Protection of Anthocyanin from Myrica rubra against Cerebral Ischemia-Reperfusion Injury via Modulation of the TLR4/NF-κB and NLRP3 Pathways
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Reagents
2.2. Animals
2.3. Preparation of PAEs
2.4. Determination of TA in PAEs Using the pH Difference Method
2.5. Determination of C-3-G in PAEs Using HPLC
2.6. Grouping
2.7. Cerebral I/R Injury
2.8. Neurological Deficit Scores
2.9. Determination of Infarct Volume in Brain Tissue
2.10. Monitoring of NO, SOD, and MDA Levels
2.11. Histopathology
2.12. Western Blotting
2.13. Statistical Analysis
3. Results and Discussion
3.1. TA and C-3-G Contents in the Eight Varieties of MR.
3.2. Effect of PAEs on Neurological Deficits and on Cerebral Infarct Volumes in Experimental Mice
3.3. Effect of PEAs on the NO, SOD, and MDA Contents in the Brains of Experimental Mice
3.4. Effect of PAEs on Brain Pathology in Experimental Mice
3.5. Effect of PAEs on the TLR4/NF-κB Signaling Pathway
3.6. Effect of PAEs on the NLRP3 Signaling Pathway
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Liu, Z.; Chen, X.; Gao, Y.; Sun, S.; Yang, L.; Yang, Q. Involvement of GluR2 up-regulation in neuroprotection by electroacupuncture pretreatment via cannabinoid CB1 receptor in mice. Sci. Rep. 2015, 5, 9490. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Balami, J.S.; Chen, R.L.; Grunwald, I.Q.; Buchan, A.M. Neurological complications of acute ischaemic stroke. Lancet Neurol. 2011, 10, 357–371. [Google Scholar] [CrossRef]
- Friedman, H.S.; Koroshetz, W.J.; Qureshi, N.; Marler, J.R.; Del Zoppo, G.J. Tissue plasminogen activator for acute ischemic stroke. N. Engl. J. Med. 1996, 334, 1405–1406. [Google Scholar] [CrossRef] [PubMed]
- Bueno, J.M. Analysis and Antioxidant Capacity of Anthocyanin Pigments. I. General Considerations Concerning Polyphenols and Flavonoids. Crit. Rev. Anal. Chem. 2012, 42, 102–125. [Google Scholar] [CrossRef]
- Sun, C.D.; Huang, H.; Xu, C.J.; Li, X.; Chen, K.S. Biological Activities of Extracts from Chinese Bayberry (Myrica rubra Sieb. et Zucc.): A Review. Plant Foods Hum. Nutr. 2013, 68, 97–106. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.X.; Yang, Z.H.; Jia, S.S.; Yuan, K. Protective Effect and Mechanism of Action of Mulberry Marc Anthocyanins on Carbon Tetrachloride-Induced Liver Fibrosis in Rats. J. Funct. Foods 2016, 24, 595–601. [Google Scholar] [CrossRef]
- He, Q.; Zhang, Z.F.; Zhang, L.G. Anthocyanin Accumulation, Antioxidant Ability and Stability, and a Transcriptional Analysis of Anthocyanin Biosynthesis in Purple Heading Chinese Cabbage (Brassica rapa L. ssp. pekinensis). J. Agric. Food Chem. 2016, 64, 132–145. [Google Scholar] [CrossRef] [PubMed]
- Paulsmeyer, M.; Chatham, L.; Becker, T.; West, M.; West, L.; Juvik, J. Survey of Anthocyanin Composition and Concentration in Diverse Maize Germplasm. J. Agric. Food Chem. 2017, 26, 1–39. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.P.; Chang, Y.C.; Wu, C.H.; Hung, C.N.; Wang, C.J. Anthocyanin-rich Mulberry extract inhibit the gastric cancer cell growth in vitro and xenograft mice by inducing signals of p38/p53 and c-jun. Food Chem. 2011, 129, 1703–1709. [Google Scholar] [CrossRef]
- Sun, C.; Zheng, Y.; Chen, Q.; Tang, X.; Jiang, M.; Zhang, J.; Li, X.; Chen, K. Purification and anti-tumour activity of cyanidin-3-O-glucoside from Chinese bayberry fruit. Food Chem. 2012, 131, 1287–1294. [Google Scholar] [CrossRef]
- Bridle, P.; Timberlake, C.F. Anthocyanins as natural food colours-Selected aspects. Food Chem. 1997, 58, 103–109. [Google Scholar] [CrossRef]
- Bederson, J.B.; Pitts, L.H.; Tsuji, M.; Nishimura, M.C.; Davis, R.L.; Bartkowski, H. Rat25 middle cerebral artery occlusion: Evaluation of the model and development of a neurologic examination. Stroke 1986, 17, 472–476. [Google Scholar] [CrossRef] [PubMed]
- Yu, L.; Chen, C.; Wang, L.F.; Kuang, X.; Liu, K.; Zhang, H.; Du, J.R. Neuroprotective effect of kaempferol glycosides against brain injury and neuroinflammation by inhibiting the activation of NF-κB and STAT3 in transient focal stroke. PLoS ONE 2013, 8, e55839. [Google Scholar] [CrossRef] [PubMed]
- Fang, Z.X.; Zhang, M.; Wang, L.X.; Sun, J.C. Identification of anthocyanin in bayberry (Myrica rubra Sieb. et Zucc.) by HPLC-DAD-ESIMS and GC. J. Food Drug Anal. 2006, 14, 368–372. [Google Scholar]
- Bravo, L. Polyphenols: Chemistry, dietary sources, metabolism, and nutritional significance. Nutr. Rev. 1998, 56, 317–333. [Google Scholar] [CrossRef] [PubMed]
- Ross, J.A.; Kasum, C.M. Dietary flavonoids: Bioavailability, metabolic effects, and safety. Annu. Rev. Nutr. 2002, 22, 19–34. [Google Scholar] [CrossRef] [PubMed]
- Tsuchidated, R. Regional cerebral blood flow during and after 2 hour middle cerebral artery occlusion in the rat. J. Cereb. Blood Flow Metab. 1997, 17, 1066–1073. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Wang, P.; Kang, J.; Lv, P.Y. Effects of dl-3n-butyphthalide on learning, memory and hippocampal NR2B expression in mice with vascular dementia. Chin. J. New Drugs 2008, 17, 43–46. [Google Scholar]
- Fang, L.; Wang, N. Relationship between Nitric Oxide Synthase and Neuronal Damage at the Subacute Stage of Focal Cerebral Ischemia. J. Fujian Med. Univ. 2003, 37, 23–25. [Google Scholar]
- Kader, A.; Frazzini, V.I.; Solomon, R.A.; Trifiletti, R.R. Nitric oxide production during focal cerebral ischemia in rats. Stroke 1993, 24, 1709–1716. [Google Scholar] [CrossRef] [PubMed]
- Rosenberg, G.A. Ischemic brain edema. Prog. Cardiovasc. Dis. 1999, 42, 209–216. [Google Scholar] [CrossRef]
- Yang, G.Y.; Schielke, G.P.; Gong, C. Expression of TNF2αand ICAM21 after focal cerebral ischemia in IL2β converting enzyme deficient mice. J. Cereb. Blood Flow Metab. 1999, 19, 1109–1117. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, M.; Dar, N.; Bhat, Z.; Hussain, A.; Shah, A.; Liu, H.; Graham, S. Inflammation in Ischemic Stroke: Mechanisms, Consequences and Possible Drug Targets. CNS Neurol. Disord. Drug Targets 2014, 13, 1378–1396. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Xue, X.; Xian, L.; Guo, Z.; Ito, Y.; Sun, W. Potential neuroprotection of protodioscin against cerebral ischemia-reperfusion injury in rats through intervening inflammation and apoptosis. Steroids 2016, 113, 52–63. [Google Scholar] [CrossRef] [PubMed]
- Simonyi, A.; Wang, Q.; Miller, R.L.; Yusof, M.; Shelat, P.B.; Sun, A.Y.; Sun, G.Y. Polyphenols in Cerebral Ischemia. Mol. Neurobiol. 2005, 31, 135–147. [Google Scholar] [CrossRef]
- Xu, Z.C.; Yin, J.; Zhou, B.; Liu, Y.T.; Yu, Y.; Li, G.Q. Grape seed proanthocyanidin protects liver against ischemia/reperfusion injury by attenuating endoplasmic reticulum stress. World J. Gastroenterol. 2015, 21, 7468–7477. [Google Scholar] [CrossRef] [PubMed]
- Tang, S.C.; Arumugam, T.V.; Xu, X.; Cheng, A.; Mughal, M.R.; Jo, D.G.; Lathia, J.D.; Siler, D.A.; Chigurupati, S.; Ouyang, X.; et al. Pivotal role for neuronal Toll-like receptors in ischemic brain injury and functional deficits. Proc. Natl. Acad. Sci. USA 2007, 104, 13798–13803. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cao, C.X.; Yang, Q.W.; Lv, F.L.; Cu, J.; Fu, H.B.; Wang, J.Z. Reduced cerebral ischemia reperfusion injury in Toll-like receptor 4 deficient mice. Biochem. Biophys. Res. Commun. 2007, 353, 509–514. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.P.; Shi, Y.W.; Tang, M.; Zhang, X.C.; Gu, Y.; Liang, X.M.; Wang, Z.W.; Ding, F. Isoquercetin Ameliorates Cerebral Impairment in Focal Ischemia Through Anti-Oxidative, Anti-Inflammatory, and Anti-Apoptotic Effects in Primary Culture of Rat Hippocampal Neurons and Hippocampal CA1 Region of Rats. Mol. Neurobiol. 2016, 29. [Google Scholar] [CrossRef] [PubMed]
- Qi, W.; Zhou, F.; Li, S.; Zong, Y.; Zhang, M.; Lin, Y.; Zhang, X.; Yang, H.; Zou, Y.; Qi, C.; et al. Remote ischemic postconditioning protects ischemic brain from injury in rats with focal cerebral ischemia/reperfusion associated with suppression of TLR4 and NF-кB expression. Neuroreport 2016, 27, 469–475. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.F.; Fang, H.; Chen, J.; Lin, S.; Liu, Y.; Xiong, X.Y. Polyinosinic-polycytidylic acid has therapeutic effects against cerebral ischemia/ reperfusion injury through the down regulation of TLR4 signaling via TLR3. J. Immunol. 2014, 192, 4783–4794. [Google Scholar] [CrossRef] [PubMed]
- Hou, Y.H.; Wang, Y.T.; He, Q.; Li, L.Y.; Xie, H.; Zhao, Y.; Zhao, J. Nrf2 inhibits NLRP3 inflammasome activation through regulating Trx1/TXNIP complex in cerebral ischemia reperfusion injury. Behav. Brain Res. 2018, 336, 32–39. [Google Scholar] [CrossRef] [PubMed]
- Donnan, G.A.; Fisher, M.; Macleod, M.; Davis, S.M. Stroke. Lancet 2008, 371, 1612–1623. [Google Scholar] [CrossRef]
- Luo, L.N.; Yang, P.; Huang, W. The effect and mechanism of anthocyanin on hepatic ischemia reperfusion injury in rats. J. Xian Jiaotong Univ. 2016, 4. [Google Scholar] [CrossRef]
- Shin, W.H.; Park, S.J.; Kim, E.J. Protective effect of anthocyanins in middle cerebral artery occlusion and reperfusion model of cerebral ischemia in rats. Life Sci. 2006, 79, 130–137. [Google Scholar] [CrossRef] [PubMed]
- McGhie, T.K.; Martin, H.; Lunken, R.C.M. The combination of analytical-scale HPLC separation with a TR-FRET assay to investigate JAK2 inhibitory compounds in a Bovsen berry drink. Food Funct. 2012, 3, 1170–1175. [Google Scholar] [CrossRef] [PubMed]
- Jeong, J.W.; Lee, W.S.; Shin, S.C. Anthocyanins dowmnregulate lipopolysaccharide-induced inflammatory responses in BV2 microglial cells by suppressing the NF-kappaB and Akt/MAPKs signaling pathways. Int. J. Mol. Sci. 2013, 14, 1502–1515. [Google Scholar] [CrossRef] [PubMed]
- Sun, Z.M.; Zhou, X.; Zhang, J.L.; Li, T. Research Progress of Anthocyanin Antioxidant Function in Aronia melanocarpa. Food Res. Dev. 2017, 38, 220–224. [Google Scholar] [CrossRef]
Sample Availability: Samples of the anthocyanin of Myrica rubra are available from the authors. |
Varieties | PAE | TA | C-3-G |
---|---|---|---|
Boqi1 | 0.38% | 22.07% | 21.28% |
Tanmei | 0.40% | 8.77% | 8.59% |
Shuijing | 0.00% | 0.00% | 0.00% |
Boqi2 | 0.24% | 18.95% | 18.57% |
Dongkui | 0.32% | 18.10% | 17.41% |
Dingdai | 0.38% | 12.56% | 11.79% |
Wandao | 0.35% | 16.02% | 15.71% |
Wild | 0.28% | 5.10% | 5.02% |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cui, H.-X.; Chen, J.-H.; Li, J.-W.; Cheng, F.-R.; Yuan, K. Protection of Anthocyanin from Myrica rubra against Cerebral Ischemia-Reperfusion Injury via Modulation of the TLR4/NF-κB and NLRP3 Pathways. Molecules 2018, 23, 1788. https://doi.org/10.3390/molecules23071788
Cui H-X, Chen J-H, Li J-W, Cheng F-R, Yuan K. Protection of Anthocyanin from Myrica rubra against Cerebral Ischemia-Reperfusion Injury via Modulation of the TLR4/NF-κB and NLRP3 Pathways. Molecules. 2018; 23(7):1788. https://doi.org/10.3390/molecules23071788
Chicago/Turabian StyleCui, Hong-Xin, Ji-Hong Chen, Jing-Wan Li, Fang-Rong Cheng, and Ke Yuan. 2018. "Protection of Anthocyanin from Myrica rubra against Cerebral Ischemia-Reperfusion Injury via Modulation of the TLR4/NF-κB and NLRP3 Pathways" Molecules 23, no. 7: 1788. https://doi.org/10.3390/molecules23071788
APA StyleCui, H. -X., Chen, J. -H., Li, J. -W., Cheng, F. -R., & Yuan, K. (2018). Protection of Anthocyanin from Myrica rubra against Cerebral Ischemia-Reperfusion Injury via Modulation of the TLR4/NF-κB and NLRP3 Pathways. Molecules, 23(7), 1788. https://doi.org/10.3390/molecules23071788