Gelatin as a Photosensitive Material
Abstract
:1. Introduction
2. Plain Gelatin
2.1. Gelatin Chemical Characteristics, Fabrication Process, Environmental Stability (pH, Temperature, Humidity, Thixotropy, Ultrasound)
2.2. Gelatin as a Mid-Infrared Recording Medium
2.3. Gelatine as Relative Humidity Sensor
2.4. Gelatin with Colorants (Dyed Gelatin)
3. Gelatin in the Photographic Plate (Mainly Holography)
3.1. Photographic Plate in Holography
3.2. Short Wavelength Ultraviolet Method (SWUV) Used to Fabricate Holographic Structures
3.2.1. Introduction
3.2.2. The SWUV Method among Other Methods of Obtaining Phase Holographic Structures
3.2.3. Regular Holographic Structures Obtained by the SWUV Method
3.2.4. Random Phase Structure Obtained by the SWUV Method
3.2.5. Creation of a Large Depth Surface Relief and the Phenomenon of the Structure Period Doubling
3.2.6. SWUV Method and Ultra-Thin DCG Layers
3.3. Other Applications of the Photographic Plate
4. Dichromated Gelatin (DCG)
4.1. DCG Characteristics and Sensitivity (UV and Visible Light)
4.2. Undeveloped DCG
4.2.1. Real Time Use of DCG
4.2.2. Thick-Layered Self-Developing Dichromated Gelatin for Volume Hologram Recording
4.3. DCG Used to Make Relief Lenses and Gratings
4.4. Dyed DCG
4.5. Weigert Effect in Gelatin Films
4.6. DCG in Holographic Solar Concentrators
4.7. Display Holography
5. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- GELITA. Available online: www.gelita.com (accessed on 19 June 2018).
- Mees, C.E.K. The Theory of the Photographic Process; McMillan: New York, NY, USA, 1954. [Google Scholar]
- Walls, H.J.; Attridge, G.G. Basic Photo Science: How Photography Works; Focal Press: London, UK, 1977. [Google Scholar]
- Kirillov, N.I. High Resolution Photographic Materials for Holography and Their Processing Methods; Nauka: Moscow, Russia, 1979. (In Russian) [Google Scholar]
- Komar, V.G.; Serov, O.B. Display Holography and the Holographic Motion Picture; Isskustvo: Moscow, Russia, 1987. (In Russian) [Google Scholar]
- Sobolev, G.A. (Ed.) High Efficiency Materials for Hologram Recording; Nauka: Leningrad, Russia, 1988. (In Russian) [Google Scholar]
- Barachevsky, V.A. The current status of the development of light-sensitive media for holography (a review). Opt. Spectrosc. 2018, 12, 373–407. [Google Scholar] [CrossRef]
- Zandi, M. Studies on the Gelation of Gelatin Solutions and of the Use of Resulting Gels for Medical Scaffolds. Ph.D. Thesis, University of Duisburg-Essen, Duisburg, Germany, 18 February 2008. [Google Scholar]
- Ward, A.G.; Courts, A. The Science and Technology of Gelatin; Academic Press: New York, NY, USA, 1977; ISBN 0127350500. [Google Scholar]
- Gelatin Manufacturers Institute of America. Available online: http://www.gelatin-gmia.com/images/GMIA_Gelatin_Manual_2012.pdf (accessed on 1 June 2018).
- Mariod, A.A.; Adam, H.F. Review: Gelatin, source, extraction and industrial applications. Acta Sci. Pol. Technol. Aliment. 2013, 12, 135–147. [Google Scholar] [CrossRef]
- Djagny, K.B.; Wang, Z.; Xu, S. Gelatin: A valuable protein for food and pharmaceutical industries: Review. Crit. Rev. Food Sci. Nutr. 2001, 41, 481–492. [Google Scholar] [CrossRef] [PubMed]
- Calixto, S. Infrared recording with gelatin films. Appl. Opt. 1988, 27, 1977–1983. [Google Scholar] [CrossRef] [PubMed]
- Calixto, S.; Calixto-Olalde, M.E.; Hernandez-Barajas, J.; Vazquez-Espitia, O. Mach-Zehnder interferometer applied to the study of polymer’s Relative Humidity response. In MOEMS and Miniaturized Systems XVII; International Society for Optics and Photonics: San Francisco, CA, USA, 2018; p. 1054517. [Google Scholar]
- Wang, X.; Farrel, G.; Lewis, E.; Tian, K.; Yuan, L.; Wang, P. A Humidity Sensor Based on a Singlemode-Sidepolished Multimode-Singlemode Optical Fibre Structure Coated with Gelatin. J. Lightw. Technol. 2017, 35, 4087–4094. [Google Scholar] [CrossRef]
- Mangaiyarkarasi, D.; Palanisamy, P.K.; Sirohi, R.S. Eosin doped soaked gelatin as recording medium. Opt. Eng. 2000, 39, 2138–2142. [Google Scholar]
- Branka, D.; Muric, B.D.; Pantelic, D.V.; Darko, M.; Vasilejevic, D.M.; Bratmir, M.; Panic, B.M. Properties of microlenses produced on a layer of tot’hema and eosin sensitized gelatin. Appl. Opt. 2007, 46, 8527–8532. [Google Scholar]
- Muric, B.D.; Pantelic, D.V.; Vasilejevic, D.M.; Panic, B.M.; Jelenkov, B. Thermal analysis of microlens formation on a sensitized gelatin layer. Appl. Opt. 2009, 48, 3854–3859. [Google Scholar] [CrossRef] [PubMed]
- Ebralidze, T.; Mumladze, A.N. Light induced anisotropy in azo-dye-colored materials. Appl. Opt. 1990, 29, 446–447. [Google Scholar] [CrossRef] [PubMed]
- Ebralidze, T.; Ebralidze, N. Hologram recording by means of film anisotropy photoinduction. Appl. Opt. 1992, 31, 4720–4724. [Google Scholar] [CrossRef] [PubMed]
- Ebralidze, T. Weigert hologram. Appl. Opt. 1995, 34, 1357–1362. [Google Scholar] [CrossRef] [PubMed]
- Ebralidze, T.; Ebralidze, N. Photo-induced reorientation of molecules in dye crystals. Chin. Opt. Lett. 2006, 4, 43–44. [Google Scholar]
- Ebralidze, T.; Ebralidze, N.; Mumladze, G. Anisotropy photoinduction during the mass associations of dye molecules. J. Mater. 2013. [Google Scholar] [CrossRef]
- Eder, J.M. History of Photography; Dover Publications: New York, NY, USA, 1945. [Google Scholar]
- Bjelkhagen, B. Silver-Halide Recording Materials for Holography and Their Processing; Springer: Berlin/Heidelberg, Germany, 1993. [Google Scholar]
- Smith, H.M. Principles of Holography; John Wiley and Sons: New York, NY, USA, 1969. [Google Scholar]
- Collier, R.; Burckhardt, C.B.; Lin, L.H. Optical Holography; Academic Press: Cambridge, MA, USA, 1971. [Google Scholar]
- Smith, H.M. Holographic Recording Materials. In Topics in Applied Physics; Springer: New York, NY, USA, 1977; Volume 20. [Google Scholar]
- Toal, V. Introduction to Holography; CRC Press, Taylor and Francis Group: Boca Raton, FL, USA, 2012. [Google Scholar]
- Calixto, S.; Lougnot, D.J.; Naydenova, I. Light-Sensitive Materials: Silver Halide emulsions, Photoresist and Photopolymers. In Handbook of Optical Engineering; CRC Press: Boca Raton, FL, USA, 2018. [Google Scholar]
- Slavich. Available online: www.slavich.com (accessed on 9 July 2018).
- Neipp, C.; Belendez, A.; Pascual, I. The influence of the procedure on the dynamic range of bleached silver halide emulsions. J. Mod. Opt. 2003, 50, 1773–1789. [Google Scholar] [CrossRef] [Green Version]
- Neipp, C.; Marquez, A.; Pascual, I.; Belendez, A. Thick phase holographic gratings recorded on BB-640 and PFG-01 silver halide materials. J. Opt. A Pure Appl. Opt. 2003, 5, S183–S188. [Google Scholar] [CrossRef]
- Alvarez, M.L.; Camacho, N.; Neipp, C.; Marquez, A.; Belendez, A.; Pascual, I. Holographic gratings with different spatial frequencies recorded on BB-640 bleached silver halide emulsions using reversal bleaches. Mater. Sci. Forum 2005, 480–481, 543–548. [Google Scholar] [CrossRef]
- Vorzobova, N.D.; Sokolova, E.V.; Kalinina, N.M.; Ryabova, R.V.; Ponomarev, A.N. The characteristics of silver halide materials for holographic recording in the blue. J. Opt. Technol. 2010, 77, 487–489. [Google Scholar] [CrossRef]
- Ryabova, R.V.; Ponomarev, A.N.; Vorzobova, N.D. A way to increase the sensitivity of high-resolution holographic materials in the IR spectral region. Opt. Spectrosc. 2014, 11, 137–138. [Google Scholar] [CrossRef]
- Meza, J.M.; Calixto, S. Response of standard silver halide emulsions to mid-infrared radiation. Appl. Opt. 1996, 35, 6140–6145. [Google Scholar] [CrossRef] [PubMed]
- Usanov, Y.E.; Shevtsov, M.K. Principles of fabricating micropore silver-halide-gelatin holograms. Opt. Spektrosk. 1990, 69, 183–187. [Google Scholar]
- Usanov, Y.E.; Shevtsov, M.K.; Kosobokova, N.L.; Kirienko, E.A. Mechanism for forming a microvoid structure and methods for obtaining silver-halide gelatin holograms. Opt. Spektrosk. 1991, 71, 651–658. [Google Scholar]
- Kim, J.M.; Choi, B.S.; Kim, S.I.; Kim, J.M.; Bjelkhagen, H.I.; Phillips, N.J. Holographic optical elements recorded in silver halide sensitized gelatin emulsions. Part I. Transmission holographic optical elements. Appl. Opt. 2001, 40, 622–632. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.M.; Choi, B.S.; Choi, Y.S.; Kim, J.M.; Bjelkhagen, H.I.; Phillips, N.J. Holographic optical elements recorded in silver halide sensitized gelatin emulsions. Part 2. Reflection holographic optical elements. Appl. Opt. 2002, 41, 1522–1533. [Google Scholar] [CrossRef] [PubMed]
- Smith, H.M. Photographic Relief Images. J. Opt. Soc. Am. 1968, 5, 533–539. [Google Scholar] [CrossRef]
- Gulyaev, S.N.; Ratushnyi, V.P. Properties of relief-phase holograms obtained during processing of photographic plates by short-wave ultraviolet radiation and two-stage bleaching. J. Opt. Technol. 2003, 70, 45–49. [Google Scholar] [CrossRef]
- Ganzherli, N.M.; Gulyaev, S.N.; Maurer, I.A. The effect of UV radiation on the properties of diffraction gratings based on dichromated gelatin. Tech. Phys. Lett. 2016, 42, 988–989. [Google Scholar] [CrossRef]
- Raman, C.V.; Nath, M.S.N. The diffraction of light by high frequency sound waves, Part I. Proc. Indian Acad. Sci. 1935, 2, 406–412. [Google Scholar]
- Raman, C.V.; Nath, M.S.N. The diffraction of light by high frequency sound waves, Part II. Proc. Indian Acad. Sci. 1935, 2, 413–420. [Google Scholar]
- Raman, C.V.; Nath, M.S.N. The diffraction of light by high frequency sound waves, Part III. Proc. Indian Acad. Sci. 1936, 3, 75–84. [Google Scholar]
- Gulyaev, S.N.; Isaev, I.V. Phenomenon of period-doubling in holographic periodic structures exposed to UV radiation. Proc. SPIE Int. Soc. Opt. Eng. 2001, 4348, 59–68. [Google Scholar] [CrossRef]
- Ganzherli, N.M.; Gulyaev, S.N.; Aurer, I.A.; Sotnikova, G.Y.; Chernykh, D.F. Creation of raster relief structures on silver-halide photographic emulsions with the help of two-dimensional holographic gratings. Proc. SPIE Int. Soc. Opt. Eng. 2011, 8074, 80740T. [Google Scholar]
- Ganzherli, N.M.; Gulyaev, S.N.; Maurer, I.A.; Chernykh, D.F.; Yalovik, S.A. Imaging Properties of a 2D Crossed Holographic Grating on Silver Halide Photoemulsions. Tech. Phys. 2012, 57, 1230–1235. [Google Scholar] [CrossRef]
- Ganzherli, N.M.; Gulyaev, S.N.; Maurer, I.A. Properties of holographic structures on dichromated gelatin subjected to ultraviolet radiation. J. Opt. Technol. 2017, 84, 617–620. [Google Scholar] [CrossRef]
- Ganzherli, N.M.; Gulyaev, S.N.; Maurer, I.A.; Khazvalieva, D.R. The transfer of a holographic structure from dihromated gelatine layers on a polymethylmethacrylate substrate. Opt. Spectrosc. 2018, 124, 408–411. [Google Scholar] [CrossRef]
- Bass, F.G.; Fuks, I.M. Wave Scattering from Statistically Rough Surfaces; Pergamon Press: New York, NY, USA, 1979; pp. 229–263. ISBN 9781483187754. [Google Scholar]
- Ganzherli, N.M.; Gulyaev, S.N.; Maurer, I.A.; Chernykh, D.F. Forming the surface relief of complex holographic structures on photosensitive material PFG-01. J. Opt. Technol. 2015, 82, 158–161. [Google Scholar] [CrossRef]
- Ganzherli, N.M.; Gulyaev, S.N. Holographic diffusers based on silver halide photoemulsion layers. J. Opt. Technol. 2007, 74, 622–625. [Google Scholar] [CrossRef]
- Ganzherli, N.M.; Gulyaev, S.N.; Gurin, A.S.; Kramushchenko, D.D.; Maurer, I.A.; Chernykh, D.F. Effect of the Recording Scheme Parameters on the Scattering Characteristics of Holographic Diffusers. Tech. Phys. Lett. 2008, 34, 271–273. [Google Scholar] [CrossRef]
- Ganzherli, N.M.; Gulyaev, S.N.; Gurin, A.S.; Kramushchenko, D.D.; Maurer, I.A.; Chernykh, D.F. Formation of Random and Regular Relief-Phase Structures on Silver Halide Photographic Emulsions by Holographic Methods. Tech. Phys. 2009, 54, 1002–1009. [Google Scholar] [CrossRef]
- Abd El-Kader, F.H.; Gafer, S.A.; Basha, A.F.; Bannan, S.I.; Basha, M.A.F. Thermal and optical porperties of gelatin/poly(vinylalcohol) blends. J. Appl. Polym. Sci. 2010, 118, 413–420. [Google Scholar] [CrossRef]
- Buchhave, P.; Lyuksyutov, S.; Vasnetsov, M.; Heyde, C. Dynamic spatial structure of spontaneous beams in photorefractive bismuth silicon oxide. J. Opt. Soc. Am. B 1996, 13, 2595–2601. [Google Scholar] [CrossRef]
- Altman, J.H. Pure relief images on type 649-F plates. Appl. Opt. 1966, 5, 1689–1690. [Google Scholar] [CrossRef] [PubMed]
- Galpern, A.D.; Kalanina, I.V.; Seyavko, L.V.; Smaev, V.P. Obtaining relief-phase holograms on PE-2 photographic plates and their copying. Opt. Spectrosc. 1986, 60, 644–645. [Google Scholar]
- Navarrete, E.; Calixto, S. Surface relief zone plates with photographic emulsions. Appl. Opt. 1998, 37, 739–745. [Google Scholar] [CrossRef]
- Navarrete, E.; Calixto, S. Continuous surface relief micro-optical elements fabricated on photographic emulsions by use of binary and halftone mask. Opt. Mater. 2003, 23, 501–512. [Google Scholar] [CrossRef]
- Tani, T. characterization of nuclear emulsions in overview of photographic emulsions. Radiat. Meas. 2009, 44, 733–738. [Google Scholar] [CrossRef]
- Ferdinando, D.D. Nuclear emulsions in the OPERA experiment. Radiat. Meas. 2009, 44, 840–845. [Google Scholar] [CrossRef] [Green Version]
- Knuesel, J. The photographic emulsion technology of the OPERA experiment on its way to find the νµ → ντ Oscillation. Nucl. Phys. B 2011, 215, 66–68. [Google Scholar] [CrossRef]
- Ditlov, V.A. Track theory and nuclear photographic emulsions for dark matter searches. Radiat. Meas. 2013, 50, 7–15. [Google Scholar] [CrossRef]
- Kosar, J. Light-Sensitive Systems: Chemistry and Application of Nonsilver Halide Photographic Processes; John Wiley and Sons, Inc.: New York, NY, USA, 1965. [Google Scholar]
- Calixto, S.; Lessard, R.A. Real-time holography with undeveloped dichromated gelatin films. Appl. Opt. 1984, 23, 1989–1994. [Google Scholar] [CrossRef] [PubMed]
- Newell, J.C.; Solymar, L.; Ward, A.A. Holograms in dichromated gelatin: Real-time effects. Appl. Opt. 1985, 24, 4460–4466. [Google Scholar] [CrossRef] [PubMed]
- Denisyuk, Y.N.; Ganzherli, N.M.; Maurer, I.A. Recording of deep 3-D holograms in gel-like layers of dichromate gelatin. Tech. Phys. Lett. 1995, 21, 703–704. [Google Scholar]
- Shankoff, T.A. Phase Holograms in Dichromated Gelatin. Appl. Opt. 1968, 7, 2101–2105. [Google Scholar] [CrossRef] [PubMed]
- Denisyuk, Y.N.; Ganzherli, N.M.; Maurer, I.A.; Pisarevskaya, S.A. Thick-layered glycerol-containing dichromate gelatin for volume hologram recording. Tech. Phys. Lett. 1997, 23, 279–280. [Google Scholar] [CrossRef]
- Sherstyuk, V.P.; Malov, A.N.; Maloletov, S.M.; Kalinkin, V.V. Some principles for formation of self-developing dichromate media. Proc. SPIE Int. Soc. Opt. Eng. 1989, 1238, 218–223. [Google Scholar]
- Ganzherli, N.M.; Denisyuk, Y.N.; Maurer, I.A.; Chernykh, D.F. Thick-layered dichromate gelatin for hologram recording. Opt. Mem. Neural Netw. 2006, 15, 105–112. [Google Scholar]
- Konop, S.P.; Konstantinov, A.G.; Malov, A.N. Self-developed dichromated gelatin films for holography. Proc. SPIE 1996. [Google Scholar] [CrossRef]
- Konop, A.G.; Konop, S.P.; Majov, A.N.; Vigovsky, Y.N.; Bogdan, I.V.; Malov, S.N.; Reinhand, N.O. Red sensitized self-developed dichromated gelatin layer synthesis for holography. Proc. SPIE 2003, 5134. [Google Scholar] [CrossRef]
- Calixto, S.; Scholl, M. Relief optical microelements fabricated with dichromated gelatin. Appl. Opt. 1997, 36, 2101–2106. [Google Scholar] [CrossRef]
- Meyerhofer, D. Spatial resolution of relief holograms in dichromated gelatin. Appl. Opt. 1970, 10, 416–421. [Google Scholar] [CrossRef] [PubMed]
- Pirodda, L.; Moriconi, M. An effective processing agent for dichromated gelatin. Opt. Commun. 1988, 65, 7–10. [Google Scholar] [CrossRef]
- Alhorn, T.; Kreye, H. Verfahren zur herstellung von holografischen pragematrizen. Jahrb. Oberflachentech. 1991, 47, 376–381. [Google Scholar]
- Graube, A. Holograms recorded with red light in dye sensitized dichromated gelatin. Opt. Commun. 1993, 8, 251–253. [Google Scholar] [CrossRef]
- Akagi, M. Spectral sensitization of dichromated gelatin. Photogr. Sci. Eng. 1974, 18, 248. [Google Scholar]
- Kubota, T.; Ose, T.; Sasaki, M.; Honda, K. Hologram formation with red light in methylene blue sensitized dichromated gelatin. Appl. Opt. 1976, 15, 556–558. [Google Scholar] [CrossRef] [PubMed]
- Kubota, T.; Teruji, A. Lippman color holograms recorded in methylene-blue-sensitized dichromated gelatin. Opt. Lett. 1979, 4, 289–291. [Google Scholar] [CrossRef] [PubMed]
- Kubota, T.; Treruji, A. Methods of increasing the sensitivity of methylene sensitized dichromated gelatin. Appl. Opt. 1979, 18, 2538–2539. [Google Scholar] [CrossRef] [PubMed]
- Kubota, T. Recording of high quality color holograms. Appl. Opt. 1986, 25, 4141–4145. [Google Scholar] [CrossRef] [PubMed]
- Kubota, T. Cross sectional view of lippman hologram gratings. Appl. Opt. 1988, 27, 4358–4360. [Google Scholar] [CrossRef] [PubMed]
- Kubota, T. Control of the reconstruction wavelength of Lippman holograms recorded in dichromated gelatin. Appl. Opt. 1989, 28, 1845–1849. [Google Scholar] [CrossRef] [PubMed]
- Mizuno, T.; Tsukasa, G.; Masayuki, G.; Kazuma, M.; Kubota, T. Methylene blue sensitized dichromate gelatin holograms: Influence of the moisture on their exposure and diffraction efficiency. Appl. Opt. 1990, 29, 4757–4760. [Google Scholar] [CrossRef] [PubMed]
- Kasamaza, K.; Satoshi, K.; Sinji, N.; Toru, M.; Kubota, T. Simplified method for preparing methylene-blue-sensitized dichromated gelatin. Appl. Opt. 1998, 37, 3038–3943. [Google Scholar]
- Changkakoti, R.; Pappu, S.V. Study on the pH dependence of diffraction efficiency of phase holograms in dye sensitized dichromate gelatin. Appl. Opt. 1986, 25, 798–801. [Google Scholar] [CrossRef] [PubMed]
- Changkakoti, R.; Babu, S.S.C.; Pappu, S.V. Role of external electron donor in methylene blue sensitized dichromate gelatin holograms: An experimental study. Appl. Opt. 1988, 27, 324–330. [Google Scholar] [CrossRef] [PubMed]
- Changkakoti, R.; Pappu, S.V. Methylene blue sensitized dichromated gelatin holograms a study of their storage life and reprocessibility. Appl. Opt. 1989, 28, 340–344. [Google Scholar] [CrossRef] [PubMed]
- Blyth, J. Methylene blue sensitized dichromate gelatin holograms: A new electron donor for their improved photosensitivity. Appl. Opt. 1995, 30, 1598–1602. [Google Scholar] [CrossRef] [PubMed]
- Rimpler, T.; Wernicke, G.; Gruber, H. Red sensitive dichromated gelatin: Investigations on the influence of some parameters on diffraction efficiency. Opt. Eng. 1995, 34, 1128–1131. [Google Scholar] [CrossRef]
- Pantelic, D.; Muric, B. Improving the holographic sensitivity of dichromated gelatin in the blue-green part of the spectrum by sensitization with xantene dyes. Appl. Opt. 2001, 40, 2871–2875. [Google Scholar] [CrossRef] [PubMed]
- Jonathan, J.M.C.; Kinany, R. Generation of uniaxial medium from bleached photographs plates. Opt. Commun. 1978, 27, 61–64. [Google Scholar] [CrossRef]
- Jonathan, J.M.C.; May, M. Application of the Weigert effect to the contrast reversal of a black and white transparency. Opt. Commun. 1979, 28, 30–34. [Google Scholar] [CrossRef]
- Jonathan, J.M.C.; May, M. Anisotropy induced in a silver-chloride emulsion by two incoherent and perpendicular light vibrations. Opt. Commun. 1979, 28, 295–299. [Google Scholar] [CrossRef]
- Jonathan, J.M.C.; May, M. Anisotropy induced in a silver-silver chloride emulsion by two coherent and perpendicular light vibrations. Opt. Commun. 1979, 29, 7–12. [Google Scholar] [CrossRef]
- Jonathan, J.M.C.; May, M. Interferograms generated by anisotropic photographic recording of two partially coherent vibrations perpendicularly polarized. Appl. Opt. 1980, 19, 624–630. [Google Scholar] [CrossRef] [PubMed]
- Jonathan, J.M.C.; May, M. Application of the Weigert effect to optical processing in partially coherent light. Opt. Eng. 1980, 19, 828–833. [Google Scholar] [CrossRef]
- Jonathan, J.M.C. Interferograms obtained from photodichroic recording of two partially coherent vibrations with opposite sense. Opt. Commun. 1982, 40, 239–242. [Google Scholar] [CrossRef]
- Kakichasvili, S.D. Polarization recording of holograms. Opt. Spectrosc. 1972, 33, 171. [Google Scholar]
- Kakichasvili, S.D. Method for phase polarization recording of holograms. Sov. J. Quant. Electron. 1974, 4, 795–798. [Google Scholar] [CrossRef]
- Kakichasvili, S.D.; Kvinikhidze, T.N. Polarized recording of holograms using a reference wave of arbitrary polarization. Sov. J. Quant. Electron. 1975, 5, 778–780. [Google Scholar] [CrossRef]
- Kakichasvili, S.D.; Shaverdova, V.G. Weigert effect in dyes of the triphenylmethane group. Opt. Spectrosc. 1976, 41, 525–526. [Google Scholar]
- Kakichasvili, S.D. Polarizational (anisotropic-vectorial) holographic recording on practical photoanisotropic materials. Opt. Spectrosc. 1977, 42, 218–220. [Google Scholar]
- Wardosanidze, Z.V. Holography based on the Weigert’s effect. In Hologram-Recording Materials and Applications; Naydenova, I., Ed.; Intechopen: London, UK, 2011. [Google Scholar]
- Nikolova, L.; Todorov, T. Volume amplitude holograms in photodichroic materials. Opt. Acta 1977, 24, 1179–1192. [Google Scholar] [CrossRef]
- Todorov, T.; Nikolova, L.; Tomova, N. Polarization holography: A new high-efficiency organic material with reversible photoinduced birefringence. Appl. Opt. 1984, 23, 4309–4312. [Google Scholar] [CrossRef] [PubMed]
- Todorov, T.; Nikolova, L.; Tomova, N. Polarization holography. 2: Polarization holographic gratings in photoanisotropic materials with and without intrinsic birefringence. Appl. Opt. 1984, 23, 4588–4590. [Google Scholar] [CrossRef] [PubMed]
- Todorov, T.; Nikolova, L.; Stoyanova, K.; Tomova, N. Polarization holography. 3: Some applications of polarization holographic recording. Appl. Opt. 1985, 24, 785–788. [Google Scholar] [CrossRef] [PubMed]
- Pangelova, N.; Katzev, A.; Sharlandjiev, P. Bulg. Patent No. 39,734, 12 October 1979.
- Zdanov, Z.G.; Malinovsky, V.K.; Nikolova, L.; Todorov, T. Photoinduced dichroism in light sensitive suspension layers of As2S3 dispersed in gelatin. Opt. Commun. 1979, 30, 329–331. [Google Scholar] [CrossRef]
- Markova, B.; Nazarova, D.; Sharlandjiev, P. Control of the spectral position of dichromated gelatin reflection holograms. Appl. Opt. 2011, 50, 5534–5537. [Google Scholar] [CrossRef] [PubMed]
- Calixto, S.; Solano, C.; Lessard, R.A. Real time optical image processing and polarization holography with dyed gelatin. Appl. Opt. 1985, 24, 2941–2947. [Google Scholar] [CrossRef] [PubMed]
- Solano, C.; Lessard, R.A. Phase gratings formed by induced anisotropy in dyed gelatin plates. Appl. Opt. 1985, 24, 1776–1779. [Google Scholar] [CrossRef] [PubMed]
- Solano, C.; Lessard, R.A.; Roberge, P. Methylene blue sensitized gelatin as photosensitive medium for conventional and polarizing holography. Appl. Opt. 1987, 26, 1989–1997. [Google Scholar] [CrossRef] [PubMed]
- Solano, C. Malachite green photosensitive plates. Appl. Opt. 1989, 28, 3524–3528. [Google Scholar] [CrossRef] [PubMed]
- Martinez-Ponce, G.; Solano, C. Induced form birefringence in high-frequency polarization gratings. Appl. Opt. 2001, 40, 3850–3854. [Google Scholar] [CrossRef] [PubMed]
- Martinez-Ponce, G.; Solano, C. Polarization gratings with surface relief in dyed gelatin and their postdevelopment diffraction. Appl. Opt. 2002, 41, 2122–2128. [Google Scholar] [CrossRef] [PubMed]
- Vorndran, S.D.; Chrysler, B.; Wheelwrigth, B.; Angel, R.; Holman, Z.; Kostuk, R. Off-axis holographic lens spectrum-splitting photovoltaic system for direct and diffuse solar energy conversion. Appl. Opt. 2016, 55, 7522–7529. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Vorndran, S.; Russo, J.M.; Gordon, M.; Kostuk, R. Ultrahigh-trapping filters with broadband reflection holograms. Opt. Exp. 2012, 20, 14260–14271. [Google Scholar] [CrossRef] [PubMed]
- Kostuk, R.; Castillo, J.; Russo, J.M.; Rosenberg, G. Spectral-shifting and holographic concentrators for use with photovoltaic solar cells. In High and Low Concentration for Solar Electric Applications II; International Society for Optics and Photonics: Bellingham, WA, USA, 2007. [Google Scholar]
- Rich, C.; Petersen, J.M. Broadband IR Lippman holograms for solar control applications. In Proceedings of the Practical Holography VI, San Jose, CA, USA, 1 May 1992. [Google Scholar]
- Denisyuk, Y.N. The manifestation of the optical properties of an object in the wave field of the radiation it scatters. Dokl. Akad. Nauk SSSR 1962, 144, 1275–1278. [Google Scholar]
- Leith, E.M.; Upatnieks, J. Reconstructed wavefronts and communication theory. JOSA 1962, 52, 1123–1130. [Google Scholar] [CrossRef]
- SPIE. Available online: www.spie.org (accessed on 9 July 2018).
- ISDH 2018. Available online: www.isdh2018.pt (accessed on 9 July 2018).
- Proceedings of the All-RUSSIAN Seminar “Yuri Denisyuk-the Founder of Russian Holography”. Available online: http://www.ioffe.ru/loeg/workshop_Denisyuk/procs.html (accessed on 19 June 2018).
- Holoexpo 2018. Available online: www.holoexpo.ru (accessed on 9 July 2018).
- Shevtsov, M.K.; Kornev, A.F.; Pokrovskii, V.P.; Stupnikov, V.K. The GREEF portable holographic camera and its practical use. J. Opt. Technol. 2006, 73, 462–465. [Google Scholar] [CrossRef]
- Gentet, Y.; Shevtsov, M.K. Mobile holographic camera for recording color holograms. J. Opt. Technol. 2009, 76, 399–401. [Google Scholar] [CrossRef]
# | Type of Gelatin-Containing Recording Medium | Layer Thickness, μm | Type of Structure | Maximum Achieved Value of the Height of the Relief hmax, μm | Maximum Obtained Diffraction Efficiency η1max, % for λ = 0.6328 µm |
---|---|---|---|---|---|
1 | Photoplates VRL Russia | 14–18 | Fresnel zone plate 0–57 L/mm | 1.2–2 | 34 |
2 | Photoplates VRL | 14–18 | Grating 110 L/mm | 1.1 | 17 |
3 | Photoplates VRL | 14–18 | Grating 110 L/mm | 0.63 | 21.1 |
4 | Photoplates PFG-01, Slavich | 7 | Grating 65 L/mm | 1.35 | 28.5 |
5 | Photoplates PFG-01 | 7 | microlens array 10 L/mm | 2.6–2.8 | - |
6 | Photoplates Agfa-Gevaert 8E75 | 6–7 | grating 40 L/mm | 1.54 | - |
7 | Photoplates Аgfa-Gevaert Millimask | 5 | Grating 130 L/mm | 1.4 | 23 |
8 | Photoplates Kodak HR | 5 | Grating 130 L/mm | 1.2 | 25 |
9 | Photoplates SRBSh (Kurchatov Institute of Atomic Energy), Russia | 1.8 | Grating 130 L/mm | - | 24 |
10 | DCG layer | 51–86 | Grating 103 L/mm | 1.35–1.45 | 25 |
11 | DCG layer | 0.6–1.1 | Grating 103 L/mm | 0.6–0.9 | 28–30 |
12 | Structure transfer from the DCG layer to the PMMA substrate | 0.3–5 | Grating 103 L/mm | 0.48–1.3 | 8–25 |
Sample No. | The Average Thickness of the Photographic Emulsions after Processing by the SWUV Method, µm | σ, µm | hmax, µm | |
---|---|---|---|---|
1 | 1.4 | 0.54 | 1.9 | 0.12 |
2 | 2.4 | 0.36 | 1.5 | 0.079 |
3 | 3.4 | 0.41 | 1.8 | 0.057 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Calixto, S.; Ganzherli, N.; Gulyaev, S.; Figueroa-Gerstenmaier, S. Gelatin as a Photosensitive Material. Molecules 2018, 23, 2064. https://doi.org/10.3390/molecules23082064
Calixto S, Ganzherli N, Gulyaev S, Figueroa-Gerstenmaier S. Gelatin as a Photosensitive Material. Molecules. 2018; 23(8):2064. https://doi.org/10.3390/molecules23082064
Chicago/Turabian StyleCalixto, Sergio, Nina Ganzherli, Sergey Gulyaev, and Susana Figueroa-Gerstenmaier. 2018. "Gelatin as a Photosensitive Material" Molecules 23, no. 8: 2064. https://doi.org/10.3390/molecules23082064
APA StyleCalixto, S., Ganzherli, N., Gulyaev, S., & Figueroa-Gerstenmaier, S. (2018). Gelatin as a Photosensitive Material. Molecules, 23(8), 2064. https://doi.org/10.3390/molecules23082064