Oxidative Stability of Selected Edible Oils
Abstract
:1. Introduction
2. Results
2.1. Fatty Acid Composition
2.2. Schaal Oven Test
2.3. The Rancimat Test
3. Materials and Methods
3.1. Chemical Analyses
3.2. Fatty Acid Analysis
3.3. Schaal Oven Test
3.4. Oxidative Stability by Rancimat Measurements
3.5. TOTOX
3.6. Chemicals
3.7. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Liu, H.-R.; White, P.J. Oxidative stability of soybean oils with altered fatty acid. J. Am. Oil Chem. Soc. 1992, 69, 528–532. [Google Scholar] [CrossRef]
- Costa de Camargo, A.; Regitano-d’Arce, M.A.B.; Matias de Alencar, S.; Canniatti-razaca, S.G.; Ferreira de Souza Vieira, T.M.; Shahidi, F. Chemical changes and oxidative stability of peanuts as affected by the dry-blanching. J. Am. Oil Chem. Soc. 2016, 93, 1101–1109. [Google Scholar] [CrossRef]
- Fasina, O.O.; Craig-Schmidt, M.; Colley, Z.; Hallman, H. Predicting melting characteristics of vegetable oils from fatty acid composition. LWT 2008, 41, 1501–1505. [Google Scholar] [CrossRef]
- Kim, J.; Kim, D.N.; Lee, S.H.; Yoo, S.-H.; Lee, S. Correlation of fatty acid composition of vegetable oils with rheological behaviour and oil uptake. Food Chem. 2010, 118, 398–402. [Google Scholar] [CrossRef]
- Hanganu, A.; Todaşcă, M.; Chira, N.; Maganu, M.; Roşca, S. The compositional characterisation of Romanian grapeseed oils using spectroscopic methods. Food Chem. 2012, 134, 2453–2458. [Google Scholar] [CrossRef] [PubMed]
- Sabira, A.; Unverb, A.; Karaa, Z. The fatty acid and tocopherol constituents of the seed oil extracted from 21 grape varieties (Vitis spp.). J. Sci. Food Agric. 2012, 92, 1982–1987. [Google Scholar] [CrossRef] [PubMed]
- Hashemi, S.M.B.; Khaneghah, A.M.; Nikmaram, N.; Raeisi, S.; Rahman, M.S.; Avallone, S. Heating, microwave and UV irradiation effects on oxidative stability of Sardasht red grape (Vitis vinifera cultiv. Sardasht) seed oil. Int. J. Food Sci. Technol. 2017, 52, 1341–1347. [Google Scholar] [CrossRef]
- Christopoulou, E.; Lazaraki, M.; Komaitis, M.; Kaselimis, K. Effectiveness of determinations of fatty acids and triglycerides for the detection of adulteration of olive oils with vegetable oils. Food Chem. 2004, 84, 463–474. [Google Scholar] [CrossRef]
- Bakota, E.L.; Winkler-Moser, J.K.; Liu, S.X. Evaluation of a rice bran bran oil-derived spread as a functional ingredient. Eur. J. Lipid Sci. Technol. 2014, 116, 521–531. [Google Scholar] [CrossRef]
- Idrus, N.F.M.; Zzaman, W.; Yang, T.A.; Easa, A.M.; Sharifudin, M.S.; Noorakmar, B.W.; Jahurul, M.H.A. Effect of superheated-steam roasting on physicochemical properties of peanut (Peanut hypogea) oil. Food Sci. Biotechnol. 2017, 26, 911–920. [Google Scholar] [CrossRef]
- Bakota, E.L.; Dunn, R.O.; Liu, S.X. Heavy metals screening of rice bran bran oils and its relation to composition. Eur. J. Lipid Sci. Technol. 2015, 117, 1452–1462. [Google Scholar] [CrossRef]
- Ong, A.S.H.; Goh, S.H. Palm oil: A healthful and cost effective dietary component. Food Nutr. Bull. 2002, 23, 11–22. [Google Scholar] [CrossRef] [PubMed]
- Roszkowska, B.; Tańska, M.; Czaplicki, S.; Konopka, I. Variation in the composition and oxidative stability of commercial rapeseed oils during their shelf life. Eur. J. Lipid Sci. Technol. 2015, 117, 673–683. [Google Scholar] [CrossRef]
- Marciniak-Lukasiak, K.; Żbikowska, A. Quality of instant noodles depending on frying process conditions. Żywność Nauka Technologia Jakość 2013, 3, 151–163. [Google Scholar] [CrossRef]
- Guillén, M.D.; Ruiz, A. Study by proton nuclear magnetic resonance of the thermal oxidation of oils rich in oleic acyl groups. J. Am. Oil Chem. Soc. 2005, 82, 349–355. [Google Scholar] [CrossRef]
- Przysławski, J.; Gertig, H.; Nowak, J. Analiza składu kwasów tłuszczowych wybranych olejów roślinnych. Bromatol. Chem. Toksykol. 1996, 29, 335–342. [Google Scholar]
- Smith, S.A.; King, R.E.; Min, D.B. Oxidative and thermal stabilities of genetically modified high oleic sunflower oil. Food Chem. 2007, 102, 1208–1213. [Google Scholar] [CrossRef]
- Carrín, M.E.; Carelli, A.A. Peanut oil: Compositional data. Eur. J. Lipid Sci. Technol. 2010, 112, 697–707. [Google Scholar] [CrossRef]
- St-Onge, M.-P.; Travers, A. Fatty acids in corn oil: Role in heart disease prevention. In Handbook of Lipids in Human Function, Fatty Acids; AOCS Press (Elsevier): New York, NY, USA, 2016; pp. 131–140. [Google Scholar] [CrossRef]
- Guillén, M.D.; Goicoechea, E. Oxidation of corn oil at room temperature: Primary and secondary oxidation products and determination of their concentration in the oil liquid matrix from 1H nuclear magnetic resonance data. Food Chem. 2009, 116, 183–192. [Google Scholar] [CrossRef]
- Naz, S.; Siddiqi, R.; Sheikh, H.; Sayeed, S.A. Deterioration of olive, corn and soybean oils due to air, light, heat and deep-frying. Food Res. Int. 2005, 38, 127–134. [Google Scholar] [CrossRef]
- Dauqan, E.; Sani, H.A.; Abdullah, A.; Muhamad, H.; Top, A.B.G.M. Vitamin E and beta carotene composition in four different vegetable oils. Am. J. Appl. Sci. 2011, 8, 407–412. [Google Scholar] [CrossRef]
- Pandey, R.; Shrivastava, S.L. Comparative evaluation of rice bran oil obtained with two-step microwave assisted extraction and conventional solvent extraction. J. Food Eng. 2018, 218, 106–114. [Google Scholar] [CrossRef]
- Chotimarkorn, C.; Silalai, N. Addition of rice bran oil to soybean oil during frying increases the oxidative stability of the fried dough from rice bran flour during storage. Food Res. Int. 2008, 41, 308–317. [Google Scholar] [CrossRef]
- Khatoon, S.; Gopalakrishna, A.G. Fat-soluble nutraceuticals and fatty acid composition of selected Indian rice bran varieties. J. Am. Oil Chem. Soc. 2004, 81, 939–943. [Google Scholar] [CrossRef]
- Matthäus, B. Virgin grapeseed oil: Is it really a nutritional highlight? Eur. J. Lipid Sci. Technol. 2008, 110, 645–650. [Google Scholar] [CrossRef]
- Siano, F.; Addeo, F.; Volpe, M.G.; Paolucci, M.; Picariello, G. Oxidative stability of pomegranate (Punica granatum L.) seed oil to simulated gastric conditions and thermal stress. J. Agric. Food Chem. 2016, 64, 8369–8378. [Google Scholar] [CrossRef] [PubMed]
- Zock, P.L.; Katan, M.B. Linoleic acid intake and cancer risk: A review and meta-analysis. Am. J. Clin. Nutr. 1998, 68, 142–153. [Google Scholar] [CrossRef] [PubMed]
- Hart, A.; Tjonneland, A.; Olsen, A.; Overvad, K.; Bergmann, M.M.; Boeing, H.; Nagel, G.; Linseisen, J.; Hallmans, G.; Danielsson, Å.; et al. Linoleic acid, a dietary n-6 polyunsaturated fatty acid, and the aetiology of ulcerative colitis: A nested case-control study within a European prospective cohort study. Gut 2009, 58, 1606–1611. [Google Scholar] [CrossRef]
- Zhu, M.; Wen, X.; Zhao, J.; Liu, F.; Ni, Y.; Ma, L.; Li, J. Effect of industrial chemical refining on the physicochemical properties and the bioactive minor components of peanut oil. J. Am. Oil Chem. Soc. 2016, 93, 285–294. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, Y.; Ma, X.; Wang, E.; Liu, M.; Yan, R. Characterisation and oxidation stability of monoacylglycerols from partially hydrogenated corn oil. Food Chem. 2015, 173, 70–79. [Google Scholar] [CrossRef] [PubMed]
- Alberdi-Cedeño, J.; Ibargoitia, M.L.; Guillén, M.D. Bioactive compounds detected for the first time in corn oil: Cyclic dipeptides and other nitrogenated compounds. J. Food Compos. Anal. 2017, 62, 197–204. [Google Scholar] [CrossRef]
- Redondo-Cuevas, L.; Castellanob, G.; Torrensd, F.; Raikosa, V. Revealing the relationship between vegetable oil composition and oxidative stability: A multifactorial approach. J. Food Compos. Anal. 2018, 66, 221–229. [Google Scholar] [CrossRef]
- Maszewska, M.; Florowska, A.; Matysiak, K.; Marciniak-Łukasiak, K.; Dłużewska, E. The study of palm and rapeseed oil stability during frying. JABFQ 2018, 91, 103–108. [Google Scholar] [CrossRef]
- Kmiecik, D.; Korczak, J.; Rudzińska, M.; Gramza Michałowska, A.; Heś, M. Stabilization of phytosterols in rapeseed oil by natural antioxidants during heating. Eur. J. Lipid Sci. Technol. 2009, 111, 1124–1132. [Google Scholar] [CrossRef]
- Pardo, J.E.; Rubio, M.; Pardo, A.; Zied, D.C.; Álvarez-Ortí, M. Improving the quality of grapeseed oil by maceration with grinded fresh grapeseeds. Eur. J. Lipid Sci. Technol. 2011, 113, 1266–1272. [Google Scholar] [CrossRef]
- Pardo, J.E.; Fernández, E.; Rubio, M.; Alvarruiz, A.; Alonso, G.L. Characterization of grapeseed oil from different grape varieties (Vitis vinifera). Eur. J. Lipid Sci. Technol. 2009, 111, 188–193. [Google Scholar] [CrossRef]
- CODEX STAN 210-1999 Codex Standard for Named Vegetable Oils. Available online: http://www.fao.org/fao-who-codexalimentarius/sh-proxy/it/?lnk=1&url=https%253A%252F%252Fworkspace.fao.org%252Fsites%252Fcodex%252FStandards%252FCODEX%2BSTAN%2B210-1999%252FCXS_210e.pdf (accessed on 16 July 2018).
- Park, J.W.; Jang, E.Y.; Kim, J.Y.; Yi, B.R.; Kim, M.-J.; Park, K.W.; Lee, J.H. Effects of visible light irradiation on the oxidative stability in rice bran. J. Cereal Sci. 2013, 58, 178–181. [Google Scholar] [CrossRef]
- Nepote, V.; Olmedo, R.H.; Mestrallet, M.G.; Grosso, N.R. A Study of the relationships among consumer acceptance, oxidation chemical indicators, and sensory attributes in high-oleic and normal peanuts. J. Food Sci. 2009, 74, S1–S8. [Google Scholar] [CrossRef] [PubMed]
- Baştürk, A.; Ceylan, M.M.; Çavuş, M.; Boran, G.; Javidipour, I. Effects of some herbal extracts on oxidative stability of corn oil under accelerated oxidation conditions in comparison with some commonly used antioxidants. LWT 2018, 89, 358–364. [Google Scholar] [CrossRef]
- Wroniak, M.; Kwiatkowska, M.; Krygier, K. Charakterystyka wybranych olejów tłoczonych na zimno. Żywność Nauka Technologia Jakość 2006, 2, 46–58. [Google Scholar]
- Kowalski, B.; Ratusz, K.; Kowalska, D.; Bekas, W. Determination of the oxidative stability of vegetable oils by Differential Scanning Calorimetry and Rancimat measurements. Eur. J. Lipid Sci. Technol. 2004, 106, 165–169. [Google Scholar] [CrossRef]
- Ratusz, K.; Popis, E.; Ciemniewska-Żytkiewicz, H.; Wroniak, M. Oxidative stability of camelina (Camelina sativa L.) oil using pressure differential scanning calorimetry and Rancimat method. J. Therm. Anal. Calorim. 2016, 126, 343–351. [Google Scholar] [CrossRef]
- Phillips, K.M.; Ruggio, D.M.; Toivo, J.I.; Swank, M.A.; Simpkins, A.H. Free and esterified sterol composition of edible oils and fats. J. Food Compos. Anal. 2002, 15, 123–142. [Google Scholar] [CrossRef]
- International Organization for Standardization (ISO). ISO 6886:2016 Animal and Vegetable Fats and Oils—Determination of Oxidative Stability (Accelerated Oxidation Test; ISO: Geneva, Switzerland, 2016. [Google Scholar]
- Rutkowski, A.; Krygier, K. Technologia i Analiza Tłuszczów Jadalnych; Skrypt Szkoły Głównej Gospodarstwa Wiejskiego Akademii Rolniczej w Warszawie; Skrypt SGGW-AR: Warsaw, Poland, 1979; p. 224. [Google Scholar]
- International Organization for Standardization (ISO). ISO 3960:2017 Animal and Vegetable Fats and Oils—Determination of Peroxide Value—Iodometric (Visual) Endpoint Determination; ISO: Geneva, Switzerland, 2017. [Google Scholar]
- International Organization for Standardization (ISO). ISO 660:2009 Animal and Vegetable Fats and Oils—Determination of Acid Value and Acidity; ISO: Geneva, Switzerland, 2009. [Google Scholar]
- International Organization for Standardization (ISO). ISO 6885:2016 Animal and Vegetable Fats and Oils—Determination of Anisidine Value; ISO: Geneva, Switzerland, 2016. [Google Scholar]
- AOCS. Cis-, trans-, Saturated, Monounsaturated and Polyunsaturated Fatty Acids in Vegetable or Non-Ruminant Animal Oils and Fats by Capillary GLC; AOCS Official Method Ce 1h-05, Revised 2017; AOCS Press: Urbana, IL, USA, 2017. [Google Scholar]
- International Organization for Standardization (ISO). ISO 5509:2000 Animal and Vegetable Fats and Oils—Preparation of Methyl Esters of Fatty Acids; ISO: Geneva, Switzerland, 2000. [Google Scholar]
Sample Availability: Samples of the compounds are not available from the authors. |
Oil | AV (mg KOH/g) | PV (m Eq O2/kg) | AnV | TOTOX | ||||
---|---|---|---|---|---|---|---|---|
1 Month | 12 Month | 1 Month | 12 Month | 1 Month | 12 Month | 1 Month | 12 Month | |
Peanut | 0.11a | 0.17b | 1.2a | 1.6b | 1.9a | 2.3b | 4.3a | 5.5b |
Corn | 0.22a | 0.25b | 1.2a | 1.7b | 2.8a | 2.9a | 5.2a | 6.3b |
Rice bran | 0.22a | 0.34b | 4.4a | 4.5a | 4.4a | 4.6b | 13.2a | 13.6a |
Rapeseed | 0.17a | 0.33b | 0.3a | 1.0b | 1.1a | 1.7b | 1.7a | 3.7b |
Grapeseed | 0.30a | 0.39b | 2.6a | 3.0b | 6.8a | 7.0a | 12a | 13a |
Codex Stan 210-1999 [37] | <0.6 | <10 | <8 |
Days after Opening the Bottle | Peanut Oil | Corn Oil | Rice Bran Oil | Rapeseed Oil | Grapeseed Oil | |||||
---|---|---|---|---|---|---|---|---|---|---|
1st | 12th | 1st | 12th | 1st | 12th | 1st | 12th | 1st | 12th | |
0 | 1.18c | 1.57d | 1.24c | 1.69e | 4.51h | 4.54h | 0.26a | 1.07b | 2.63f | 3.02g |
1 | 2.76d | 2.86de | 2.55c | 2.94e | 6.41h | 6.25h | 1.91a | 2.25b | 3.66f | 4.28g |
2 | 5.49e | 5.9f | 3.4c | 4.08d | 8.03j | 7.72i | 2.19a | 2.97b | 6.53g | 6.86h |
3 | 8.64f | 8.24e | 4.06b | 4.87c | 9.62i | 9.24g | 2.72a | 6.84d | 9.41h | 10.78j |
4 | 11.79d | 11.73d | 4.72a | 6.71c | 15.57g | 13.03e | 5.86b | 17.13i | 14.69f | 18.09h |
5 | 16.38d | 15.23c | 6.94a | 8.55b | 21.65f | 16.83e | 16.67e | 27.41i | 24.02g | 25.41h |
6 | 20.97c | 23.58d | 9.18a | 14.21b | 27.88g | 26.15f | 25.85e | 41.15j | 36.44i | 35.49h |
7 | 28.08c | 30.96d | 17.64a | 25.17b | 35.24e | 36.9f | 38.83g | 56.23j | 49.25h | 51.23i |
8 | 30.2b | 36.21c | 26.74a | 43.11e | 42.92d | 44.37f | 50.68g | 71.28j | 63.7h | 67.34i |
9 | 35.36a | 42.04b | 42.2b | 52.18e | 49.86c | 51.4d | 62.79f | 82.89i | 75.02g | 78.27h |
10 | 44.85a | 47.88b | 48.32c | 61.26e | 57.06d | 58.42d | 75.26f | 94.51h | 91.2g | 89.21g |
11 | 45.34a | 59.08b | 58.92b | 70.01d | 66.11c | 72.79e | 88.59f | 100.34h | 103.16i | 98.97g |
12 | 53.95a | 70.28b | 69.55b | 78.76c | 82.37d | 87.17e | 103.63f | 106.17g | 108.72h | |
13 | 65.77a | 77.71c | 74.24b | 86.59d | 88.41e | 91.95f | ||||
14 | 70.76a | 85.14c | 78.57b | 94.42d | 94.47d | 96.73e | ||||
15 | 75.75a | 92.58c | 83.26b | 102.25e | 100.53d | 101.5d | ||||
16 | 82.42a | 100.01c | 94.28b | |||||||
17 | 88.58a | 98.72b | ||||||||
18 | 95.03a | 107.09b | ||||||||
19 | 101.56 |
Oil | Correlation Coefficients | |
---|---|---|
1st Month | 12th Month | |
Peanut | 0.9957 | 0.9929 |
Corn | 0.9727 | 0.9243 |
Rice bran | 0.9994 | 0.9908 |
Rapeseed | 0.9994 | 0.9892 |
Grapeseed | 0.9832 | 0.9855 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maszewska, M.; Florowska, A.; Dłużewska, E.; Wroniak, M.; Marciniak-Lukasiak, K.; Żbikowska, A. Oxidative Stability of Selected Edible Oils. Molecules 2018, 23, 1746. https://doi.org/10.3390/molecules23071746
Maszewska M, Florowska A, Dłużewska E, Wroniak M, Marciniak-Lukasiak K, Żbikowska A. Oxidative Stability of Selected Edible Oils. Molecules. 2018; 23(7):1746. https://doi.org/10.3390/molecules23071746
Chicago/Turabian StyleMaszewska, Magdalena, Anna Florowska, Elżbieta Dłużewska, Małgorzata Wroniak, Katarzyna Marciniak-Lukasiak, and Anna Żbikowska. 2018. "Oxidative Stability of Selected Edible Oils" Molecules 23, no. 7: 1746. https://doi.org/10.3390/molecules23071746
APA StyleMaszewska, M., Florowska, A., Dłużewska, E., Wroniak, M., Marciniak-Lukasiak, K., & Żbikowska, A. (2018). Oxidative Stability of Selected Edible Oils. Molecules, 23(7), 1746. https://doi.org/10.3390/molecules23071746