Predicting the Dielectric Properties of Nanocellulose-Modified Presspaper Based on the Multivariate Analysis Method
Abstract
:1. Introduction
2. Experimental
2.1. Materials
2.2. Preparation of Presspaper Samples
2.3. Morphology Characterization
2.4. Chemical Composition
2.5. Crystallinity, DP, and Total Charge
2.6. Tensile Strength
2.7. Breakdown Behavior
3. Modeling
3.1. Variables
3.2. Small Sample and Multiple Correlation Problems
4. Results and Discussion
4.1. Multiple Linear Regression Model for Mechanical Properties of Presspaper
4.2. Multiple Linear Regression Model of DC Breakdown Strength
4.3. Multiple Linear Regression Model of Breakdown Strength Considering the Nanocellulose Reinforcing Effect
5. Conclusions
- A multiple linear regression model between tensile strength and fiber width variable and crystallinity variable was obtained. The goodness of fit was 87%, and the prediction accuracy of the test samples reached more than 90%. Multiple linear regression models were established for DC breakdown strength of presspaper. The prediction accuracy of the model for testing samples is more than 95%.
- Multiple linear regression models of AC and DC breakdown strength of presspaper considering the reinforcing effect of nanocellulose were established. The model for AC breakdown strength is y2* = 7.13x1 + 0.41x5 + 0.041x11 + 80.8x14 − 7.6. The model for DC breakdown strength is y2* = 10.1x1 + 0.52x5 + 0.54x7 + 115.8x14 − 7.7. Among them, x1, x5, x7, x11, and x14 represent fiber length, fines, total lignin content, total charge, and nanocellulose content, respectively.
Author Contributions
Funding
Conflicts of Interest
References
- El-Saied, H.; El-Meligy, M.G.; Mohamed, S.H.; Abd El-Mongy, S. Electrical insulated paper from cotton linter. Carbohydr. Polym. 2012, 90, 147–151. [Google Scholar] [CrossRef] [PubMed]
- Fahmy, T.Y.A.; El-Meligy, M.G.; Mobarak, F. Introducing deinked old newsprint as a new resource of electrical purposes paper. Carbohydr. Polym. 2008, 74, 442–444. [Google Scholar] [CrossRef]
- Prevost, T.A.; Oommen, T.V. Cellulose insulation in oil-filled power transformers: Part I—History and development. IEEE Electr. Insul. Mag. 2002, 22, 28–35. [Google Scholar] [CrossRef]
- CIGRE Joint Working Group A2/B4. 28. HVDC Converter Transformers Design Review, Test Procedures, Ageing Evaluation and Reliability in Service; CIGRE: Paris, France, 2010. [Google Scholar]
- CIGRE Advisory Group B4.04. HVDC LCC Converter Transformers-Converter Transformers Failure Survey Results from 2003 to 2012; CIGRE: Paris, France, 2015. [Google Scholar]
- Zhou, Y.; Huang, M.; Sun, Q.; Sha, Y.; Jin, F.; Zhang, L. Space charge characteristics in two-layer oil-paper insulation. J. Electrost. 2013, 71, 413–417. [Google Scholar] [CrossRef]
- Pourrahimi, A.M.; Olsson, R.T.; Hedenqvist, M.S. The Role of Interfaces in Polyethylene/Metal-Oxide Nanocomposites for Ultrahigh-Voltage Insulating Materials. Adv. Mater. 2018, 30, 1703624. [Google Scholar] [CrossRef] [PubMed]
- Nilsen, N.; Zabihian, M.; Niskanen, K. KCL-PAKKA: A tool for simulating paper properties. Tappi J. 1998, 81, 163–166. [Google Scholar]
- Morgan, V.T. Effects of frequency, temperature, compression, and air pressure on the dielectric properties of a multilayer stack of dry kraft paper. IEEE Trans. Dielectr. Electr. Insul. 1998, 5, 125–131. [Google Scholar] [CrossRef]
- Siltanen, H. X-Ray Computed Tomography and Numerical Analysis of Water-Saturated Porous Materials. Master’s Thesis, University of Jyväskylä, Jyväskylä, Finland, 2012. [Google Scholar]
- Hubbe, M.A. Prospects for maintaining strength of paper and paperboard products while using less forest resources: A review. Bioresources 2014, 9, 1634–1763. [Google Scholar] [CrossRef]
- He, J. Quantitative Study of Paper Structure at the Fibre Level for Development of a Model for the Tensile Strength of Paper. Ph.D. Thesis, Monash University, Melbourne, Australia, 2005. [Google Scholar]
- Carlsson, L.A.; Lindstrom, T. A shear-lag approach to the tensile strength of paper. Compos. Sci. Technol. 2005, 65, 183–189. [Google Scholar] [CrossRef]
- Page, D.H. A theory for tensile strength of paper. Tappi 1969, 52, 674–681. [Google Scholar]
- Banavath, H.N.; Bhardwaj, N.K.; Ray, A.K. A comparative study of the effect of refining on charge of various pulps. Bioresour. Technol. 2011, 102, 4544–4551. [Google Scholar] [CrossRef] [PubMed]
- Ciesielski, K.; Olejnik, K. Application of neural networks for estimation of paper properties based on refined pulp properties. Fibres Text. East. Eur. 2014, 22, 126–132. [Google Scholar]
- Johansson, A. Correlations between Fibre Properties and Paper Properties. Master’s Thesis, KTH Royal Institute of Technology, Stockholm, Sweden, 2016. [Google Scholar]
- Mohanty, S.; Ghosh, S. Breakdown voltage modeling of Manila paper in the presence of cavities under AC and DC conditions by adaptive fuzzy logic technique. In Proceedings of the 2009 International Conference on Power Systems, Kharagpur, India, 27–29 December 2009; pp. 1–6. [Google Scholar]
- Ghosh, S.; Kishore, N.K. Modelling of partial discharge inception and extinction voltages of sheet samples of solid insulating materials using an artificial neural network. IEE Proc. Sci. Meas. Technol. 2002, 149, 73–78. [Google Scholar] [CrossRef]
- Park, S.; Baker, J.O.; Himmel, M.E.; Parilla, P.A.; Johnson, D.K. Cellulose crystallinity index: Measurement techniques and their impact on interpreting cellulase performance. Biotechnol. Biofuels 2010, 3, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Wimmer, R.; Downes, G.M.; Evans, R.; Rasmussen, G.; French, J. Direct effects of wood characteristics on pulp and handsheet properties of Eucalyptus globulus. Holzforschung 2002, 56, 244–252. [Google Scholar] [CrossRef]
- Huang, J.; Zhou, Y.; Dong, L.; Zhou, Z.; Liu, R. Effect of pulp refining on mechanical and electrical properties of insulating presspaper. In Proceedings of the 2016 IEEE Conference on Electrical Insulation and Dielectric Phenomena (CEIDP), Toronto, ON, Canada, 16–19 October 2016; pp. 739–742. [Google Scholar]
- Liu, D.; Pallon, L.K.H.; Pourrahimi, A.M.; Zhang, P.; Diaz, A.; Holler, M.; Schneider, K.; Olsson, R.T.; Hedenqvist, M.S.; Yu, S.; et al. Cavitation in strained polyethylene/aluminium oxide nanocomposites. Eur. Polym. J. 2017, 87, 255–265. [Google Scholar] [CrossRef]
- Dissado, L.A.; Fothergill, J.C. Electrical Degradation and Breakdown in Polymers; P Peregrinus for Iee: London, UK, 1992; pp. 287–316. ISBN 0 86341 196 7. [Google Scholar]
- Husain, E.; Nema, R.S. Analysis of Paschen curves for air, N2 and SF6 using the Townsend breakdown equation. IEEE Trans. Electr. Insul. 1982, 17, 350–353. [Google Scholar] [CrossRef]
- Pallon, L.K.; Nilsson, F.; Yu, S.; Liu, D.; Diaz, A.; Holler, M.; Chen, X.R.; Gubanski, S.; Hedenqvist, M.S.; Olsson, R.T.; et al. Three-Dimensional Nanometer Features of Direct Current Electrical Trees in Low-Density Polyethylene. Nano Lett. 2017, 17, 1402–1408. [Google Scholar] [CrossRef] [PubMed]
- Murata, M.; Nakata, K. Influence of the fines on the dielectric and tensile breakdown of oil-impregnated paper. IEEE Trans. Electr. Insul. 1977, EI-12, 90–96. [Google Scholar] [CrossRef]
- Wagberg, L. Polyelectrolyte adsorption onto cellulose fibres—A review. Nordic Pulp Paper Res. J. 2000, 15, 586–597. [Google Scholar] [CrossRef]
- Murakami, Y.; Nemoto, M.; Okuzumi, S.; Masuda, S. DC conduction and electrical breakdown of MgO/LDPE nanocomposite. IEEE Trans. Dielectr. Electr. Insul. 2008, 15, 33–39. [Google Scholar] [CrossRef]
- Tanaka, T.; Kozako, M.; Fuse, N.; Ohki, Y. Proposal of a multi-core model for polymer nanocomposite dielectrics. IEEE Trans. Dielectr. Electr. Insul. 2005, 12, 669–681. [Google Scholar] [CrossRef]
- Nelson, J.K. Dielectric Polymer Nanocomposites; Springer: New York, NY, USA, 2010; pp. 197–228. ISBN 978-1-4419-1590-0. [Google Scholar]
- Liao, R.; Zhang, F.; Yuan, Y.; Yang, L.; Liu, T.; Tang, C. Preparation and electrical properties of insulation paper composed of SiO2 hollow spheres. Energies 2012, 5, 2943–2951. [Google Scholar] [CrossRef]
- Huang, J.; Zhou, Y.; Dong, L.; Zhou, Z.; Liu, R. Enhancement of mechanical and electrical performances of insulating presspaper by introduction of nanocellulose. Compos. Sci. Technol. 2017, 138, 40–48. [Google Scholar] [CrossRef]
- Huang, J.; Zhou, Y.; Dong, L.; Zhou, Z.; Zeng, X. Enhancing insulating performances of presspaper by introduction of nanofibrillated cellulose. Energies 2017, 10, 681. [Google Scholar] [CrossRef]
Sample Availability: Samples of the presspaper are available from the authors. |
Physicochemical Parameters | Unit | Variable | Physicochemical Parameters | Unit | Variable |
---|---|---|---|---|---|
Fiber length | mm | x1 | Holocellulose | % | x8 |
Fiber width | μm | x2 | Hemicellulose | % | x9 |
Ratio of length to width | − | x3 | Ash | % | x10 |
Coarseness | μg/m | x4 | Total charge | μmol/g | x11 |
Fines | % | x5 | DP | − | x12 |
Shape coefficient | % | x6 | CrI | % | x13 |
Lignin | % | x7 |
Sample | x1 | x2 | x3 | x4 | x5 | x6 | x7 | x8 | x9 | x10 | x11 | x12 | x13 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2.06 | 31.8 | 65 | 207 | 5 | 84.3 | 10.2 | 89.8 | 8.6 | 0.70 | 52 | 1573 | 90.6 |
2 | 2.33 | 31.2 | 75 | 160 | 3.3 | 83.3 | 9.4 | 90.6 | 8.2 | 0.83 | 60 | 1877 | 91.2 |
3 | 2.52 | 31.3 | 81 | 215 | 2.5 | 84.8 | 7.6 | 92.4 | 10.5 | 0.61 | 34.7 | 1328 | 91.6 |
4 | 2.38 | 34.7 | 69 | 208 | 3.2 | 84.6 | 6.4 | 90.3 | 8.8 | 0.71 | 12 | 2038 | 91.5 |
5 | 2.36 | 31.6 | 75 | 196 | 2.1 | 84.2 | 8.8 | 91.3 | 9.4 | 0.56 | 56 | 1730 | 91.2 |
6 | 2.02 | 31.1 | 65 | 182 | 5 | 84.2 | 7.8 | 92.2 | 9.2 | 0.59 | 58.7 | 1772 | 90.9 |
7 | 2.29 | 31 | 74 | 185 | 4.1 | 82.7 | 8.4 | 91.7 | 10.5 | 0.65 | 74.7 | 1775 | 90.9 |
8 | 2.43 | 30.9 | 79 | 219 | 2.8 | 85 | 5.4 | 91.7 | 8.8 | 0.40 | 20 | 1583 | 91.2 |
9 | 2.24 | 33.5 | 67 | 178 | 3.3 | 85.3 | 10.2 | 89.7 | 10.0 | 0.49 | 42.7 | 2038 | 90.1 |
10 | 1.71 | 28.2 | 61 | 113 | 7.7 | 80.2 | 10.0 | 90.1 | 8.1 | 0.91 | 60 | 1664 | 91.3 |
11 | 2.29 | 31.3 | 73 | 184 | 4.5 | 82.9 | 8.1 | 91.6 | 9.5 | 0.63 | 50.7 | 1877 | 90.6 |
12 | 2.18 | 32.4 | 67 | 170 | 4.6 | 83.6 | 9.7 | 90.3 | 9.0 | 0.32 | 46.7 | 2046 | 90.7 |
13 | 2.20 | 30.9 | 71 | 118 | 4 | 82.2 | 1.5 | 96.4 | 14.2 | 0.11 | 36 | 804 | 91.2 |
14 | 1.51 | 19.4 | 78 | 102 | 8.4 | 82.4 | 2.1 | 94.1 | 12.0 | 0.26 | 53.3 | 1156 | 86.8 |
15 | 1.45 | 23.2 | 62 | 108 | 5.7 | 80.6 | 1.1 | 98.6 | 6.5 | 0.08 | 17.3 | 763 | 96 |
16 | 0.98 | 23.2 | 42 | 105 | 20.7 | 86.7 | 0.6 | 95.8 | 9.9 | 0.08 | 13.3 | 1298 | 89.8 |
17 | 1.74 | 27.2 | 64 | 145 | 5.35 | 82.4 | 4.4 | 95.4 | 7.9 | 0.33 | 38 | 1268 | 93.5 |
18 | 1.67 | 27.4 | 59 | 150 | 11.4 | 85.5 | 4.7 | 93.5 | 9.6 | 0.32 | 34.7 | 1514 | 90.5 |
Sample | Tensile Strength y1 (MPa) | DC Breakdown Strength y2 (kV/mm) | Sample | Tensile Strength y1 (MPa) | DC Breakdown Strength y2 (kV/mm) |
---|---|---|---|---|---|
1 | 105 | 21.2 | 10 | 100 | 19.5 |
2 | 113 | 22.1 | 11 | 101 | 23.3 |
3 | 102 | 21.2 | 12 | 107 | 20.9 |
4 | 107 | 19.6 | 13 | 112 | 17.8 |
5 | 118 | 23.3 | 14 | 92 | 13.5 |
6 | 105 | 21.3 | 15 | 39 | 9.4 |
7 | 118 | 21.7 | 16 | 75 | 13.2 |
8 | 109 | 23.4 | 17 | 70 | 15.5 |
9 | 121 | 21.6 | 18 | 101 | 18.0 |
Number of Variables | R2 | Adjusted R2 | Mallows Cp | Selected Variables |
---|---|---|---|---|
1 | 54.3 | 51 | 30.7 | x1 |
2 | 86.7 | 84.6 | 2.5 | x2, x14 |
3 | 90.7 | 88.4 | 0.7 | x2, x11, x13 |
4 | 93.1 | 90.6 | 0.4 | x1, x3, x11, x13 |
5 | 94.4 | 91.7 | 1.2 | x1, x3, x4, x11, x13 |
6 | 95.6 | 92.7 | 2.1 | x1, x2, x3, x5, x6, x13 |
Model Information | Performance of the Prediction | |||||
---|---|---|---|---|---|---|
Independent variable | P | VIF | No. | Actual value | Predicted value | Predicted interval |
x2 | 0.000 | 1.02 | 17 | 69.7 | 74.6 | (55.7, 93.6) |
x13 | 0.000 | 1.02 | 18 | 100.7 | 95.8 | (78.1, 113.5) |
y1 = 608 + 3.89x2 − 6.83x13 | ||||||
R2 = 87%, predicted R2 = 73% |
Model Information | Performance of the Prediction | |||||
---|---|---|---|---|---|---|
Independent variable | P | VIF | No. | Actual value | Predicted value | Predicted interval |
x1 | 0.000 | 4.90 | 17 | 15.5 | 15 | (11.8, 18.3) |
x5 | 0.008 | 4.26 | 18 | 18 | 17.7 | (14.4, 20.9) |
x7 | 0.001 | 1.57 | ||||
y2 = −7.7 + 10.1x1 + 0.52x5 + 0.54x7 | ||||||
R2 = 91%, predicted R2 = 81% |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, Y.; Huang, X.; Huang, J.; Zhang, L.; Zhou, Z. Predicting the Dielectric Properties of Nanocellulose-Modified Presspaper Based on the Multivariate Analysis Method. Molecules 2018, 23, 1507. https://doi.org/10.3390/molecules23071507
Zhou Y, Huang X, Huang J, Zhang L, Zhou Z. Predicting the Dielectric Properties of Nanocellulose-Modified Presspaper Based on the Multivariate Analysis Method. Molecules. 2018; 23(7):1507. https://doi.org/10.3390/molecules23071507
Chicago/Turabian StyleZhou, Yuanxiang, Xin Huang, Jianwen Huang, Ling Zhang, and Zhongliu Zhou. 2018. "Predicting the Dielectric Properties of Nanocellulose-Modified Presspaper Based on the Multivariate Analysis Method" Molecules 23, no. 7: 1507. https://doi.org/10.3390/molecules23071507
APA StyleZhou, Y., Huang, X., Huang, J., Zhang, L., & Zhou, Z. (2018). Predicting the Dielectric Properties of Nanocellulose-Modified Presspaper Based on the Multivariate Analysis Method. Molecules, 23(7), 1507. https://doi.org/10.3390/molecules23071507