-B3LYP/6-311+G(d,p) level of theory. For the evaluation of relative hardness, HOMO and
LUMO energies were employed to evaluate the hardness of the methyl and methylene derivatives in
the frame of the isomerization scheme.

Nucleus-independent chemical shift (NICS) values [32,74] were computed at the geometrical
center of the heavy atoms along the annulene pathway of the macrocycle and at 1 Å above and below
the ring center, together with its out-of-plane tensor component, by employing the GIAO method [75]
together with the CAM-B3LYP functional together with the 6-311+G(d,p) basis set. The anisotropy
of the induced current density (AICD) method was applied to provide a complementary view of
the induced delocalization of π-electrons [56,57]. For the NICS and ACID calculations, the external
magnetic field is applied perpendicular to the molecular plane.
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As additional geometrical descriptors, we computed the average dihedral angle between
neighboring pyrrole rings (Φp) as a measure of the torsional ring strain [37] and the π-conjugation
index (Π) to quantify the extent of the effective overlap of neighboring p orbitals [1]. Π equals 1 for a
completely planar system, it is positive for any Hückel (double-sided) conformation and negative for
any Möbius (single-sided) surface. Normally, macrocyclic aromaticity is associated with porphyrinoids
having Π values higher than 0.3.

Excitation energies and corresponding oscillator strengths (f osc) of main electronic transitions were
computed using time-dependent DFT (TD-DFT) [76] at the CAM-B3LYP/6-311+G(d) level of theory.
Polarizabilities and hyperpolarizabilities were evaluated with the time-dependent DFT (TDDFT) and
the coupled-perturbed Kohn-Sham (CPKS) methods to obtain their dynamic and static NLO responses,
respectively [66]. Several benchmark studies pointed out that the long-range corrected CAM-B3LYP
functional outperforms other exchange-correlation functionals in the evaluation of NLO properties of
organic molecules, including porphyrinoid compounds [21,23,77].

The molecular properties known as the electric dipole polarizability (α), first (β) and second (γ)
hyperpolarizabilities, are defined by an equation describing the change in the components of the
electric dipole moment ∆µζ (ζ = x,y,z), which results from the application of external electric fields F
(Equation (2)):

∆µζ =
x,y,z
∑
η

αζη(−ωσ; ω1)Fη(ω1) +
1
2!

x,y,z
∑
ηχ

βζηχ(−ωσ; ω1, ω2) Fη(ω1)Fχ(ω2) +
1
3!

x,y,z
∑

ηχξ
γζηχξ(−ωσ; ω1, ω2, ω3)Fη(ω1)Fχ(ω2)Fξ(ω3) + . . . (2)

where Fη(ω1) is the amplitude of the field oscillating at pulsation ω1 and applied in the η direction
and ωσ = Σiωi.

The quintessence of the polarizability tensor αij is represented by its invariants: the average
polarizability α, defined as (Equation (3)):

α =
1
3 ∑

i=x,y,z
αii (3)

and its anisotropy ∆α defined through the relation (Equation (4)):

∆α2 =
1
2

[(
αxx − αyy

)2
+ (αxx − αzz)

2 +
(
αzz − αyy

)2
+ 6α2

xz + 6α2
yz + 6α2

xy

]
(4)

The real part of α(−ω,ω) is related to the refraction.
First and second hyperpolarizabilities can be split in a longitudinal (//) and transversal (_|_)

component. The longitudinal component of β is related to the second harmonic generation (SHG) and
the electric-field induced SHG (EFISHG). The EFISHG measurement gives insight in the projection of
the vector part of β on the dipole moment vector µ (Equation (5)).

β‖(−2ω; ω, ω) =
1
5

x,y,z

∑
i

µi
‖µ‖

x,y,z

∑
j

(
βijj + β jij + β jji

)
=

3
5

x,y,z

∑
i

µiβi
‖µ‖ (5)
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where ‖µ‖ is the norm of the dipole moment and µi and βi the components of the µ vector and β vector
part, respectively. The transversal component is given by Equation (6):

β_|_(−2ω; ω, ω) =
1
5 ∑

i,j=x,y,z

µi
‖µ‖

(
2β jji − β jij

)
(6)

In analogy, we considered the γ // and γ_|_ quantities defined as (Equations (7) and (8)):

γ‖(−2ω; ω, ω, 0) =
1
15 ∑

i,j=x,y,z
(γiijj + γijij + γijji) (7)

γ⊥(−2ω; ω, ω, 0) =
1

15 ∑
i,j=x,y,z

(2γijji − γiijj) (8)

As β//, the longitudinal component of the second hyperpolarizability γ// is also associated to
EFISHG. By contrast, the first hyperpolarizability related to Hyper-Raleigh scattering (βHRS) and the
depolarization ratio (DR) are both defined for neutral and charged molecules. βHRS corresponds to the
orientational average of the first hyperpolarizability over all molecular orientations (Equation (9)).
Experimentally, βHRS corresponds to the second-order NLO response that can be extracted from
Hyper-Raleigh scattering, namely the intensity of the incoherent scattering at frequency 2ω on
incidence of a laser with frequency ω. DR (Equation (10)) provides insight over the geometry of
the part of the molecule responsible for the NLO response [64].

βHRS(−2ω; ω, ω) =
√〈

β2
ZZZ

〉
+
〈

β2
ZXX

〉
(9)

DR =

〈
β2

ZZZ
〉〈

β2
ZXX

〉 (10)

where
〈

β2
ZZZ
〉

and
〈

β2
XZZ
〉

correspond to the orientational averages of the β.

4. Conclusions

In this work, we have investigated the aromaticity, photophysical properties and nonlinear
optical properties of a series of porphyrinoids (16N, 16P, 18P, 18Py, 20P, 20O, 22S, 22I and 22Sp)
differing in conjugation pathway length and aromaticity but sharing a Hückel topology. To explore
the link between aromaticity, photophysical properties and NLO properties, the aromaticity of each
porphyrinoid has been first assessed using an exhaustive set of aromaticity descriptors. Then, the
features of UV/vis absorption spectra, NLO properties and polarizability of Hückel porphyrinoids
have been rationalized in terms of aromaticity patterns.

Due to the multidimensional character of aromaticity, we used several aromaticity descriptors
based on the energetic, magnetic, structural, reactivity and electronic criteria. In good agreement
with the annulene model, our aromaticity descriptors indicate that 18P, 18Py, 22S, 22I and 22Sp are
fully aromatic, whereas 16N, 20O and the oxidized and reduced form of porphyrin (16P and 20P) are
antiaromatic. We observed some drawbacks for the isomerization stabilization energies since they
are very sensitive to structural distortions and cannot distinguish properly between aromatic and
antiaromatic systems.

Regarding photophysical properties, aromatic systems are characterized by UV/vis spectra with
Q bands and very sharp and intense B bands, mainly due to transitions involving the H, H−1 and
L, L+1 molecular orbitals. By contrast, antiaromatic systems display significantly weaker absorption
bands associated to high-energy electronic transitions, whereas the B band is significantly weaker and
broader than in the absorption spectrum of aromatic systems. Only for the antiaromatic 16P and 20P,
the intensity of the B band is significant, but the electronic transition between HOMO and LUMO is
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symmetry forbidden in contrast to the aromatic 18P. As such, a close relationship is found between the
(anti)aromaticity and the absorption spectra in Hückel porphyrinoids.

In comparison to the photophysical properties, the influence of aromaticity on the nonlinear
optical properties is significantly more complex. On one hand, aromatic systems are characterized
by larger α and ∆α values than antiaromatic systems with similar macrocycle size and the magnitude
of these quantities are nearly invariant with the wavelength of the incident light. Due to differences
in symmetry and resonance effects, we could not determine the influence of aromaticity on NLO
properties. Furthermore, βHRS, β// and γ// are frequency-dependent and their magnitude is
determined by the interplay between symmetry, macrocycle size and planarity. All the NLO properties
are significantly enhanced upon solvation.

Finally, the influence of meso-substitution on the aromaticity, UV/VIS and NLO of the macrocycles
was investigated. Despite keeping the same trends in aromaticity, we observe an enhancement and red
shift of the absorption bands upon meso-substitution. The trends change for several NLO properties
since some substituted systems are not in resonance anymore and the symmetry of the systems changed
upon attachment of aryl substituents. Nevertheless, among the investigated Hückel porphyrinoids,
aromatic meso-substituted systems are characterized by larger DR, βHRS, β// and γ// values than
antiaromatic ones.

At present, there is some evidence that larger two-photon absorption (TPA) cross sections are
observed for aromatic expanded porphyrins as compared to the corresponding antiaromatic congeners
(11). However, a generalization of this potentially useful relationship in a systematic way has yet to
be made. The complex structure–property relationship between aromaticity and nonlinear optical
properties for Hückel porphyrinoids pinpoint future research.

Supplementary Materials: Supplementary materials are available online http://www.mdpi.com/1420-3049/23/
6/1333/s1.
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