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Abstract: An efficient direct C(sp3)–H oxidation of diarylmethanes has been demonstrated by this
study. This method employs environment-friendly O2 as an oxidant and is promoted by commercially
available MN(SiMe3)2 [M = K, Na or Li], which provides a facile method for the synthesis of various
diaryl ketones in excellent yields. This protocol is metal-free, mild and compatible with a number of
functional groups on substrates.
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1. Introduction

The oxidation reaction is one of the most important transformations in organic synthesis by
which oxygenated products of hydrocarbons were prepared and these compounds are valuable
structural core in chemical and pharmaceutical industries [1]. Of these transformations, direct oxidation
of methylene group of arylalkanes to ketones have attracted comprehensive attention, as diverse
aryl ketone motifs are important structural units in numerous pharmaceuticals, naturally occurring
molecules and organic functional materials [2–6]. Besides the traditional oxidation using KMnO4

as oxidant [7–10], advances in the synthetic method of aryl ketones were mainly based on three
approaches: (1) classical Friedel-Crafts acylation of arenes [11], (2) oxidation of secondary alcohols [12]
and CO insertion reactions [13,14]. Recently, significant progress has been made for the formation of
aromatic ketones by transition-metal catalyzed oxidation of alkylarenes [15–17]. Notably, the latter
represent a powerful tool in organic synthesis, while inevitably they will suffer from the use of
toxic or expensive metals and ligands, harsh reaction conditions and generation of metal waste in
most cases. Obviously, it is desirable to develop more practical protocols to achieve the synthesis
of aryl ketones without the use of corrosive metal catalysts, hazardous stoichiometric oxidants and
reductants [18–21]. Therefore, transition-metal-free methods for oxidation of alkylarenes are desirable
in the pharmaceutical industry which can avoid the use of the heavy metal. For oxidation process,
Molecular oxygen (O2) represents one of the best choices because of its low cost and has attracted
substantial attention [22–33]. Herein, we wish to report the direct oxidation of diarylmethanes to diaryl
ketones using O2-mediation by MN(SiMe3)2 [M = K, Na or Li], which represent a green and efficient
synthetic method for this transformation.
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2. Results

Initially, we commenced the reaction studies using 4-benzylpyridine (1a) as the model substrate.
The control experiment was performed by stirring 4-benzylpyridine (1a) in THF under O2 at 60 ◦C
for 16 h and no reaction occurred (entry 1, Table 1). To optimize the reaction conditions, various
parameters such as temperature, bases, solvents were investigated. The strong bases play an important
role in this transformation. As indicated in Table 1, the silylamides [MN(SiMe3)2, M = Li, Na, K]
overwhelmed other bases (entries 2–8), giving the oxidative product in 76–85% yields. We anticipated
that the inert sp3 C–H bond was transferred to carbanion before the direct insertion of O2, which needs
the strong bases to achieve the deprotonation step. The solvent was next examined using LiN(SiMe3)2

as a base. Of the six solvents screened, THF showed the best performance (entries 4 and 9–13). Further
screen of the reaction temperature indicated 60 ◦C is most appropriate. Only 35% yield of oxidation
product 2a was obtained at 40 ◦C after 12 h (entry 14), while no elevated yield was observed when the
reaction was conducted in higher temperature 80 ◦C (entry 15). Furthermore, there is no oxidation
product if the O2 was replaced with N2.

Table 1. Optimization of the reaction conditions.
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With the optimal condition in hand, we then turn our attention to investigate the generality
of this protocol. As presented in Figure 1, a variety of diarylmethanes were subjected to these
reaction conditions. These reactions were conducted at 60 ◦C, except where noted. Diarylmethanes
with different electronic and steric properties, such as 2-benzylpyridine (1b), diphenylmethane (1c),
xanthene (1d), 9,10-dihydroanthracene (1e) and fluorene (1f), were proved to be good substrates,
with corresponding products isolated in 79–91% yields. The family of fluorene analogues bearing
various functional groups was examined next. The carbon-halo (electron-withdrawing) groups were
compatible with this procedure and the oxidation products were obtained in excellent isolated yields
(2h, 2i, 2j, 2k). Additionally, remarkable chemoselectivity is observed with fluorene derivatives containing
acetal, nitro and amino moieties, which all underwent oxygenation delivering the corresponding
functionalized products (2l, 2m, 2n) in 81–87% yields.
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To illustrate the scalablitlity of this methodology, we commenced the oxidation reaction of
4-benzylpyridine (1a) on a 5 mmol scale. The oxidation product 2a was isolated in 80% yield (0.73 g).
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3. Materials and Methods

3.1. General

1H- and 13C-NMR spectra were obtained on Bruker AVANCE III 500 MHz and 600 MHz
spectrometers (Bruker Co., Billerica, MA, USA) with TMS as the internal standard; MS spectra were
measured on a Finnigan LCQDECA XP instrument and an Agilent Q-TOF 1290 LC/6224 MS system
(Santa Clara, CA, USA); silica gel GF254 and H (10–40 mm, Qingdao Marine Chemical Factory, Qingdao,
China) were used for TLC and CC. Unless otherwise noted, all reactions were carried out under an
atmosphere of oxygen.

3.2. Representative Procedure for the Oxidation of Diarylmethane

To an 8 mL oven-dried vial, 4-benzylpyridine (0.1 mmol), dry THF (1 mL), LiHMDS (0.15 mmol)
were added subsequently. The reaction system was sealed by a rubber septum with a needle connected
with O2 balloon. After stirring at 60 ◦C for 12 h, the reaction mixture was passed through a short pad
of silica gel and eluted with ethyl acetate (1 mL × 3). The combined organics were concentrated under
reduced pressure. The residue was purified by flash chromatography to give the diarylketone 2a as
white solid (15.6 mg, 85% yield). 1H NMR (500 MHz, CDCl3) δ 7.65 (d, J = 7.3 Hz, 2H), 7.54–7.43 (m, 4H),
7.33–7.25 (m, 2H). The 1H NMR data of 2a was identical to those reported in the literature [34].

Analogous compounds 2b–n were prepared according to the similar procedure for 2a. 2b:
1H NMR (500 MHz, CDCl3) δ 8.73 (d, J = 4.1 Hz, 1H), 8.10–8.03 (m, 3H), 7.90 (td, J = 7.8, 1.7 Hz,
1H), 7.60 (t, J = 7.4 Hz, 1H), 7.52–7.44 (m, 3H). The 1H NMR data of 2b was identical to those
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reported in the literature [34]. 2c: 1H NMR (500 MHz, CDCl3) δ 7.72 (dd, J = 5.2, 3.2 Hz, 2H),
7.54–7.47 (m, 1H), 7.43–7.36 (m, 2H). The 1H NMR data of 2c was identical to those reported in
the literature [35]. 2d: 1H NMR (500 MHz, CDCl3) δ 8.34 (d, J = 7.9 Hz, 2H), 7.73 (t, J = 7.7 Hz, 2H),
7.49 (d, J = 8.4 Hz, 2H), 7.38 (t, J = 7.5 Hz, 2H). The 1H NMR data of 2d was identical to those reported in
the literature [36]. 2e: 1H NMR (500 MHz, CDCl3): δ 8.26–8.37 (m, 2H), 7.56 (t, J = 7.4 Hz, 2H), 7.36–7.47
(m, 4H), 4.32 (s, 2H). The 1H NMR data of 2e was identical to those reported in the literature [37]. 2f:
1H NMR (500 MHz, CDCl3) δ 7.65 (d, J = 7.3 Hz, 2H), 7.54–7.43 (m, 4H), 7.33–7.25 (m, 2H). The 1H
NMR data of 2f was identical to those reported in the literature [36]. 2g: 1H NMR (500 MHz, CDCl3):
δ 8.14 (s, 1H), 7.88 (s, 1H), 7.85 (d, J = 7.5 Hz, 1H), 7.80 (d, J = 10.50 Hz, 1H), 7.73 (d, J = 9.5 Hz, 1H),
7.69 (d, J = 9.5 Hz, 1H), 7.75–7.55 (m, 2H), 7.45 (t, J = 9.2 Hz, 1H), 7.32 (t, J = 9.2 Hz, 1H). The 1H NMR
data of 2g was identical to those reported in the literature [38]. 2h: 1H NMR (500 MHz, CDCl3):
δ 7.78 (s, 1H), 7.68 (d, J = 7.3 Hz, 1H), 7.62 (d, J = 7.8 Hz, 1H), 7.53–7.52 (m, 2H), 7.41 (d, J = 7.8 Hz, 1H),
7.35–7.34 (m, 1H). The 1H NMR data of 2h was identical to those reported in the literature [39]. 2i: 1H NMR
(500 MHz, CDCl3): δ 7.66 (d, J = 1.8 Hz, 2H), 7.52 (dd, J = 7.9 Hz, 1.8 Hz, 2H), 7.28 (d, J = 7.9 Hz, 2H).
The 1H NMR data of 2i was identical to those reported in the literature [39]. 2j: 1H NMR (500 MHz,
CDCl3) δ 7.62 (d, J = 1.8 Hz, 2H), 7.47 (dd, J = 8.0, 2.0 Hz, 2H), 7.44 (d, J = 7.9 Hz, 2H). The 1H NMR data
of 2j was identical to those reported in the literature [40]. 2k: 1H NMR (500 MHz, CDCl3) δ 7.96
(d, J = 1.6 Hz, 1H), 7.84 (dd, J = 7.8, 1.6 Hz, 1H), 7.76 (d, J = 1.8 Hz, 1H), 7.63 (dd, J = 7.9, 1.9 Hz, 1H),
7.39 (d, J = 7.9 Hz, 1H), 7.28 (s, 1H). The 1H NMR data of 2k was identical to those reported in the
literature [41]. 2l: 1H NMR (500 MHz, CDCl3) δ 8.17 (d, J = 0.98 Hz, 1H), 8.13 (dd, J = 7.8, 2.0 Hz, 1H),
7.70 (d, J = 7.3 Hz, 1H), 7.63–7.51 (m, 3H), 7.40–7.35 (m, 1H), 2.63 (s, 3H). The 1H NMR data of 2l was
identical to those reported in the literature [42]. 2m: 1H NMR (500 MHz, CDCl3): δ 8.48 (d, J = 1.9 Hz,
1H), 8.43 (dd, J = 1.9 Hz, 8.2 Hz, 1H), 7.77 (d, J = 7.3 Hz, 1H), 7.72–7.67 (m, 2H), 7.62 (t, 1H), 7.46 (t, 1H).
The 1H NMR data of 2m was identical to those reported in the literature [39]. 2n: 1H NMR (500 MHz,
CDCl3) δ 7.49 (d, J = 7.3 Hz, 1H), 7.43–7.23 (m, 2H), 7.20 (d, J = 7.0 Hz, 1H), 7.16–7.00 (td, J = 7.2 Hz,
1.2 Hz, 1H), 6.89 (d, J = 2.3 Hz, 1H), 6.65 (dd, J = 7.9, 2.3 Hz, 1H), 3.82 (s, 2H). The 1H NMR data of 2n
was identical to those reported in the literature [43].

4. Conclusions

In conclusion, we have developed a metal-free, environmentally benign method for C(sp3)–H
oxidation of various diarylmethanes using silylamides [MN(SiMe3)2, M = Li, Na, K] as base and O2

as an oxidant. This protocol provides a complementary method to prepare diaryl ketones in good to
excellent yields. The detailed mechanism study is still underway.
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