Antioxidant and Antibacterial Activity of Roseroot (Rhodiola rosea L.) Dry Extracts
Abstract
:1. Introduction
2. Results and Discussion
2.1. Composition of Phenolic Compounds
2.2. Essential Oil Content and Composition
2.3. Antioxidant Activity
2.4. Antibacterial Activity
3. Materials and Methods
3.1. Plant Samples
3.2. Preparation of Extracts
3.3. Preparation of Essential Oil
3.4. Chemical Analysis
3.4.1. Analysis of Phenolic Compounds by HPLC
3.4.2. Analysis of Essential Oils by GC-MS and GC-FID
3.5. Antioxidant Activity
3.5.1. DPPH (1,1-Diphenyl-2-picrylhydrazyl) Scavenging Capacity Assay
3.5.2. ABTS (2,2′-Azino-bis(3-ethylbenzothiazoline-6-sulphonic acid)) Scavenging Capacity Assay
3.5.3. Ferric Reducing Antioxidant Power Assay (FRAP)
3.6. Anti-Microbial Activity
3.6.1. Test Microorganisms and Preparation of Inoculum
3.6.2. The Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal Concentration (MBC)
3.7. Statistical Analyses
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Brown, R.P.; Gerbarg, P.L.; Ramazanov, Z. Rhodiola rosea: A phytomedicinal overview. HerbalGram 2002, 56, 40–52. [Google Scholar]
- Chiang, H.M.; Chen, H.C.; Wu, C.S.; Wu, P.Y.; Wen, K.C. Rhodiola plants: Chemistry and biological activity. J. Food Drug Anal. 2015, 23, 359–369. [Google Scholar] [CrossRef] [PubMed]
- Panossian, A.; Wikman, G.; Sarris, J. Rosenroot (Rhodiola rosea): Traditional use, chemical composition, pharmacology and clinical efficacy. Phytomedicine 2010, 17, 481–493. [Google Scholar] [CrossRef] [PubMed]
- EMA (European Medicines Agency). Assessment Report on Rhodiola rosea L., Rhizoma et Radix; EMA/HMPC/232100/2011; Committee on Herbal Medicine: London, UK, 2012. [Google Scholar]
- Ma, Y.-C.; Wang, X.-Q.; Hou, F.F.; Ma, J.; Luo, M.; Lu, S.; Jin, P.; Terevsky, N.; Chen, A.; Xu, I.; et al. Rapid resolution liquid chromatography (RRLC) analysis for quality control of Rhodiola rosea roots and commercial standardized products. Nat. Prod. Commun. 2011, 6, 645–650. [Google Scholar] [PubMed]
- Kucinskaite, A.; Pobłocka-Olech, L.; Krauze-Baranowska, M.; Sznitowska, M.; Savickas, A.; Briedis, V. Evaluation of biologically active compounds in roots and rhizomes of Rhodiola rosea L. cultivated in Lithuania. Medicina 2007, 43, 487–494. [Google Scholar] [CrossRef] [PubMed]
- Petsalo, A.; Jalonen, J.; Tolonen, A. Identification of flavonoids of Rhodiola rosea by liquid chromatography-tandem mass spectrometry. J. Chromatogr. A 2006, 1112, 224–231. [Google Scholar] [CrossRef] [PubMed]
- Rohloff, J. Volatiles from rhizomes of Rhodiola rosea L. Phytochemistry 2002, 59, 655–661. [Google Scholar] [CrossRef]
- Shatar, S.; Adams, R.P.; Koenig, W. Comparative study of the essential oil of Rhodiola rosea L. from Mongolia. J. Essent. Oil Res. 2007, 19, 215–217. [Google Scholar] [CrossRef]
- Hethelyi, E.B.; Horany, K.; Galambosi, B.; Domokos, J.; Palinkas, J. Chemical composition of the essential oil from rhizomes of Rhodiola rosea L. grown in Finland. J. Essent. Oil Res. 2005, 17, 628–629. [Google Scholar] [CrossRef]
- Evstatieva, L.; Todorova, M.; Antonova, D.; Staneva, J. Chemical composition of essential oils of Rhodiola rosea L. of three different origins. Pharmacogn. Mag. 2010, 6, 256–258. [Google Scholar] [CrossRef] [PubMed]
- Kelly, G.S. Rhodiola rosea: A possible plant adaptogen. Altern. Med. Rev. 2001, 6, 293–302. [Google Scholar] [PubMed]
- EMA (European Medicines Agency). Reflection Paper on the Adaptogenic Concept; EMA/HMPC/102655/2007; Committee on Herbal Medicine: London, UK, 2007. [Google Scholar]
- Radomska-Leśniewska, D.M.; Skopiński, P.; Balan, B.J.; Bialoszewska, A.; Jówiak, J.; Rokicki, D.; Skopińska-Różewska, E.; Borecka, A.; Hevelke, A. Angiomodulatory properties of Rhodiola spp. and other natural antioxidants. Cent. Eur. J. Immunol. 2015, 40, 249–262. [Google Scholar] [CrossRef] [PubMed]
- Tepe, B.; Daferera, D.; Tepe, A.S.; Polissiou, M.; Sokmen, A. Antioxidant activity of the essential oil and various extracts of Nepeta flavida Hub.-Mor. from Turkey. Food Chem. 2007, 103, 1358–1364. [Google Scholar] [CrossRef]
- Grech-Baran, M.; Sykłowska-Baranek, K.; Pietrosiuk, A. Approaches of Rhodiola kirilowii and Rhodiola rosea field cultivation in Poland and their potential health benefits. Ann. Agric. Environ. Med. 2015, 22, 281–285. [Google Scholar] [CrossRef] [PubMed]
- Calcabrini, C.; De Bellis, R.; Mancini, U.; Cucchiarini, L.; Potenza, L.; De Sanctis, R.; Patrone, V.; Scesa, C.; Dachà, M. Rhodiola rosea ability to enrich cellular antioxidant defences of cultured human keratinocytes. Arch. Dermatol. Res. 2010, 302, 191–200. [Google Scholar] [CrossRef] [PubMed]
- Chen, T.S.; Liou, S.Y.; Chang, Y.L. Antioxidant evaluation of three adaptogen extracts. Am. J. Chin. Med. 2008, 36, 1209–1217. [Google Scholar] [CrossRef] [PubMed]
- Schriner, S.E.; Avanesian, A.; Liu, Y.; Luesch, H.; Jafari, M. Protection of human cultured cells against oxidative stress by Rhodiola rosea without activation of antioxidant defenses. Free Radic. Biol. Med. 2009, 47, 577–584. [Google Scholar] [CrossRef] [PubMed]
- Palumbo, D.R.; Occhiuto, F.; Spadaro, F.; Circosta, C. Rhodiola rosea extract protects human cortical neurons against glutamate and hydrogen peroxide-induced cell death through reduction in the accumulation of intracellular calcium. Phyther. Res. 2012, 26, 878–883. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Q.; Yin, Z.P.; Ma, L.; Zhao, W.; Hao, H.W.; Li, H.L. Free radical scavenging activities of oligomeric proanthocyanidin from Rhodiola rosea L. and its antioxidant effects in vivo. Nat. Prod Res. 2014, 28, 1–3. [Google Scholar] [CrossRef] [PubMed]
- Ganzera, M.; Yayla, Y.; Khan, I.A. Analysis of the marker compounds of Rhodiola rosea L. (golden root) by reversed phase high performance liquid chromatography. Chem. Pharm. Bull. 2001, 49, 465–467. [Google Scholar] [CrossRef] [PubMed]
- Węglarz, Z.; Przybył, J.L.; Geszprych, A. Roseroot (Rhodiola rosea L.): Effect of internal and external factors on accumulation of biologically active compounds. In Bioactive Molecules and Medicinal Plants; Ramawat, K.G., Merillon, J.-M., Eds.; Springer: Berlin, Germany, 2007; pp. 298–310. ISBN 978-3-540-74603-4. [Google Scholar]
- Altantsetseg, K.; Przybył, J.L.; Węglarz, Z.; Geszprych, A. Content of biologically active compounds in roseroot (Rhodiola sp.) raw material of different derivation. Herba Pol. 2007, 53, 20–26. [Google Scholar]
- Babushok, V.I.; Linstrom, P.J.; Zenkevich, I.G. Retention indices for frequently reported compounds of plant essential oils. J. Phys. Chem. Ref. Data 2011, 40, 4. [Google Scholar] [CrossRef]
- Adams, R.P. Identification of Essential Oil Components by Gas Chromatography/Mass Spectrometry, 4th ed.; Allured Publishing Corp.: Carol Stream, IL, USA, 2007. [Google Scholar]
- Baranauskiene, R.; Kazernavičiute, R.; Pukalskiene, M.; Maždžieriene, R.; Venskutonis, P.R. Agrorefinery of Tanacetum vulgare L. into valuable products and evaluation of their antioxidant properties and phytochemical composition. Ind. Crops Prod. 2014, 60, 113–122. [Google Scholar] [CrossRef]
- Bączek, K.B.; Kosakowska, O.; Przybył, J.L.; Pióro-Jabrucka, E.; Costa, R.; Mondello, L.; Gniewosz, M.; Synowiec, A.; Węglarz, Z. Antibacterial and antioxidant activity of essential oils and extracts from costmary (Tanacetum balsamita L.) and tansy (Tanacetum vulgare L.). Ind. Crops Prod. 2017, 102, 154–163. [Google Scholar] [CrossRef]
- Qian, E.W.; Ge, D.T.; Kong, S.K. Salidroside protects human erythrocytes against hydrogen peroxide-induced apoptosis. J. Nat. Prod. 2012, 75, 531–537. [Google Scholar] [CrossRef] [PubMed]
- Mao, G.; Wang, Y.; Qiu, Q.; Deng, H.B.; Yuan, L.G.; Li, R.G.; Song, D.Q.; Li, Y.Y.; Li, D.D.; Wang, Z. Salidroside protects human fibroblast cells from premature senescence induced by H2O2 partly through modulating oxidative status. Mech. Ageing Dev. 2010, 11–12, 723–731. [Google Scholar] [CrossRef] [PubMed]
- Vlachogianni, I.C.; Fragopoulou, E.; Kostakis, I.K.; Antonopoulou, S. In vitro assessment of antioxidant activity of tyrosol, resveratrol and their acetylated derivatives. Food Chem. 2015, 177, 165–173. [Google Scholar] [CrossRef] [PubMed]
- Kulisic, T.; Radonic, A.; Milos, M. Antioxidant properties of thyme (Thymus vulgaris L.) and wild thyme (Thymus serpyllus L.) essential oils. Ital. J. Food Sci. 2005, 17, 315–325. [Google Scholar]
- Stanojević, L.P.; Stanojević, J.S.; Cvetković, D.J.; Ilić, D.P. Antioxidant activity of oregano essential oil (Origanum vulgare L.). Biol. Nyssana. 2016, 7, 131–139. [Google Scholar] [CrossRef]
- Andrade, M.; das Graças Cardoso, M.; de Andrade, J.; Silva, L.; Teixeira, M.; Valério Resende, J.; da Silva Figueiredo, A.; Barroso, J. Chemical composition and antioxidant activity of essential oils from Cinnamodendron dinisii schwacke and Siparuna guianensis aublet. Antioxidants 2013, 2, 384–397. [Google Scholar] [CrossRef] [PubMed]
- Amorati, R.; Foti, M.C.; Valgimigli, L. Antioxidant activity of essential oils. J. Agri. Food Chem. 2013, 61, 10835–10847. [Google Scholar] [CrossRef] [PubMed]
- Klanĉnik, A.; Piskernik, S.; Jeršek, B.; Možina, S.S. Evaluation of diffusion and dilution methods to determine the antibacterial activity of plant extracts. J. Microbiol. Methods 2010, 81, 121–126. [Google Scholar] [CrossRef] [PubMed]
- Zanetti, M.; Ternus, Z.; Dalcanton, F.; de Mello, M.M.J.; de Oliveira, D.; Araujo, P.H.H.; Riella, H.G.; Fiori, M.A. Microbiological characterization of pure geraniol and comparison with bactericidal activity of the cinnamic acid in gram-positive and gram-negative bacteria. J. Microb. Biochem. Technol. 2015, 7, 186–193. [Google Scholar] [CrossRef]
- Booker, A.; Jalil, B.; Frommenwiler, D.; Reich, E.; Zhai, L.; Kulic, Z.; Heinrich, M. The authenticity and quality of Rhodiola rosea products. Phytomedicine 2016, 23, 754–762. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ming, D.S.; Hillhouse, B.J.; Guns, E.S.; Eberding, A.; Xie, S.; Vimalanathan, S.; Towers, G.H.N. Bioactive compounds from Rhodiola rosea (Crassulaceae). Phytoher. Res. 2005, 19, 740–743. [Google Scholar] [CrossRef] [PubMed]
- Bany, J.; Zdanowska, D.; Skopińska-Różewska, E.; Sommer, E.; Siwicki, A.K.; Wasiutyński, A. The effect of Rhodiola rosea extracts on the bacterial infection in mice. Cent. Eur. J. Immunol. 2009, 34, 35–37. [Google Scholar]
- Polish Pharmaceutical Society. Polish Pharmacopoeia, 8th ed.; 01/2008:20812; Office of Registration of Medicinal Products, Medical Devices and Biocidal Products: Warsaw, Poland, 2008; Volume 1, pp. 229–230. [Google Scholar]
- ChromaDex. Tech Tip 0003—Recovery & Dilution Procedures. Available online: https://www.chromadex.com/media/2126/techtip0003-recoverydilutionprocedures_nl_pw.pdf (accessed on 26 June 2018).
- Yen, G.C.; Chen, H.Y. Antioxidant activity of various tea extracts in relation to their antimutagenicity. J. Agric. Food Chem. 1995, 43, 27–32. [Google Scholar] [CrossRef]
- Szlachta, M.; Małecka, M. Właściwości przeciwutleniające herbatek owocowych. Żywność Nauka Technologia Jakość 2008, 1, 92–102. [Google Scholar]
- Re, R.; Pellegrini, N.; Porteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Res. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Arts, M.J.T.J.; Haenen, G.R.M.M.; Voss, H.P.; Basat, A. Antioxidant capacity of reaction products limits the applicability of the Trolox equivalent antioxidant capacity (TEAC) assay. Food Chem. Toxicol. 2002, 42, 45–49. [Google Scholar] [CrossRef]
- Benzie, I.F.F.; Strain, J.J. The ferric reducing ability of plasma (FRAP) as a measure of antioxidant power: The FRAP assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef] [PubMed]
- Kraujalyte, V.; Venskutonis, P.R.; Pukalskas, A.; Cesoniene, L.; Daubaras, R. Antioxidant properties and polyphenolic compositions of fruits from different European cranberrybush (Viburnum opulus L.) genotypes. Food Chem. 2013, 141, 3695–3702. [Google Scholar] [CrossRef] [PubMed]
- Rangasamy, O.; Raoelison, G.; Rakotoniriana, F.E.; Cheuk, K.; Urverg-Ratsimamanga, S.; Quetin-Leclercq, J.; Gurib-Fakim, A.; Subratty, A.H. Screening foranti-infective properties of several medicinal plants of the Mauritians flora. J. Ethnopharmacol. 2007, 109, 331–337. [Google Scholar] [CrossRef] [PubMed]
Sample Availability: Samples of plants raw material are available from the authors. |
Compound | Raw Material | Aqueous Dry Extract | Ethanolic Dry Extract |
---|---|---|---|
Tyrosol derivatives | |||
Salidroside | 146.30 ± 25.94 c | 249.87 ± 1.65 b | 441.29 ± 4.67 a |
Tyrosol | 36.20 ± 0.25 b | 136.08 ± 0.37 a | 147.08 ± 0.48 a |
Total | 182.50 | 385.95 | 588.37 |
Trans-cinnamic alcohol derivatives | |||
Rosarin | 141.03 ± 3.60 c | 181.00 ± 2.27 b | 285.48 ± 3.54 a |
Rosavin | 48.01 ± 1.68 c | 129.15 ± 0.12 bc | 969.71 ± 3.76 a |
Rosin | 102.24 ± 2.64 b | 127.77 ± 0.98 b | 169.40 ± 1.66 a |
Trans-cinnamic alcohol | 17.29 ± 0.38 a | 8.90 ± 0.09 b | 12.07 ± 0.40 ab |
Total | 308.57 | 446.82 | 1436.66 |
No. | Compound | RI a | RI b | Essential Oil |
---|---|---|---|---|
1 | hexanal | 1058 | 801 | 1.33 |
2 | 2-pentyl furan | 1209 | 990 | 0.49 |
3 | pentyl alcohol | 1224 | 763 | 0.03 |
4 | hexanol | 1332 | 866 | 0.82 |
5 | trans-ocimene | 1385 | 1092 | 0.08 |
6 | β-thujone | 1425 | 1119 | 0.06 |
7 | 1-octen-3-ol | 1434 | 978 | 0.09 |
8 | heptanol | 1440 | 969 | 0.17 |
9 | 1-nonanol | 1500 | 1036 | 0.32 |
10 | benzaldehyde | 1511 | - | 0.23 |
11 | linalool | 1537 | 1100 | 0.42 |
12 | octanol | 1548 | 1071 | 11.43 |
13 | pinocarvone | 1558 | 1163 | 0.10 |
14 | myrtenal | 1621 | - | 0.11 |
15 | trans-pinocarveol | 1649 | 1142 | 15.71 |
16 | decyl alcohol | 1767 | 1274 | 0.21 |
17 | cuminaldehyde | 1783 | 1244 | 0.18 |
18 | myrtenol | 1797 | 1198 | 11.29 |
19 | trans-carveol | 1842 | 1221 | 4.51 |
20 | geraniol | 1856 | 1252 | 16.46 |
21 | cis-myrtanol | 1883 | 1186 | 5.26 |
22 | perilla-alcohol | 2025 | 1301 | 2.27 |
23 | (Z)-cinnamaldehyde | 2058 | - | 1.38 |
24 | mentha-1.4-dien-7-ol | 2078 | 1194 | 1.88 |
25 | cumin alcohol | 2127 | 1293 | 1.32 |
26 | tetrahydronootkatone | 2266 | 1734 | 18.31 |
27 | (E)-cinnamyl alcohol | 2322 | 1311 | 0.63 |
Total identified fraction | 95.09 | |||
Essential oil total content | 0.07 |
Method | Raw Material | Aqueous Dry Extract | Ethanolic Dry Extract | |
---|---|---|---|---|
DPPH | ||||
[% RSC] | 62.70 ± 1.1 b | 79.30 ± 2.0 ab | 85.90 ± 3.1 a | |
[µmol Trolox/g] | 182.70 ± 2.2 | 229.00 ± 1.1 | 240.50 ± 0.7 | |
ABTS | ||||
[% RSC] | 74.00 ± 2.4 b | 88.70 ± 1.1 a | 89.60 ± 0.5 a | |
[µmol Trolox/g] | 36.80 ± 2.5 | 43.60 ± 1.5 | 45.80 ± 1.1 | |
FRAP | ||||
[Fe2+ µmol/g] | 399.40 ± 2.1 c | 542.60 ± 1.0 b | 1198.20 ± 0.7 a | |
[µmol Trolox/g] | 204.90 ± 1.2 | 285.30 ± 2.0 | 574.50 ± 1.7 |
Raw Material | Aqueous Dry Extract | Ethanolic Dry Extract | |
---|---|---|---|
Strain | MIC (MBC) (mg/mL) | ||
Gram-positive bacteria | |||
S. epidermidis ATCC 12228 | 1 (4) | 1 (8) | 2 (8) |
S. aureus ATCC 25923 | 4 (4) | 4 (16) | 1 (4) |
S. aureus A 529 | 8 (8) | 8 (>64) | 2 (32) |
B. cereus 15 | 16 (32) | 16 (32) | 4 (32) |
B. cereus ATCC 11778 | 32 (64) | 16 (16) | 4 (4) |
B. cereus X-13 | 32 (64) | 16 (64) | 4 (32) |
B. subtilis ATCC 6633 | 32 (64) | 16 (32) | 2 (16) |
L. monocytogenes 17/11 | 32 (>64) | 8 (16) | 4 (8) |
Gram-negative bacteria | |||
K. pneumoniae ATCC 13883 | 2 (2) | 1 (2) | 1 (1) |
Y. enterocolitica O3 383/11 | 4 (4) | 4 (32) | 4 (32) |
P. mirabilis ATCC 35659 | 8 (64) | 8 (16) | 4 (16) |
S. sonnei s | 8 (16) | 8 (64) | 4 (64) |
S. ser. Enteritidis ATCC 13076 | 16 (16) | 8 (16) | 8 (16) |
S. ser. Enteritidis 322/11 | 32 (64) | 16 (64) | 16 (64) |
S. ser. Typhimurium 300/11 | 32 (64) | 16 (>64) | 16 (32) |
Ps. aeruginosa ATCC 27853 | 32 (64) | 16 (32) | 8 (16) |
E. aerogenes ATCC 13048 | 32 (>64) | 32 (64) | 32 (64) |
E. coli ATCC 25922 | 64 (>64) | 32 (32) | 32 (32) |
E. coli O26 152/11 | 64 (64) | 32 (64) | 32 (64) |
MIC (mg/mL) | A (%) | ||
---|---|---|---|
Raw Material | Aqueous Dry Extract | Ethanolic Dry Extract | |
0.5 | 0 | 0 | 0 |
1 | 5 | 11 | 26 |
2 | 11 | 11 | 26 |
4 | 21 | 21 | 63 |
8 | 37 | 47 | 74 |
16 | 47 | 84 | 84 |
32 | 90 | 100 | 100 |
64 | 100 | 100 | 100 |
Compound | Precision Intra-Day (CV %) | Precision Inter-Day (CV %) | Regression Equation | R2 (n = 6) | Linear Range (mg mL−1) | LOD (µg L−1) | LOQ (µg L−1) | Recovery (%) |
---|---|---|---|---|---|---|---|---|
Salidroside | 1.17 | 1.84 | y = 231.6x + 1946.7 | 0.9999 | 3.9–3920.0 | 10.83 | 36.10 | 105.1 |
Tyrosol | 1.22 | 1.74 | y = 604.3x − 13205.1 | 0.9997 | 3.8–3800.0 | 31.73 | 105.78 | 92.5 |
Rosarin | 0.95 | 1.32 | y = 618.3x − 10440.9 | 0.9998 | 2.0–1960.0 | 7.31 | 24.37 | 98.0 |
Rosavin | 0.80 | 1.22 | y = 406.2x − 4640.1 | 0.9999 | 3.9–3872.0 | 7.69 | 25.65 | 95.4 |
Rosin | 0.75 | 1.15 | y = 480.6x − 11104.3 | 0.9996 | 2.9–1980.0 | 17.57 | 58.57 | 96.2 |
Trans-cinnamic alcohol | 0.97 | 1.21 | y = 7740.3x − 28673.2 | 0.9994 | 11.7–880.3 | 1.26 | 4.21 | 97.4 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kosakowska, O.; Bączek, K.; Przybył, J.L.; Pióro-Jabrucka, E.; Czupa, W.; Synowiec, A.; Gniewosz, M.; Costa, R.; Mondello, L.; Węglarz, Z. Antioxidant and Antibacterial Activity of Roseroot (Rhodiola rosea L.) Dry Extracts. Molecules 2018, 23, 1767. https://doi.org/10.3390/molecules23071767
Kosakowska O, Bączek K, Przybył JL, Pióro-Jabrucka E, Czupa W, Synowiec A, Gniewosz M, Costa R, Mondello L, Węglarz Z. Antioxidant and Antibacterial Activity of Roseroot (Rhodiola rosea L.) Dry Extracts. Molecules. 2018; 23(7):1767. https://doi.org/10.3390/molecules23071767
Chicago/Turabian StyleKosakowska, Olga, Katarzyna Bączek, Jarosław L. Przybył, Ewelina Pióro-Jabrucka, Weronika Czupa, Alicja Synowiec, Małgorzata Gniewosz, Rosaria Costa, Luigi Mondello, and Zenon Węglarz. 2018. "Antioxidant and Antibacterial Activity of Roseroot (Rhodiola rosea L.) Dry Extracts" Molecules 23, no. 7: 1767. https://doi.org/10.3390/molecules23071767
APA StyleKosakowska, O., Bączek, K., Przybył, J. L., Pióro-Jabrucka, E., Czupa, W., Synowiec, A., Gniewosz, M., Costa, R., Mondello, L., & Węglarz, Z. (2018). Antioxidant and Antibacterial Activity of Roseroot (Rhodiola rosea L.) Dry Extracts. Molecules, 23(7), 1767. https://doi.org/10.3390/molecules23071767