(+)-epi-Epoformin, a Phytotoxic Fungal Cyclohexenepoxide: Structure Activity Relationships
Abstract
:1. Introduction
2. Results and Discussion
SAR Study
3. Materials and Methods
3.1. General Experimental Procedures
3.2. Fungal Strain
3.3. Extraction and Purification of (+)-epi-Epoformin (1) from D. quercivora
3.4. Synthesis of (+)-epi-Epoformin (1) Derivatives 2–9
3.5. Etiolated Wheat Coleoptile Bioassay
3.6. Calculation of IC50 and logP
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Andolfi, A.; Maddau, L.; Basso, S.; Linaldeddu, B.T.; Cimmino, A.; Scanu, B.; Deidda, A.; Tuzi, A.; Evidente, A. Diplopimarane, a 20-nor-ent-pimarane produced by the oak pathogen Diplodia quercivora. J. Nat. Prod. 2014, 77, 2352–2360. [Google Scholar] [CrossRef] [PubMed]
- Masi, M.; Maddau, L.; Linaldeddu, B.T.; Scanu, B.; Evidente, A.; Cimmino, A. Bioactive metabolites from pathogenic and endophytic fungi of forest trees. Curr. Med. Chem. 2018, 25, 208–252. [Google Scholar] [CrossRef] [PubMed]
- Nagasawa, H.; Suzuki, A.; Tamura, S. Isolation and structure of (+)-des-oxyepiepoxydon and (+)-epi-epoxydon, phytotoxic fungal metabolites. Agric. Biol. Chem. 1978, 42, 1303–1304. [Google Scholar] [CrossRef]
- Barros, M.T.; Maycock, C.D.; Ventura, M.R. The first synthesis of (−)-asperpentyn and efficient syntheses of (+)-harveynone, (+)-epiepoformin and (−)-theobroxide. Chem. Eur. J. 2000, 6, 3991–3996. [Google Scholar] [CrossRef]
- Okamura, H.; Shimizu, H.; Yamashita, N.; Iwagawa, T.; Nakatani, M. Total synthesis of (+)-epiepoformin and (−)-phyllostine. Tetrahedron 2003, 59, 10159–10164. [Google Scholar] [CrossRef]
- Tachihara, T.; Kitahara, T. Total synthesis of (+)-epiepoformin, (+)-epiepoxydon and (+)-bromoxone employing a useful chiral building block, ethyl (1R,2S)-5,5-ethylenedioxy-2-hydroxycyclohexanecarboxylate. Tetrahedron 2003, 59, 1773–1780. [Google Scholar] [CrossRef]
- Carreño, M.C.; Merino, E.; Ribagorda, M.; Somoza, A.; Urbano, A. Enantioselective synthesis of (+)- and (−)-dihydroepiepoformin and (+)-epiepoformin. Org. Lett. 2005, 7, 1419–1422. [Google Scholar] [CrossRef] [PubMed]
- Mennucci, B.; Claps, M.; Evidente, A.; Rosini, C. Absolute configuration of natural cyclohexene oxides by time dependent density functional theory calculation of the optical rotation: the absolute configuration of (−)-sphaeropsidone and (−)-episphaeropsidone revised. J. Org. Chem. 2007, 72, 6680–6691. [Google Scholar] [CrossRef] [PubMed]
- Barilli, E.; Cimmino, A.; Masi, M.; Evidente, M.; Rubiales, D.; Evidente, A. Inhibition of spore germination and appressorium formation of rust species by plant and fungal metabolites. Nat. Prod. Commun. 2016, 11, 1343–1347. [Google Scholar] [CrossRef]
- Barilli, E.; Cimmino, A.; Masi, M.; Evidente, M.; Rubiales, D.; Evidente, A. Inhibition of early development stages of rust fungi by the two fungal metabolites cyclopaldic acid and epi-epoformin. Pest Manag. Sci. 2017, 73, 1161–1168. [Google Scholar] [CrossRef] [PubMed]
- Cimmino, A.; Fernández-Aparicio, M.; Andolfi, A.; Basso, S.; Rubiales, D.; Evidente, A. Effect of fungal and plant metabolites on broomrapes (Orobanche and Phelipanche spp.) Seed germination and radicle growth. J. Agric. Food Chem. 2014, 62, 10485–10492. [Google Scholar] [CrossRef] [PubMed]
- Toribio, G.; Marjanet, G.; Alibés, R.; de March, P.; Font, J.; Bayón, P.; Figueredo, M. Divergent approach to gabosines and anhydrogabosines: Enantioselective syntheses of (+)-epiepoformin, (+)-epoformin, (+)-gabosine A, and gabosines B and F. Eur. J. Org. Chem. 2011, 2011, 1534–1543. [Google Scholar] [CrossRef]
- Breitmaier, E.; Voelter, W. Carbon-13 NMR Spectroscopy; Wiley-VCH: Weinheim, Germany, 1987. [Google Scholar]
- Pretsch, E.; Buehlmann, P.; Affolter, C.; Pretsch, E.; Bhuhlmann, P.; Affolter, C. Structure Determination of Organic Compounds; Springer: Berlin, Germany, 2000. [Google Scholar]
- Berger, S.; Braun, S. 200 and More NMR Experiments: A Practical Course; Wiley-VCH: Weinheim, Germany, 2004. [Google Scholar]
- Dess, D.B.; Martin, J.C. Readily Accessible 12-I-5 Oxidant for the conversion of primary and secondary alcohols to aldehydes and ketones. J. Org. Chem. 1983, 48, 4155–4156. [Google Scholar] [CrossRef]
- Nakanishi, K.; Solomon, P.H. Infrared Absorption Spectroscopy; Holden-Day Inc.: Oakland, CA, USA, 1977. [Google Scholar]
- Nicolaou, K.C.; Bunnage, M.E.; McGarry, D.G.; Shi, S.; Somers, P.K.; Wallace, P.A.; Chu, X.-J.; Agrios, K.A.; Gunzner, J.L.; Yang, Z. Total synthesis of brevetoxin A: Part 1: First generation strategy and construction of BCD ring system. Chem. Eur. J. 1999, 5, 599–617. [Google Scholar] [CrossRef]
- Inanaga, J.; Hirata, K.; Saeki, H.; Katsuki, T.; Yamaguchi, M. A rapid esterification by means of mixed anhydride and its application to large-ring lactonization. Bull. Chem. Soc. Jpn. 1979, 52, 1989–1993. [Google Scholar] [CrossRef]
- Monrad, R.N.; Fanefjord, M.; Hansen, F.G.; Jensen, N.M.E.; Madsen, R. Synthesis of gabosine A and N from ribose by the use of ring-closing metathesis. Eur. J. Org. Chem. 2009, 2009, 396–402. [Google Scholar] [CrossRef]
- Sternhell, S. Correlation of interproton spin–spin coupling constants with structure. Q. Rev. Chem. Soc. 1969, 23, 236–270. [Google Scholar] [CrossRef]
- Macías, F.A.; Castellano, D.; Molinillo, J.M.G. Search for a standard phytotoxic bioassay for allelochemicals. Selection of standard target species. J. Agric. Food Chem. 2000, 48, 2512–2521. [Google Scholar] [CrossRef] [PubMed]
- Macías, F.A.; Galindo, J.C.G.; Castellano, D.; Velasco, R.F. Sesquiterpene lactones with potential use as natural herbicide models (I): Trans,trans-germacranolides. J. Agric. Food Chem. 1999, 47, 4407–4414. [Google Scholar] [CrossRef] [PubMed]
- Lipinski, C.A.; Lombardo, F.; Dominy, B.W.; Feeney, P.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev. 2001, 46, 3–26. [Google Scholar] [CrossRef]
- Barbero, G.F.; Molinillo, J.M.G.; Varela, R.M.; Palma, M.; Macias, F.A.; Barroso, C.G. Application of Hansch’s model to capsaicinoids and capsinoids: A study using the quantitative structure-activity relationship. A novel method for the synthesis of capsinoids. J. Agric. Food Chem. 2010, 58, 3342–3349. [Google Scholar] [CrossRef] [PubMed]
- Evidente, A.; Sparapano, L.; Fierro, O.; Bruno, G.; Giordano, F.; Motta, A. Sphaeropsidone and episphaeropsidone, phytotoxic dimedone methylethers produced by Sphaeropsis sapinea f. sp. cupressi grown in liquid culture. Phytochemistry 1998, 48, 1139–1143. [Google Scholar] [CrossRef]
- Evidente, A.; Maddau, L.; Scanu, B.; Andolfi, A.; Masi, M.; Motta, A.; Tuzi, A. Sphaeropsidones, phytotoxic dimedone methyl ethers produced by Diplodia cupressi: A structure−activity relationship study. J. Nat. Prod. 2011, 74, 757–763. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Aparicio, M.; Masi, M.; Maddau, L.; Cimmino, A.; Evidente, M.; Rubiales, D.; Evidente, A. Induction of haustorium development by sphaeropsidones in radicles of the parasitic weeds Striga and Orobanche. A structure–activity relationship study. J. Agric. Food Chem. 2016, 64, 5188–5196. [Google Scholar] [CrossRef] [PubMed]
- Jamison, D.S.; Yoder, J.I. Heritable variation in quinone-induced haustorium development in the parasitic plant Triphysaria. Plant Physiol. 2001, 125, 1870–1879. [Google Scholar] [CrossRef] [PubMed]
- Palmer, A.G.; Gao, R.; Maresh, J.; Erbil, W.K.; Lynn, D.G. Chemical biology of multi-host/pathogen interactions: Chemical perception and metabolic complementation. Annu. Rev. Phytopathol. 2004, 42, 439–464. [Google Scholar] [CrossRef] [PubMed]
- Cárdenas, D.M.; Cala, A.; Molinillo, J.M.G.; Macías, F.A. Preparation and phytotoxicity study of lappalone from dehydrocostuslactone. Phytochem. Lett. 2017, 20, 66–72. [Google Scholar] [CrossRef]
- Cala, A.; Molinillo, J.M.G.; Fernández-Aparicio, M.; Ayuso, J.; Álvarez, J.A.; Rubiales, D.; Macías, F.A. Complexation of sesquiterpene lactones with cyclodextrins: Synthesis and effects on their activities on parasitic weeds. Org. Biomol. Chem. 2017, 15, 6500–6510. [Google Scholar] [CrossRef] [PubMed]
- PRISM 5.00; GraphPad Software, Inc.: San Diego, CA, USA, 2007.
- VCCLAB, Virtual Computational Chemistry Laboratory. Available online: http://www.vcclab.org (accessed on 27 May 2018).
- Tetko, I.V.; Gasteiger, J.; Todeschini, R.; Mauri, A.; Livingstone, D.; Ertl, P.; Palyulin, V.A.; Radchenko, E.V.; Zefirov, N.S.; Makarenko, A.S.; et al. Virtual computational chemistry laboratory–design and description. J. Comput.-Aided Mol. Des. 2005, 19, 453–463. [Google Scholar] [CrossRef] [PubMed]
- Tetko, I.V. Computing chemistry on the Web. Drug Discov. Today 2005, 10, 1497–1500. [Google Scholar] [CrossRef]
Sample Availability: Samples of the compounds 1–9 are available from the authors. |
Compound | AlogP | IC50 (μM) | R2 |
---|---|---|---|
1 | −0.12 | 457 | 0.9737 |
2 | 0.26 | 326 | 0.9630 |
3 | 0.13 | 10.0 a | - |
4 | 1.00 | 117 | 0.9913 |
5 | −0.43 | 762 | 1.000 |
6 | −0.43 | - b | - |
7 | −0.88 | 307 | 0.9887 |
8 | −0.88 | 580 | 0.9916 |
9 | −0.36 | - b | - |
Logran | - | 33.1 | 0.9898 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cala, A.; Masi, M.; Cimmino, A.; Molinillo, J.M.G.; Macias, F.A.; Evidente, A. (+)-epi-Epoformin, a Phytotoxic Fungal Cyclohexenepoxide: Structure Activity Relationships. Molecules 2018, 23, 1529. https://doi.org/10.3390/molecules23071529
Cala A, Masi M, Cimmino A, Molinillo JMG, Macias FA, Evidente A. (+)-epi-Epoformin, a Phytotoxic Fungal Cyclohexenepoxide: Structure Activity Relationships. Molecules. 2018; 23(7):1529. https://doi.org/10.3390/molecules23071529
Chicago/Turabian StyleCala, Antonio, Marco Masi, Alessio Cimmino, José M. G. Molinillo, Francisco A. Macias, and Antonio Evidente. 2018. "(+)-epi-Epoformin, a Phytotoxic Fungal Cyclohexenepoxide: Structure Activity Relationships" Molecules 23, no. 7: 1529. https://doi.org/10.3390/molecules23071529
APA StyleCala, A., Masi, M., Cimmino, A., Molinillo, J. M. G., Macias, F. A., & Evidente, A. (2018). (+)-epi-Epoformin, a Phytotoxic Fungal Cyclohexenepoxide: Structure Activity Relationships. Molecules, 23(7), 1529. https://doi.org/10.3390/molecules23071529