Characteristics of Biologically Active Compounds in Cornelian Cherry Meads
Abstract
:1. Introduction
2. Results and Discussion
2.1. Dynamics of the Fermentation Process
2.2. Sugars Profile; Ethanol, Glycerol, and Acetic Acid Content; and pH Value
2.3. Concentration of Total Polyphenols and Antioxidative Activity
2.4. Quantitative Identification of Iridoids, Phenols, and Hydroxymethylfurfural
3. Materials and Methods
3.1. Materials
3.1.1. Reagent and Standard
3.1.2. Biological Material
3.1.3. Raw Material
3.2. Preparation of Samples
3.3. Analytical Methods
3.3.1. Fermentation Process Dynamics and Physicochemical Parameters
3.3.2. Sugars, Ethyl Alcohol, Acetic Acid, and Glycerol Content
3.3.3. Phenolic Compound Analysis
Determination of Total Polyphenols Content
Antioxidative Activity
Quantification of Iridoids and Polyphenols by HPLC-PDA
3.4. Statistics
4. Conclusions
Supplementary Materials
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Pereira, A.P.; Mendes-Ferreira, A.; Oliveira, J.M.; Estevinho, L.M.; Mendes-Faia, A. Effect of Saccharomyces cerevisiae cells immobilisation on mead production. LWT Food Sci. Technol. 2014, 56, 21–30. [Google Scholar] [CrossRef] [Green Version]
- Tuksitha, L.; Chen, Y.L.S.; Chen, Y.L.; Wong, K.Y.; Peng, C.C. Antioxidant and antibacterial capacity of stingless bee honey from Borneo (Sarawak). J. Asia Pac. Entomol. 2018, 21, 563–570. [Google Scholar] [CrossRef]
- Nagai, T.; Kai, N.; Tanoue, Y.; Suzuki, N. Chemical properties of commercially available honey species and the functional properties of caramelization and Maillard reaction products derived from these honey species. J. Food Sci. Technol. 2018, 55, 586–597. [Google Scholar] [CrossRef] [PubMed]
- Deng, J.; Liu, R.; Lu, Q.; Hao, P.; Xu, A.; Zhang, J.; Tan, J. Biochemical properties, antibacterial and cellular antioxidant activities of buckwheat honey in comparison to manuka honey. Food Chem. 2018, 252, 243–249. [Google Scholar] [CrossRef] [PubMed]
- Rautiainen, S.; Levitan, E.B.; Mittleman, M.A.; Wolk, A. Total antioxidant capacity of diet and risk of heart failure: A population-based prospective cohort of women. Am. J. Med. 2013, 126, 494–500. [Google Scholar] [CrossRef] [PubMed]
- Hertog, M.G.; Feskens, E.J.; Kromhout, D.; Hollman, P.C.H.; Katan, M.B. Dietary antioxidant flavonoids and risk of coronary heart disease: The Zutphen Elderly Study. Lancet 1993, 342, 1007–1011. [Google Scholar] [CrossRef]
- Borek, C. Dietary antioxidants and human cancer. Integr. Cancer Ther. 2004, 3, 333–341. [Google Scholar] [CrossRef] [PubMed]
- Akalın, H.; Bayram, M.; Anlı, R.E. Determination of some individual phenolic compounds and antioxidant capacity of mead produced from different types of honey. J. Inst. Brew. 2017, 123, 167–174. [Google Scholar] [CrossRef] [Green Version]
- Czabaj, S.; Kawa-Rygielska, J.; Kucharska, A.Z.; Kliks, J. Effects of Mead Wort Heat Treatment on the Mead Fermentation Process and Antioxidant Activity. Molecules 2017, 22, 803. [Google Scholar] [CrossRef] [PubMed]
- Socha, R.; Pająk, P.; Fortuna, T.; Buksa, K. Phenolic profile and antioxidant activity of Polish meads. Int. J. Food Prop. 2015, 18, 2713–2725. [Google Scholar] [CrossRef]
- Nemzer, B.; Vargas, L.; Xia, X.; Sintara, M.; Feng, H. Phytochemical and physical properties of blueberries, tart cherries, strawberries, and cranberries as affected by different drying methods. Food Chem. 2018, 262, 242–250. [Google Scholar] [CrossRef] [PubMed]
- Pereira-Netto, A.B. Tropical Fruits as Natural, Exceptionally Rich, Sources of Bioactive Compounds. Int. J. Fruit Sci. 2018, 18, 231–242. [Google Scholar] [CrossRef]
- Pereira, G.A.; Arruda, H.S.; de Morais, D.R.; Eberlin, M.N.; Pastore, G.M. Carbohydrates, volatile and phenolic compounds composition, and antioxidant activity of calabura (Muntingia calabura L.) fruit. Food Res. Int. 2018, 108, 264–273. [Google Scholar] [CrossRef] [PubMed]
- Kucharska, A.Z. Active Compounds of Cornelian Cherry Fruit (Cornus mas L.); Publishing House of University of Wroclaw: Wroclaw, Poland, 2012. [Google Scholar]
- Kucharska, A.Z.; Sokół-Łętowska, A.; Oszmiański, J.; Piórecki, N.; Fecka, I. Iridoids, Phenolic Compounds and Antioxidant Activity of edible Honeysuckle berries (Lonicera caerulea var. kamtschatica Sevast.). Molecules 2017, 22, 405. [Google Scholar] [CrossRef] [PubMed]
- Jenen, H.D.; Krogfelt, K.A.; Cornett, C.; Hansen, S.H.; Christensen, S.B. Hydrophilic carboxylic acids and iridoid glycosides in the juice of American and European cranberries (Vaccinium macrocarpon and V. oxycoccos), lingonberries (V. vitis-idaea), and blueberries (V. myrtillus). J. Agric. Food Chem. 2002, 50, 6871–6874. [Google Scholar] [CrossRef]
- De Biaggi, M.; Donno, D.; Mellano, M.G.; Riondato, I.; Rakotoniaina, E.N.; Beccaro, G.L. Cornus mas (L.) Fruit as a Potential Source of Natural Health-Promoting Compounds: Physico-Chemical Characterisation of Bioactive Components. Plant Foods Hum. Nutr. 2018, 73, 89–94. [Google Scholar] [CrossRef] [PubMed]
- Piekarska, J.; Szczypka, M.; Kucharska, A.Z.; Gorczykowski, M. Effects of iridoid-anthocyanin extract of Cornus mas L. on hematological parameters, population and proliferation of lymphocytes during experimental infection of mice with Trichinella spiralis. Exp. Parasitol. 2018, 188, 58–64. [Google Scholar] [CrossRef] [PubMed]
- Hosseinpour, F.; Shomali, T.; Rafieian-Kopaei, M. Hypocholesterolemic activity of cornelian cherry (Cornus mas L.) fruits. J. Complement. Integr. Med. 2017, 14, 1553–3840. [Google Scholar] [CrossRef] [PubMed]
- Nouska, C.; Kazakos, S.; Mantzourani, I.; Alexopoulos, A.; Bezirtzoglou, E. Fermentation of Cornus mas L. juice for functional low alcoholic beverage production. Curr. Res. Nutr. Food Sci. 2016, 4, 119–124. [Google Scholar] [CrossRef]
- Kawa-Rygielska, J.; Adamenko, K.; Kucharska, A.Z.; Piórecki, N. Bioactive Compounds in Cornelian Cherry Vinegars. Molecules 2018, 23, 379. [Google Scholar] [CrossRef] [PubMed]
- Roldán, A.; Van Muiswinkel, G.C.J.; Lasanta, C.; Palacios, V.; Caro, I. Influence of pollen addition on mead elaboration: Physicochemical and sensory characteristics. Food Chem. 2011, 126, 574–582. [Google Scholar] [CrossRef]
- Oroian, M.; Ropciuc, S.; Paduret, S.; Todosi, E. Rheological analysis of honeydew honey adulterated with glucose, fructose, inverted sugar, hydrolysed inulin syrup and malt wort. LWT 2018, 95, 1–8. [Google Scholar] [CrossRef]
- Gomes, T.; Barradas, C.; Dias, T.; Verdial, J.; Morais, J.S.; Ramalhosa, E.; Estevinho, L.M. Optimization of mead production using response surface methodology. Food Chem. Toxicol. 2013, 59, 680–686. [Google Scholar] [CrossRef] [PubMed]
- Gomes, T.; Dias, T.; Cadavez, V.; Verdial, J.; Morais, J.S.; Ramalhosa, E.; Estevinho, L.M. Influence of sweetness and ethanol content on mead acceptability. Pol. J. Food Nutr. Sci. 2015, 65, 137–142. [Google Scholar] [CrossRef]
- Pereira, A.P.; Mendes-Ferreira, A.; Estevinho, L.M.; Mendes-Faia, A. Improvement of mead fermentation by honey-must supplementation. J. Inst. Brew. 2015, 121, 405–410. [Google Scholar] [CrossRef] [Green Version]
- Gawel, R.; Sluyter, S.V.; Waters, E.J. The effects of ethanol and glycerol on the body and other sensory characteristics of Riesling wines. Aust. J. Grape Wine Res. 2007, 13, 38–45. [Google Scholar] [CrossRef]
- Dobrowolska-Iwanek, J. Simple method for determination of short-chain organic acid in mead. Food Anal. Methods 2015, 8, 2356–2359. [Google Scholar] [CrossRef]
- Sroka, P.; Satora, P. The influence of hydrocolloids on mead wort fermentation. Food Hydrocoll. 2017, 63, 233–239. [Google Scholar] [CrossRef]
- Kucharska, A.Z.; Sokół-Łętowska, A.; Piórecki, N. Morphological, physical and chemical, and antioxidant profiles of polish varieties of cornelian cherry fruit (Cornus mas L.). Żywn-Nauk. Technol. Jakosc 2011, 3, 78–89. [Google Scholar] [CrossRef]
- Kahoun, D.; Řezková, S.; Královský, J. Effect of heat treatment and storage conditions on mead composition. Food Chem. 2017, 219, 357–363. [Google Scholar] [CrossRef] [PubMed]
- Dinda, B.; Kyriakopoulos, A.M.; Dinda, S.; Zoumpourlis, V.; Thomaidis, N.S.; Velegraki, A.; Markopoulos, C.; Dinda, M. Cornus mas L. (cornelian cherry), an important European and Asian traditional food and medicine: Ethnomedicine, phytochemistry and pharmacology for its commercial utilization in drug industry. J. Ethnopharmacol. 2016, 193, 670–690. [Google Scholar] [CrossRef] [PubMed]
- Kucharska, A.Z.; Szumny, A.; Sokół-Łętowska, A.; Piórecki, N.; Klymenko, S.V. Iridoids and anthocyanins in cornelian cherry (Cornus mas L.) cultivars. J. Food Compost. Anal. 2015, 40, 95–102. [Google Scholar] [CrossRef]
- Castaneda-Ovando, A.; de Lourdes Pacheco-Hernández, M.; Páez-Hernández, M.E.; Rodríguez, J.A.; Galán-Vidal, C.A. Chemical studies of anthocyanins: A review. Food Chem. 2009, 113, 859–871. [Google Scholar] [CrossRef]
- Kırca, A.; Özkan, M.; Cemeroğlu, B. Effects of temperature, solid content and pH on the stability of black carrot anthocyanins. Food Chem. 2007, 101, 212–218. [Google Scholar] [CrossRef]
- Martínez, A.; Vegara, S.; Herranz-López, M.; Martí, N.; Valero, M.; Micol, V.; Saura, D. Kinetic changes of polyphenols, anthocyanins and antioxidant capacity in forced aged hibiscus ale beer. J. Inst. Brew. 2017, 123, 58–65. [Google Scholar] [CrossRef]
- Kahoun, D.; Řezková, S.; Veškrnová, K.; Královský, J.; Holčapek, M. Determination of phenolic compounds and hydroxymethylfurfural in meads using high performance liquid chromatography with coulometric-array and UV detection. J. Chromatogr. A 2008, 1202, 19–33. [Google Scholar] [CrossRef] [PubMed]
- Pereira, V.; Albuquerque, F.M.; Ferreira, A.C.; Cacho, J.; Marques, J.C. Evolution of 5-hydroxymethylfurfural (HMF) and furfural (F) in fortified wines submitted to overheating conditions. Food Res. Int. 2011, 44, 71–76. [Google Scholar] [CrossRef] [Green Version]
- Tosi, E.; Ciappini, M.; Re, E.; Lucero, H. Honey thermal treatment effects on hydroxymethylfurfural content. Food Chem. 2002, 77, 71–74. [Google Scholar] [CrossRef]
- Paulo Niemes, J.; Machado Kolc, C.S.; Reyes Torres, Y.; Lurdes Felsner, M.; da Rosa, M.R. Development an in House Validation for 5-Hydroxy-2-methyl-furfuraldehyde (HMF) Analysis in Fermented Beverages Produced from Honey, Cane Syrup and Corn Syrup by HPLC-UV. Orbital Electron. J. Chem. 2018, 10, 156–163. [Google Scholar]
- Pietrzak, W.; Kawa-Rygielska, J. Simultaneous saccharification and ethanol fermentation of waste wheat–rye bread at very high solids loading: Effect of enzymatic liquefaction conditions. Fuel 2015, 147, 236–242. [Google Scholar] [CrossRef]
- Prior, R.L.; Wu, X.; Schaich, K. Standardized methods for the determination of antioxidant capacity and phenolics in foods and dietary supplements. J. Agric. Food Chem. 2005, 53, 4290–4302. [Google Scholar] [CrossRef] [PubMed]
- Yen, G.C.; Chen, H.Y. Antioxidant activity of various tea extracts in relation to their antimutagenicity. J. Agric. Food Chem. 1995, 43, 27–32. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Schaich, K.M.; Tian, X.; Xie, J. Reprint of Hurdles and pitfalls in measuring antioxidant efficacy: A critical evaluation of ABTS, DPPH, and ORAC assays. J. Funct. Foods 2015, 18, 782–796. [Google Scholar] [CrossRef]
- Benzie, I.F.; Strain, J.J. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: The FRAP assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef] [PubMed]
Sample Availability: Samples of the meads are available from the authors. |
Mead Type | Yeast | Stage of the Process | Glucose | Fructose | Ethanol | Glycerol | Acetic Acid | pH |
---|---|---|---|---|---|---|---|---|
(g/L) | (g/L) | (g/L) | (g/L) | (g/L) | ||||
MW 1 | W 2 | 132.5 ± 0.48 d5 | 193.2 ± 1.12 d | nd 4 | nd | nd | 3.79 ± 0.01 b | |
SF 3 | F | 6.6 ± 0.79 o | 20.8 ± 0.98 s | 107.1 ± 0.01 c | 7.2 ± 0.42 i | 1.3 ± 0.15 a | 3.47 ± 0.01 c | |
A | 6.0 ± 1.1 d | 13.5 ± 0.86 t | 117.8 ± 0.03 a | 7.8 ± 0.96 h | 1.3 ± 0.19 a | 3.38 ± 0.00 f | ||
SM | F | 8.1 ± 0.23 n | 46.5 ± 1.03 o | 85.8 ± 0.01 k | 7.7 ± 0.37 h | 1.1 ± 0.63 bc | 3.46 ± 0.01 c | |
A | 3.4 ± 0.98 r | 29.6 ± 2.89 r | 104.2 ± 0.00 g | 8.3 ± 0.22 g | 1.2 ± 0.48 ab | 3.43 ± 0.02 d | ||
MY | W | 150.8 ± 1.02 a | 210.5 ± 0.76 c | nd | nd | nd | 3.23 ± 0.01 i | |
SF | F | 23.6 ± 0.66 k | 57.1 ± 3.15 k | 99.8 ± 0.65 i | 8.7 ± 0.30 e | 1.0 ± 0.36 cd | 3.31 ± 0.03 h | |
A | 19.7 ± 0.65 l | 50.1 ± 1.14 m | 105.9 ± 0.04 d | 8.9 ± 0.31 de | 1.0 ± 0.41 cd | 2.84 ± 0.00 k | ||
SM | F | 35.8 ± 0.53 e | 97.0 ± 0.65 e | 73.6 ± 0.04 m | 8.7 ± 0.36 e | nd | 3.23 ± 0.02 i | |
A | 29.0 ± 0.61 g | 88.3 ± 0.66 h | 85.8 ± 0.03 k | 9.2 ± 0.24 c | 0.8 ± 0.21 e | 2.89 ± 0.01 j | ||
MC | W | 150.5 ± 0.12 b | 222.1 ± 0.54 a | nd | nd | nd | 3.40 ± 0.01 e | |
SF | F | 19.5 ± 1.35 ł | 53.1 ± 0.24 l | 104.7 ± 0.02 f | 9.7 ± 0.04 b | 1.1 ± 0.19 bc | 3.33 ± 0.01 g | |
A | 19.1 ± 0.02 m | 45.9 ± 0.00 p | 105.5 ± 0.01 e | 9.7 ± 0.25 b | 1.1 ± 0.14 bc | 3.92 ± 0.02 a | ||
SM | F | 34.7 ± 0.43 f | 94.7 ± 0.69 f | 69.0 ± 0.02 n | 8.5 ± 0.69 f | nd | 3.33 ± 0.00 g | |
A | 26.5 ± 0.48 i | 87.8 ± 1.74 i | 88.7 ± 0.03 j | 9.3 ± 0.74 c | 0.9 ± 0.96 de | 3.92 ± 0.00 a | ||
MR | W | 149.7 ± 0.54 c | 217.8 ± 0.98 b | nd | nd | nd | 3.34 ± 0.01 h | |
SF | F | 24.2 ± 0.65 j | 52.3 ± 0.44 ł | 101.3 ± 0.86 h | 9.1 ± 0.56 c | 1.1 ± 0.74 bc | 3.31 ± 0.02 h | |
A | 19.6 ± 0.01 lł | 48.8 ± 0.45 n | 111.8 ± 0.12 b | 10.0 ± 0.40 a | 1.1 ± 0.94 bc | 2.89 ± 0.01 j | ||
SM | F | 34.6 ± 0.18 f | 90.6 ± 0.64 g | 75.0 ± 0.04 ł | 8.9 ± 1.36 d | nd | 3.23 ± 0.01 i | |
A | 28.4 ± 0.14 h | 83.6 ± 0.71 j | 83.9 ± 0.04 l | 9.2 ± 0.32 c | nd | 2.89 ± 0.00 j |
Mead Type | Yeast | Stage of the Process | Total Polyphenols (mg GAE/L) | DPPH• Assay (mmol TE/L) | ABTS⁺•Assay (mmol TE/L) | FRAP Assay (mmol TE/L) |
---|---|---|---|---|---|---|
MW 1 | W 2 | 18.0 ± 0.23 j4 | 0.5 ± 0.10 i | 0.5 ± 0.13 i | 1.0 ± 0.13 e | |
SF 3 | F | 11.0 ± 1.01 j | 0.3 ± 0.09 i | 0.2 ± 0.21 i | 1.1 ± 0.01 e | |
A | 14.0 ± 0.50 j | 0.2 ± 0.02 i | 0.3 ± 0.01 i | 1.0 ± 0.00 e | ||
SM | F | 5.0 ± 0.14 j | 0.5 ± 0.24 i | 0.4 ± 0.05 i | 1.0 ± 0.01 e | |
A | 290.0 ± 1.25 j | 0.1 ± 0.04 i | 0.2 ± 0.12 i | 1.0 ± 0.24 e | ||
MY | W | 617.6 ± 1.01 f | 5.3 ± 0.14 ef | 5.5 ± 0.12 ef | 5.4 ± 0.23 d | |
SF | F | 484.9 ± 1.08 g | 4.8 ± 0.01 fg | 5.1 ± 0.43 fg | 6.0 ± 0.05 cd | |
A | 378.8 ± 0.07 i | 4.2 ± 0.06 h | 4.1 ± 0.23 h | 5.6 ± 0.10 h | ||
SM | F | 596.8 ± 1.19 f | 4.6 ± 0.44 gh | 4.0 ± 0.24 gh | 5.6 ± 0.04 cd | |
A | 399.7 ± 1.00 hi | 4.4 ± 0.12 gh | 4.0 ± 0.03 h | 5.2 ± 0.07 h | ||
MC | W | 1006.0 ± 7.94 b | 6.5 ± 0.16 g | 8.7 ± 0.94 a | 10.0 ± 3.12 a | |
SF | F | 518.2 ± 2.04 g | 7.2 ± 1.23 a | 6.1 ± 0.19 cde | 5.0 ± 0.69 d | |
A | 613.6 ± 0.15 f | 5.4 ± 0.04 de | 6.0 ± 0.15 cde | 5.3 ± 0.37 d | ||
SM | F | 596.8 ± 1.19 f | 5.5 ± 0.33 de | 6.6 ± 0.76 bcd | 8.0 ± 0.36 b | |
A | 423.1 ± 4.74 h | 5.4 ± 0.14 de | 5.8 ± 0.30 def | 6.2 ± 0.14 cd | ||
MR | W | 1219.8 ± 2.36 a | 7.3 ± 0.11 a | 9.4 ± 0.69 a | 10.4 ± 0.01 a | |
SF | F | 808.4 ± 2.18 e | 6.6 ± 0.17 b | 6.9 ± 1.47 bc | 8.1 ± 0.15 bc | |
A | 774.3 ± 1.09 e | 5.9 ± 0.06 cd | 6.4 ± 0.21 bcd | 8.1 ± 0.87 b | ||
SM | F | 946.1 ± 2.32 c | 6.3 ± 0.08 bc | 8.6 ± 0.15 a | 6.9 ± 0.21 bc | |
A | 898.7 ± 1.05 d | 6.2 ± 0.08 bc | 7.1 ± 0.16 b | 8.2 ± 0.11 b |
Mead Type | Yeast | Stage of the Process | LA 4 | S + Lo | Co | Total Iridoids | GA | GAd | Total GA | EA | EAd | Total EA | Total HBA | p-CuAd 4.0 min | p-CuAd 4.3 min | CQA | p-CuA 9.5 min | Total HCA |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
MW 1 | W 2 | nd 5 | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd | 0.3 | 0.1 | 0.5 | |
SF 3 | F | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd | 0.1 | 0.1 | |
A | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd | 0.1 | 0.1 | ||
SM | F | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd | 0.1 | 0.1 | |
A | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd | ||
Y | 100.6 | 15.1 | 11.9 | 127.6 | 3.3 | nd | 3.3 | 0.2 | nd | 0.3 | 3.6 | 1.0 | 0.3 | 5.8 | 0.2 | 7.4 | ||
MY | W | 64.4 | 2.6 | 4.2 | 71.2 | 0.8 | nd | 0.8 | 0.1 | nd | 0.1 | 0.9 | 0.3 | 0.1 | 2.4 | 0.1 | 2.9 | |
SF | F | 65.1 | 2.5 | 2.6 | 70.1 | 1.3 | 1.5 | 2.8 | 0.3 | 0.2 | 0.3 | 3.1 | 0.2 | 0.1 | 1.6 | 0.1 | 2.1 | |
A | 48.8 | 2.1 | 3.1 | 54.0 | 1.5 | 1.2 | 2.8 | 0.2 | 0.1 | 0.2 | 2.9 | 0.1 | 0.1 | 1.0 | 0.1 | 1.4 | ||
SM | F | 65.3 | 2.5 | 2.7 | 70.5 | 1.5 | 1.6 | 3.1 | 0.3 | 0.2 | 0.3 | 3.3 | 0.3 | 0.1 | 1.6 | 0.1 | 2.0 | |
A | 54.8 | 2.4 | 2.7 | 60.0 | 2.3 | 1.5 | 3.8 | 0.2 | 0.1 | 0.2 | 4.1 | 0.2 | 0.2 | 1.2 | 0.1 | 1.6 | ||
C | 171.5 | 24.3 | 16.6 | 212.4 | 4.5 | nd | 4.5 | 0.5 | nd | 0.5 | 5.1 | 1.1 | 0.4 | 8.1 | 0.3 | 9.9 | ||
MC | W | 88.3 | 3.6 | 4.8 | 96.8 | 1.1 | nd | 1.1 | 0.1 | nd | 0.1 | 1.2 | 0.3 | 0.1 | 3.0 | 0.2 | 3.5 | |
SF | F | 89.0 | 3.0 | 3.1 | 95.0 | 2.5 | 1.2 | 3.7 | 0.2 | nd | 0.2 | 3.8 | 0.2 | 0.1 | 2.4 | 0.1 | 2.9 | |
A | 77.8 | 3.2 | 2.8 | 83.8 | 1.5 | 1.6 | 3.1 | 0.2 | 0.2 | 0.4 | 3.5 | 0.2 | 0.2 | 2.0 | 0.2 | 2.9 | ||
SM | F | 86.7 | 2.9 | 3.3 | 92.9 | 2.5 | 1.3 | 3.8 | 0.2 | nd | 0.2 | 4.0 | 0.2 | 0.1 | 2.4 | 0.2 | 2.5 | |
A | 76.4 | 3.0 | 2.6 | 82.0 | 1.2 | 1.9 | 3.1 | 0.2 | 0.2 | 0.3 | 3.4 | 0.2 | 0.2 | 1.8 | 0.1 | 2.3 | ||
R | 128.7 | 34.5 | 14.5 | 177.7 | 5.1 | nd | 5.1 | 0.6 | nd | 0.6 | 5.7 | 0.5 | 0.2 | 7.7 | 0.3 | 8.8 | ||
MR | W | 51.7 | 8.8 | 4.1 | 64.6 | 1.2 | nd | 1.2 | 0.1 | nd | 0.1 | 1.4 | 0.2 | 0.1 | 2.7 | 0.2 | 3.1 | |
SF | F | 54.0 | 3.9 | 2.6 | 60.6 | 1.8 | 1.6 | 3.4 | 0.2 | nd | 0.2 | 3.6 | 0.1 | nd | 1.8 | 0.1 | 2.1 | |
A | 48.8 | 3.9 | 2.8 | 51.4 | 1.2 | 1.3 | 2.9 | 0.2 | 0.2 | 0.4 | 3.3 | 0.1 | 0.1 | 1.4 | 0.1 | 1.7 | ||
SM | F | 52.5 | 2.6 | nd | 59.3 | 1.9 | 1.8 | 3.2 | 0.2 | nd | 0.2 | 3.4 | 0.1 | nd | 1.8 | 0.2 | 2.1 | |
A | 48.8 | 2.9 | nd | 51.7 | 1.0 | 2.0 | 3.0 | 0.2 | 0.1 | 0.4 | 3.4 | 0.1 | 0.1 | 1.4 | 0.1 | 1.8 |
Mead Type | Yeast | Stage of the Process | Q-3-glcr 4 | Kf-3-gal | A-7-glc | Total Flavonols | Df-3-gal | Cy-3-gal | Cy-3-rob | Pg-3-gal | Pg-3-rob | Total Antocyjanins | HMF |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
MW 1 | W 2 | nd 5 | nd | nd | nd | nd | nd | nd | nd | nd | nd | 0.45 | |
SF 3 | F | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd | 0.06 | |
A | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd | 0.05 | ||
SM | F | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd | 0.07 | |
A | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd | 0.04 | ||
Y | 2.42 | nd | nd | 2.42 | nd | nd | nd | nd | nd | nd | 7.37 | ||
MY | W | 0.55 | nd | nd | 0.55 | nd | nd | nd | nd | nd | nd | 2.86 | |
SF | F | 0.59 | nd | nd | 0.59 | nd | nd | nd | nd | nd | nd | 2.08 | |
A | 0.40 | nd | nd | 0.40 | nd | nd | nd | nd | nd | nd | 1.41 | ||
SM | F | 0.61 | nd | nd | 0.61 | nd | nd | nd | nd | nd | nd | 2.04 | |
A | 0.50 | nd | nd | 0.50 | nd | nd | nd | nd | nd | nd | 1.59 | ||
C | 3.06 | nd | nd | 3.06 | nd | 0.27 | nd | 1.79 | nd | 2.06 | 9.85 | ||
MC | W | 0.81 | nd | nd | 0.81 | nd | 0.06 | nd | 0.47 | nd | 0.53 | 3.51 | |
SF | F | 0.79 | nd | nd | 0.79 | nd | 0.02 | nd | 0.17 | nd | 0.19 | 2.88 | |
A | 0.70 | nd | nd | 0.70 | nd | nd | nd | nd | nd | nd | 2.54 | ||
SM | F | 0.80 | nd | nd | 0.80 | nd | 0.02 | nd | 0.15 | nd | 0.17 | 2.91 | |
A | 0.69 | nd | nd | 0.69 | nd | nd | nd | 0.02 | nd | 0.02 | 2.25 | ||
R | 2.78 | 1.63 | 1.45 | 5.86 | 0.59 | 8.15 | 3.30 | 15.69 | 2.87 | 30.61 | 8.84 | ||
MR | W | 0.71 | 0.46 | 0.39 | 1.56 | 0.14 | 2.09 | 0.91 | 4.09 | 0.72 | 7.94 | 3.08 | |
SF | F | 0.69 | 0.47 | 0.42 | 1.58 | 0.05 | 0.72 | 0.39 | 1.43 | 0.34 | 2.93 | 2.10 | |
A | 0.55 | 0.33 | 0.47 | 1.35 | nd | 0.03 | 0.02 | 1.51 | 0.02 | 0.13 | 1.74 | ||
SM | F | 0.68 | 0.44 | 0.41 | 1.53 | 0.05 | 0.76 | 0.40 | 0.06 | 0.34 | 3.05 | 2.12 | |
A | 0.59 | 0.34 | 0.48 | 1.41 | nd | 0.03 | 0.02 | 0.07 | 0.02 | 0.15 | 1.76 |
Symbol | Description | |
---|---|---|
Y | cherry fruit juices | juice from yellow fruit of Cornelian cherry |
C | juice from coral fruit of Cornelian cherry | |
R | juice from red fruit of Cornelian cherry | |
F | mead production steps | fermentation |
A | aging | |
W | wort | control wort |
W-Y | wort with the addition of yellow Cornelian cherry juice | |
W-C | wort with the addition of coral Cornelian cherry juice | |
W-R | wort with the addition of red Cornelian cherry juice | |
MW | mead | control mead |
MY | mead with the addition of yellow Cornelian cherry juice | |
MC | mead with the addition of coral Cornelian cherry juice | |
MR | mead with the addition of red Cornelian cherry juice |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Adamenko, K.; Kawa-Rygielska, J.; Kucharska, A.Z.; Piórecki, N. Characteristics of Biologically Active Compounds in Cornelian Cherry Meads. Molecules 2018, 23, 2024. https://doi.org/10.3390/molecules23082024
Adamenko K, Kawa-Rygielska J, Kucharska AZ, Piórecki N. Characteristics of Biologically Active Compounds in Cornelian Cherry Meads. Molecules. 2018; 23(8):2024. https://doi.org/10.3390/molecules23082024
Chicago/Turabian StyleAdamenko, Kinga, Joanna Kawa-Rygielska, Alicja Z. Kucharska, and Narcyz Piórecki. 2018. "Characteristics of Biologically Active Compounds in Cornelian Cherry Meads" Molecules 23, no. 8: 2024. https://doi.org/10.3390/molecules23082024
APA StyleAdamenko, K., Kawa-Rygielska, J., Kucharska, A. Z., & Piórecki, N. (2018). Characteristics of Biologically Active Compounds in Cornelian Cherry Meads. Molecules, 23(8), 2024. https://doi.org/10.3390/molecules23082024