Simultaneous Preparation of Salidroside and p-Tyrosol from Rhodiola crenulata by DIAION HP-20 Macroporous Resin Chromatography Combined with Silica Gel Chromatography
Abstract
:1. Introduction
2. Results and Discussion
2.1. Enrichment of Salidroside and p-Tyrosol from RCE with DIAION HP-20 Adsorption Chromatography
2.1.1. Screen of Eluent(s) for the DIAION HP-20 Adsorption Chromatography
2.1.2. Enrichment of Salidroside and p-Tyrosol by the DIAION HP-20 Adsorption Chromatography
2.2. Separation of Salidroside and p-Tyrosol from FEST by Silica Gel Chromatography
2.2.1. Identification of the Compounds Occurred before Salidroside
2.2.2. Screen of Optimal Organic Solvent(s) for the Silica Gel Chromatography
2.2.3. Simultaneous Separation of Salidroside and p-Tyrosol by the Silica Gel Chromatography
2.3. Recovery and Yields
3. Materials and Methods
3.1. Preparation of Rhodiola Crude Extracts (RCE)
3.2. Purification by Adsorption Chromatography to Obtain Fraction Enriching Salidroside and p-Tyrosol (FEST)
3.3. Liquid-Liquid Extraction to Screen Optimal Organic Solvent(s) for Silica Gel Chromatography
3.4. Isolation of p-Tyrosol and Salidroside by Silica Gel Chromatography
3.5. UPLC and UPLC-Q-TOF-MS Analyses
3.6. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Panossiana, A.; Wikmana, G.; Sarris, J. Rosenroot (Rhodiola rosea): Traditional use, chemical composition, pharmacology and clinical efficacy. Phytomedicine 2010, 17, 481–493. [Google Scholar] [CrossRef] [PubMed]
- Chiang, H.M.; Chen, H.C.; Wu, C.-S.; Wu, P.Y.; Wen, K.C. Rhodiola plants: Chemistry and biological activity. J. Food Drug Anal. 2015, 23, 359–369. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.; Isaak, C.K.; Zhou, Y.; Petkau, J.C.; Karmin, O.; Liu, Y.; Siow, Y.L. Salidroside and tyrosol from Rhodiola protect H9c2 cells from ischemia/reperfusion-induced apoptosis. Life Sci. 2012, 91, 151–158. [Google Scholar] [CrossRef] [PubMed]
- Amsterdam, J.D.; Panossian, A.G. Rhodiola rosea L. as a putative botanical antidepressant. Phytomedicine 2016, 23, 770–783. [Google Scholar] [CrossRef] [PubMed]
- Khanna, K.; Mishra, K.P.; Ganju, L.; Singh, S.B. Golden root: A wholesome treat of immunity. Biomed. Pharm. 2017, 87, 496–502. [Google Scholar] [CrossRef] [PubMed]
- Xia, N.; Li, J.; Wang, H.; Wang, J.; Wang, Y. Schisandra chinensis and Rhodiola rosea exert an anti-stress effect on the HPA axis and reduce hypothalamic c-Fos expression in rats subjected to repeated stress. Exp. Ther. Med. 2016, 11, 353–359. [Google Scholar] [CrossRef] [PubMed]
- Senthilkumar, R.; Chandran, R.; Parimelazhagan, T. Hepatoprotective effect of Rhodiola imbricata rhizome against paracetamol-induced liver toxicity in rats. Saudi J. Biol. Sci. 2014, 21, 409–416. [Google Scholar] [CrossRef] [PubMed]
- Qu, Z.Q.; Zhou, Y.; Zeng, Y.S.; Li, Y.; Chung, P. Pretreatment with Rhodiola rosea extract reduces cognitive impairment induced by intracerebroventricular streptozotocin in rats: Implication of anti-oxidative and neuroprotective effects. Biomed. Environ. Sci. 2009, 22, 318–326. [Google Scholar] [CrossRef]
- Vasileva, L.V.; Getova, D.P.; Doncheva, N.D.; Marchev, A.S.; Georgiev, M.I. Beneficial effect of commercial Rhodiola extract in rats with scopolamine-induced memory impairment on active avoidance. J. Ethnopharmacol. 2016, 193, 586–591. [Google Scholar] [CrossRef] [PubMed]
- Jafari, M.; Felgner, J.S.; Bussel, I.I.; Hutchili, T.; Khodayari, B.; Rose, M.R.; Vince-Cruz, C.; Mueller, L.D. Rhodiola: A promising anti-aging Chinese herb. Rejuvenat. Res. 2007, 10, 587–602. [Google Scholar] [CrossRef] [PubMed]
- Li, T.; Zhang, H. Identification and Comparative Determination of Rhodionin in Traditional Tibetan Medicinal Plants of Fourteen Rhodiola Species by High-Performance Liquid Chromatography-Photodiode Array Detection and Electrospray Ionization-Mass Spectrometry. Chem. Pharm. Bull. 2008, 56, 807–814. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hu, X.L.; Zhang, X.Q.; Qiu, S.F.; Yu, D.H.; Lin, S.X. Salidroside induces cell-cycle arrest and apoptosis in human breast cancer cells. Biochem. Biophys. Res. Commun. 2010, 398, 62–67. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.W.; Chen, X.; Jin, X.H.; Meng, X.Y.; Zhou, X.; Fan, F.X.; Mao, S.Y.; Wang, Y.; Zhang, W.C.; Shan, N.N.; et al. SILAC-based proteomic analysis reveals that salidroside antagonizes cobalt chloride-induced hypoxic effects by restoring the tricarboxylic acid cycle in cardiomyocytes. J. Proteom. 2016, 130, 211–220. [Google Scholar] [CrossRef] [PubMed]
- Mao, G.X.; Wang, Y.; Qiu, Q.A.; Deng, H.B.; Yuan, L.G.; Li, R.G.; Song, D.Q.; Li, Y.Y.Y.; Li, D.D.; Wang, Z. Salidroside protects human fibroblast cells from premature senescence induced by H2O2 partly through modulating oxidative status. Mech. Ageing Dev. 2010, 131, 723–731. [Google Scholar] [CrossRef] [PubMed]
- Mao, G.X.; Deng, H.B.; Yuan, L.G.; Li, D.D.; Li, Y.Y.; Wang, Z. Protective role of salidroside against aging in a mouse model induced by D-galactose. Biomed. Environ. Sci. 2010, 23, 161–166. [Google Scholar] [CrossRef]
- Lee, O.H.; Kwon, Y.I.; Apostolidis, E.; Shetty, K.; Kim, Y.C. Rhodiola-induced inhibition of adipogenesis involves antioxidant enzyme response associated with pentose phosphate pathway. Phytother. Res. 2011, 25, 106–115. [Google Scholar] [CrossRef] [PubMed]
- Thirunavukkarasu, M.; Penumathsa, S.V.; Samuel, S.M.; Akita, Y.; Zhan, L.; Bertelli, A.A.; Maulik, G.; Maulik, N. White wine induced cardioprotection against ischemia-reperfusion injury is mediated by life extendingAkt/FOXO3a/NFkappaB survival pathway. J. Agric. Food Chem. 2008, 56, 6733–6739. [Google Scholar] [CrossRef] [PubMed]
- Muriana, F.J.G.; Montserrat-de, L.P.S.; Lucas, R.; Bermudez, B.; Jaramillo, S.; Morales, J.C.; Abia, R.; Lopez, S. Tyrosol and its metabolites as antioxidative and anti-inflammatory molecules in human endothelial cells. Food Funct. 2017, 8, 2905–2914. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.C.; Xia, Y.M.; Yang, B.; Su, X.N.; Chen, J.K.; Li, W.; Jiang, T. Protective Effects of Tyrosol against LPS-Induced Acute Lung Injury via Inhibiting NF-κB and AP-1 Activation and Activating the HO-1/Nrf2 Pathways. Biol. Pharm. Bull. 2017, 40, 583–593. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.; Fan, H.; Yang, L.; Shi, L.; Liu, Y. Tyrosol prevent ischemia/reperfusion-induced cardiac injury in H9c2 cells: Involvement of ROS, Hsp70, JNK and ERK, and apoptosis. Molecules 2015, 20, 3758–3775. [Google Scholar] [CrossRef] [PubMed]
- Chinese Pharmacopoeia Commission. Pharmacopoeia of People’s Republic of China; People’s Medical Publishing House: Beijing, China, 2005; pp. 211–212. ISBN 7-117-06982-1/R 6983. [Google Scholar]
- Li, T.; He, X. Quantitative Analysis of Salidroside and p-Tyrosol in the Traditional Tibetan Medicine Rhodiola crenulata by Fourier Transform Near-Infrared Spectroscopy. Chem. Pharm. Bull. (Tokyo) 2016, 64, 289–296. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.Z.; Yu, H.S.; Lu, M.C.; Li, J.; Jin, F.X. Enzymic synthesis of salidroside: Purification and characterization of salidrosidase from Aspergillas niger. Process Biochem. 2005, 40, 3143–3147. [Google Scholar] [CrossRef]
- Shi, L.; Wang, C.; Zhou, X.; Zhang, Y.; Liu, Y.; Ma, C. Production of salidroside and tyrosol in cell suspension cultures of Rhodiola crenulata. Plant Cell Tissue Organ Cult. 2013, 114, 295–303. [Google Scholar] [CrossRef]
- Han, X.; Zhang, T.; Wei, Y.; Cao, X.; Ito, Y. Separation of salidroside from Rhodiola crenulata by high-speed counter-current chromatography. J. Chromatogr. A 2002, 971, 237–241. [Google Scholar] [CrossRef]
- Fan, M.; Xu, S. Adsorption and desorption properties of macroreticular resins for salidroside from Rhodiola sachalinensis A. Bor. Sep. Purif. Technol. 2008, 61, 211–216. [Google Scholar] [CrossRef]
- Ma, C.; Tang, J.; Wang, H.; Tao, G.; Gu, X.; Hu, L. Preparative purification of salidroside from Rhodiola rosea by two-step adsorption chromatography on resins. J. Sep. Sci. 2009, 32, 185–191. [Google Scholar] [CrossRef] [PubMed]
- Ioset, K.N.; Nyberg, N.T.; Van Diermen, D.; Malnoe, P.; Hostettmann, K.; Shikov, A.N.; Jaroszewski, J.W. Metabolic Profiling of Rhodiola rosea Rhizomes by H-1 NMR Spectroscopy. Phytochem. Anal. 2010, 22, 158–165. [Google Scholar] [CrossRef] [PubMed]
- Yang, Q.; Zhao, M.; Lin, L. Adsorption and desorption characteristics of adlay bran free phenolics on macroporous resins. Food Chem. 2016, 194, 900–907. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.H.; Wang, Y.Y.; Gong, G.L.; Li, F.; Ren, H.T.; Liu, Y. Adsorption and desorption properties of macroporous resins for flavonoids from the extract of Chinese wolfberry (Lycium barbarum L.). Food Bioprod. Process. 2015, 93, 148–155. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, C.; Yuan, J.; Zhang, C. Adsorption characteristics of adsorbent resins and antioxidant capacity for enrichment of phenolics from two-phase olive waste. J. Chromatogr. B. Anal. Technol. Biomed. Life Sci. 2017, 1040, 38–46. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.; Zhang, Q.; Chen, J.; Wang, L.; Anderson, G.K. Adsorption of naphthalene derivatives on hypercrosslinked polymeric adsorbents. Chemosphere 1999, 38, 2003–2011. [Google Scholar] [CrossRef]
- Scordino, M.; Di Mauro, A.; Passerini, A.; Maccarone, E. Adsorption of flavonoids on resins: Hesperidin. J. Agric. Food Chem. 2003, 51, 6998–7004. [Google Scholar] [CrossRef] [PubMed]
- Zhuang, M.Z.; Zhao, M.M.; Lin, L.Z.; Dong, Y.; Chen, H.P.; Feng, M.Y.; Sun-Waterhouse, D.; Su, G.W. Macroporous resin purification of peptides with umami taste from soy sauce. Food Chem. 2016, 190, 338–344. [Google Scholar] [CrossRef] [PubMed]
- Han, F.; Li, Y.; Mao, X.; Xu, R.; Yin, R. Characterization of chemical constituents in Rhodiola crenulata by high-performance liquid chromatography coupled with Fourier-transform ion cyclotron resonance mass spectrometer (HPLC-FT-ICR MS). J. Mass Spectrom. 2016, 51, 363–368. [Google Scholar] [CrossRef] [PubMed]
- Naczk, M.; Shahidi, F. Extraction and analysis of phenolics in food. J. Chromatogr. A 2004, 1054, 95–111. [Google Scholar] [CrossRef]
- Naczk, M.; Shahidi, F. Phenolics in cereals, fruits and vegetables: Occurrence, extraction and analysis. J. Pharm. Biomed. 2006, 41, 1523–1542. [Google Scholar] [CrossRef] [PubMed]
- Ren, S.J.; Ye, X.P.; Borole, A.P. Separation of chemical groups from bio-oil water-extract via sequential organic solvent extraction. J. Anal. Appl. Pyrolysis 2017, 123, 30–39. [Google Scholar] [CrossRef]
- Li, H.B.; Chen, F. Preparative isolation and purification of salidroside from the Chinese medicinal plant Rhodiola sachalinensis by high-speed counter-current chromatography. J. Chromatogr. A 2001, 932, 91–95. [Google Scholar] [CrossRef]
Sample Availability: Salidroside and p-tyrosol are available from the authors. |
Concentration (%) | Increasing Rate (%) | |||
---|---|---|---|---|
Salidroside | p-Tyrosol | Salidroside | p-Tyrosol | |
RCE * | 2.25 ± 0.13 | 3.36 ± 0.13 | ||
15% Ethanol eluent | 21.51 | 20.28 | 19.26 | 16.92 |
FEST | 31.44 ± 2.68 a | 36.80 ± 0.51 a | 29.19 ± 2.72 | 33.44 ± 0.63 |
Peak Percentage | Distribution Rate | Recovery Rate | |||||||
---|---|---|---|---|---|---|---|---|---|
Cre | Sal | Tyr | Others | Cre | Sal | Tyr | Sal | Tyr | |
FEST (in water) | 8.38 | 33.76 | 36.27 | 21.59 | 100 | 100 | 100 | ||
Extraction schemes | |||||||||
C(20:1)1X | 10.41 | 41.72 | 23.14 | 24.73 | 102 | 103 | 53 | 103 | 53 |
EA(20:1)1X | 10.82 | 56.42 | 11.77 | 21.00 | 93 | 114 | 23 | 55 | 11 |
SEA(20:1)1X | 10.94 | 54.57 | 12.93 | 21.56 | 59 | 73 | 16 | 73 | 16 |
Sn-B(20:1)1X | 19.55 | 31.17 | 25.49 | 23.79 | 41 | 16 | 12 | 16 | 12 |
EA(20:1)1X/C(20:1)1X | 9.92 | 59.66 | 6.97 | 23.45 | 79 | 118 | 13 | 47 | 5.2 |
C(20:1)2X | 11.28 | 60.75 | 15.21 | 12.76 | 72 | 96 | 22 | 96 | 22 |
C(40:1)2X | 11.26 | 49.70 | 10.14 | 28.90 | 101 | 110 | 21 | 110 | 21 |
Concentration (%) | Increasing Rate (%) | |||
---|---|---|---|---|
Salidroside | p-Tyrosol | Salidroside | p-Tyrosol | |
FEST * | 31.44 ± 2.68 | 36.80 ± 0.51 | ||
Salidroside | 94.17 ± 3.16 a | — | 62.73 ± 5.20 | — |
p-Tyrosol | — | 97.29 ± 2.37 a | — | 60.48 ± 2.55 |
Ts | Ws | Wt | Ps | Pt | Rs | Rt | ||
(mg) | (%) | |||||||
HP-20 adsorbent resin | Load | 876.7 | 19.7 | 29.5 | 2.25 | 3.36 | 100 | 100 |
FEST | 40.6 | 12.8 | 14.9 | 31.44 | 36.80 | 64.97 | 50.51 | |
Silica column chromatography | Load | 39.1 | 12.3 | 14.4 | 31.44 | 36.80 | 100 | 100 |
Salidroside | 8.2 | 7.7 | — | 94.17 | — | 62.60 | ||
p-Tyrosol | 13.3 | — | 12.9 | — | 97.29 | 89.58 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, L.; Zhou, R.; Sui, J.; Liu, Y. Simultaneous Preparation of Salidroside and p-Tyrosol from Rhodiola crenulata by DIAION HP-20 Macroporous Resin Chromatography Combined with Silica Gel Chromatography. Molecules 2018, 23, 1602. https://doi.org/10.3390/molecules23071602
Sun L, Zhou R, Sui J, Liu Y. Simultaneous Preparation of Salidroside and p-Tyrosol from Rhodiola crenulata by DIAION HP-20 Macroporous Resin Chromatography Combined with Silica Gel Chromatography. Molecules. 2018; 23(7):1602. https://doi.org/10.3390/molecules23071602
Chicago/Turabian StyleSun, Liwei, Ran Zhou, Jinling Sui, and Yujun Liu. 2018. "Simultaneous Preparation of Salidroside and p-Tyrosol from Rhodiola crenulata by DIAION HP-20 Macroporous Resin Chromatography Combined with Silica Gel Chromatography" Molecules 23, no. 7: 1602. https://doi.org/10.3390/molecules23071602
APA StyleSun, L., Zhou, R., Sui, J., & Liu, Y. (2018). Simultaneous Preparation of Salidroside and p-Tyrosol from Rhodiola crenulata by DIAION HP-20 Macroporous Resin Chromatography Combined with Silica Gel Chromatography. Molecules, 23(7), 1602. https://doi.org/10.3390/molecules23071602