Curcumin-Loaded Solid Lipid Nanoparticles Enhanced Anticancer Efficiency in Breast Cancer
Abstract
:1. Introduction
2. Results
2.1. Characterization of Cur-SLNs
2.2. In Vitro Cytotoxic Activity and Cellular Uptake Study
2.3. Effects of Cur-SLNs on Reactive Oxygen Species (ROS) Production
2.4. Effects of Cur-SLNs on Apoptosis Induction and Cell Cycle
2.5. Effects of Cur-SLNs on Cell Migration
2.6. Western Blot Analysis
3. Discussions
4. Materials and Methods
4.1. Reagents
4.2. Preparation of Nanoparticles
4.3. Morphology Determination and Zeta Potential Measurements
4.4. Entrapment Efficiency (EE) and Loading Capacity (LC)
4.5. X-ray Diffraction and Fourier Transform Infrared Spectroscopy (FTIR)
4.6. Cytotoxicity Study and Cellular Uptake Observation
4.7. Wound-Healing Assay
4.8. Apoptosis Analysis and Cell Cycle Analysis by Flow Cytometry
4.9. Intracellular ROS Detection
4.10. Western Blot Analysis
4.11. Statistical Analysis
5. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Early Breast Cancer Trialists’ Collaborative Group. Effects of chemotherapy and hormonal therapy for early breast cancer on recurrence and 15-year survival: An overview of the randomised trials. Lancet 2005, 365, 1687–1717. [Google Scholar]
- Mendonça, M.A.; Cunha, F.Q.; Murta, E.F.; Tavares-Murta, B.M. Failure of neutrophil chemotactic function in breast cancer patients treated with chemotherapy. Cancer Chemother. Pharmacol. 2006, 57, 663–670. [Google Scholar] [CrossRef] [PubMed]
- Shapira, A.; Livneya, Y.D.; Broxtermanc, H.J.; Assaraf, Y.G. Nanomedicine for targeted cancer therapy: Towards the overcoming of drug Resistance. Drug Resist. Update 2011, 14, 150–163. [Google Scholar] [CrossRef] [PubMed]
- De Oliveira, C.P.; Büttenbender, S.L.; Prado, W.A.; Beckenkamp, A.; Asbahr, A.C.; Buffon, A.; Guterres, S.S.; Pohlmann, A.R. Enhanced and Selective Antiproliferative Activity of Methotrexate-Functionalized-Nanocapsules to Human Breast Cancer Cells (MCF-7). Nanomaterials 2018, 8, 24. [Google Scholar] [CrossRef] [PubMed]
- Ramovatar, M.; Sumit, K.; Raj, K.; Usha-Singh, G.; Paulraj, R. PLGA-CTAB curcumin nanoparticles: Fabrication, characterization and molecular basis of anticancer activity in triple negative breast cancer cell lines (MDA-MB-231 cells). Biomed. Pharmacother. 2017, 94, 944–954. [Google Scholar]
- Chang, L.C.; Hsieh, M.T.; Yang, J.S.; Lu, C.C.; Tsai, F.J.; Tsao, J.W.; Chiu, Y.J.; Kuo, S.C.; Lee, K.H. Effect of bis(hydroxymethyl) alkanoate curcuminoid derivative MTH-3 on cell cycle arrest, apoptotic and autophagic pathway in triple-negative breast adenocarcinoma MDA-MB-231 cells: An in vitro study. Int. J. Oncol. 2018, 52, 67–76. [Google Scholar] [CrossRef] [PubMed]
- Liao, W.; Xiang, W.; Wang, F.F.; Wang, R.; Ding, Y. Curcumin inhibited growth of human melanoma A375 cells via inciting oxidative stress. Biomed. Pharmacother. 2017 95, 1177–1186. [CrossRef]
- Li, W.; Suwanwela, N.C.; Patumraj, S. Curcumin by down regulating NF-kB and elevating Nrf2, reduces brain edema and neuroogical dysfunction after cerebral I/R. Microvasc. Res. 2016, 106, 117–127. [Google Scholar] [CrossRef] [PubMed]
- Singh, P.; Rizvi, S.I. Modulation effects of Curcumin on erythrocyte ion-transporter Activity. Int. J. Cell. Biol. 2015, 2015, 630246. [Google Scholar] [CrossRef] [PubMed]
- Fan, Z.; Yao, J.; Li, Y.; Hu, Y.; Shao, H.; Tian, X. Anti-inflammatory and antioxidant effects of Curcumin on acute lung injury in a rodent model of intestinal ischemia reperfusion by inhibiting the pathway of NF-Kb. Int. J. Clin. Exp. Pathol. 2015, 8, 3451–3459. [Google Scholar] [PubMed]
- Gomez-Bougie, P.; Halliez, M.; Maiga, S.; Godon, C.; Kervoelen, C.; Pellat-Deceunynck, C. Curcumin induces cell death of the main molecular myelomasubtypes: Particularly the poor prognosis subgroups. Cancer Biol. Ther. 2015, 16, 60–65. [Google Scholar] [CrossRef] [PubMed]
- Nakhlband, A.; Eskandani, M.; Saeedi, N.; Ghafari, S.; Omidi, Y.; Barar, J.; Garjani, A. Marrubiin-loaded solid lipid nanoparticles’ impact on TNF-α treated umbilical vein endothelial cells: A study for cardioprotective effect. Colloids Surf. Biointerfaces 2018, 164, 299–307. [Google Scholar] [CrossRef] [PubMed]
- Rehman, M.U.; Khan, M.A.; Khan, W.S.; Shafique, M.; Khan, M. Fabrication of Niclosamide loaded solid lipid nanoparticles: In vitro characterization and comparative in vivo evaluation. Artif. Cells Nanomed. Biotechnol. 2017, 7, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Barbara, S.; Elena, P.; Chiara, D.; Marina, G.; Luigi, B.; Casimiro, L.G.; Elena, B.; Umberto, D.; Franco, D. Development and Characterization of Solid LipidNanoparticles Loaded with a Highly Active Doxorubicin Derivative. Nanomaterials 2018, 8, 110. [Google Scholar]
- Jong, S.B.; Young, G.N.; Cheong, W.C. Sustained Cytotoxicity of Wogonin on Breast Cancer Cells by Encapsulation in Solid Lipid Nanoparticles. Nanomaterials 2018, 8, 159. [Google Scholar] [CrossRef] [PubMed]
- Polchi, A.; Magini, A.; Mazuryk, J.; Tancini, B.; Gapiński, J.; Patkowski, A.; Giovagnoli, S.; Emiliani, C. Rapamycin Loaded Solid Lipid Nanoparticles as a New Tool to Deliver mTOR Inhibitors: Formulation and in Vitro Characterization. Nanomaterials 2016, 6, 87. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.R.; Zhu, R.; Xie, Q.; Li, A.; Xiao, Y.; Li, K.; Liu, H.; Cui, D.X.; Wang, S.L. Enhanced bioavailability and efficiency of curcumin for the treatment of asthma by its formulation in solid lipid nanoparticles. Int. J. Nanomed. 2012, 7, 3667–3677. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rompicharla, S.V.K.; Bhatt, H.; Shah, A.; Komanduri, N.; Vijayasarathy, D.; Ghosh, B.; Biswas, S. Formulation optimization, characterization, and evaluation of in vitro cytotoxic potential of curcumin loaded solid lipid nanoparticles for improved anticancer activity. Chem. Phys. Lipids 2017, 208, 10–18. [Google Scholar] [CrossRef] [PubMed]
- Su, X.; Gao, C.; Shi, F.; Feng, X.; Liu, L.; Qu, D.; Wang, C. A microemulsion co-loaded with Schizandrin A-docetaxel enhances esophageal carcinoma treatment through overcoming multidrug resistance. Drug. Deliv. 2017, 24, 10–19. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Wang, D.; Liu, J.; Feng, B.; Zhou, F.; Zhang, H.; Zhou, L.; Yin, Q.; Zhang, Z.; Cao, Z.; et al. Acidity-triggered ligand-presenting nanoparticles to overcome sequential drug delivery barriers to tumors. Nano Lett. 2017, 17, 5429–5436. [Google Scholar] [CrossRef] [PubMed]
- He, X.; Yang, L.; Wang, M.; Zhuang, X.; Huang, R.; Zhu, R.; Wang, S. Targeting the endocannabinoid/CB1receptor system for treating major depression through antidepressant activities of curcumin and dexanabinol-loaded solid lipid nanoparticles. Cell. Physiol. Biochem. 2017, 42, 2281–2294. [Google Scholar] [CrossRef] [PubMed]
- Cheng, W.; Liang, C.; Xu, L.; Liu, G.; Gao, N.; Tao, W.; Luo, L.; Zuo, Y.; Wang, X.; Zhang, X.; et al. TPGS-Functionalized Polydopamine-Modified Mesoporous Silica as Drug Nanocarriers for Enhanced Lung Cancer Chemotherapy against Multidrug Resistance. Small 2017, 13, 170062. [Google Scholar] [CrossRef] [PubMed]
- Yallapu, M.M.; Dobberpuhl, M.R.; Maher, D.M.; Jaggi, M.; Chauhan, S.C. Design of curcumin loaded cellulose nanoparticles for prostate cancer. Curr. Drug. Metab. 2012, 13, 120–128. [Google Scholar] [CrossRef] [PubMed]
- Claudia, C.; Roberto, M.; Alessandro, P.; Naama, E.; Toledano, F.; Francesco, S.; Ennio, T. The impact of nanoparticle protein corona on cytotoxicity, immunotoxicity and target drug delivery. Nanomedicine 2016, 11, 81–100. [Google Scholar] [Green Version]
- Dhule, S.S.; Penfornis, P.; Frazier, T.; Walker, R.; Feldman, J.; Tan, G.; He, J.; Alb, A.; John, V.; Pochampally, R. Curcumin-loaded γ-cyclodextrin liposomal nanoparticles as delivery vehicles for osteosarcoma. Nanomedicine 2012, 8, 440–451. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liang, D.S.; Wang, A.T.; Yang, Z.Z.; Liu, Y.J.; Qi, X.R. Cancer Cell Recognition and Overcome Drug Resistance Using Hyaluronic Acid and α- Tocopheryl Succinate Based Multifunctional Nanoparticles. Mol. Pharm. 2015, 12, 2189–2202. [Google Scholar] [CrossRef] [PubMed]
- Kalashnikova, I.; Mazar, J.; Neal, C.J.; Neal, C.; Rosado, A.; Das, S.; Westmoreland, T.J.; Seal, S. Nanoparticle delivery of curcumin induces cellular hypoxia and ROS-mediated apoptosis via modulation of Bcl-2/Bax in human neuroblastoma. Nanoscale 2017, 9, 10375–10387. [Google Scholar] [CrossRef] [PubMed]
- Insil, K.; Sara, R.E.; John, J.L. Selective degradation of mitochondria by mitophagy. Arch. Biochem. Biophys. 2007, 462, 245–253. [Google Scholar]
- Zaman, M.S.; Chauhan, N.; Yallapu, M.M.; Gara, R.K.; Maher, D.M.; Kumari, S.; Sikander, M.; Khan, S.; Zafar, N.; Jaggi, M.; et al. Curcumin Nanoformulation for Cervical Cancer Treatment. Sci. Rep. 2016, 6, 20051. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seiler, R.; Thalmann, G.N.; Rotzer, D.; Perren, A. Fleischmann CCND1/CyclinD1 status in metastasizing bladder cancer: A prognosticator and predictor of chemotherapeutic response. Mod. Pathol. 2014, 27, 87–95. [Google Scholar] [CrossRef] [PubMed]
- Emmi, P.; Peppi, K.; Kirsi-Maria, H.; Risto, B.; Arja Jukkola, V. The prognostic significance and value of cyclin D1, CDK4 and p16 in human breast cancer. Breast. Cancer Res. 2013, 15, R5. [Google Scholar]
- Agarwal, M.L.; Agarwal, A.; Taylor, W.R.; Stark, G.R. P53 controls both the G2/M and the G1 cell cycle checkpoints and mediates reversible growth arrest in human fibroblasts. Proc. Natl. Acad. Sci. USA 1995, 92, 8493–8497. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Q.M.; Wang, X.F.; Liu, X.J.; Zhang, H.; Lu, Y.Y.; Su, S.B. Curcumin enhanced antiproliferative effect of mitomycin C in human breast cancer MCF-7 cells in vitro and in vivo, Acta Pharmacol. Sin. 2011, 32, 1402–1410. [Google Scholar]
- Wang, W.R.; Zhang, L.Y.; Wang, Y.Y.; Ding, Y.X.; Chen, T.T.; Wang, Y.Y.; Chen, S.L.; Yang, Q.L.; Chen, C.J. Involvement of MIR-451 in resistance to paclitaxel by regulating YWHAZ in breast cancer. Cell Death Dis. 2017, 8, e3071. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.R.; Zhang, L.Y.; Chen, T.T.; Guo, W.; Bao, X.X.; Wang, D.D.; Ren, B.H.; Li, Y.; Wang, H.F.; Wang, Y.Y.; et al. Anticancer effects of resveratrol-loaded solid lipid nanoparticles on human breast cancer cells. Molecules 2017, 22, 1814. [Google Scholar] [CrossRef] [PubMed]
Sample Availability: Samples of the compounds (SLNs amd Cur-SLNs) are available from the authors. |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, W.; Chen, T.; Xu, H.; Ren, B.; Cheng, X.; Qi, R.; Liu, H.; Wang, Y.; Yan, L.; Chen, S.; et al. Curcumin-Loaded Solid Lipid Nanoparticles Enhanced Anticancer Efficiency in Breast Cancer. Molecules 2018, 23, 1578. https://doi.org/10.3390/molecules23071578
Wang W, Chen T, Xu H, Ren B, Cheng X, Qi R, Liu H, Wang Y, Yan L, Chen S, et al. Curcumin-Loaded Solid Lipid Nanoparticles Enhanced Anticancer Efficiency in Breast Cancer. Molecules. 2018; 23(7):1578. https://doi.org/10.3390/molecules23071578
Chicago/Turabian StyleWang, Wenrui, Tiantian Chen, Henan Xu, Baihui Ren, Xiaodan Cheng, Rongrong Qi, Haibo Liu, Yueyue Wang, Lei Yan, Sulian Chen, and et al. 2018. "Curcumin-Loaded Solid Lipid Nanoparticles Enhanced Anticancer Efficiency in Breast Cancer" Molecules 23, no. 7: 1578. https://doi.org/10.3390/molecules23071578
APA StyleWang, W., Chen, T., Xu, H., Ren, B., Cheng, X., Qi, R., Liu, H., Wang, Y., Yan, L., Chen, S., Yang, Q., & Chen, C. (2018). Curcumin-Loaded Solid Lipid Nanoparticles Enhanced Anticancer Efficiency in Breast Cancer. Molecules, 23(7), 1578. https://doi.org/10.3390/molecules23071578