Ultra-Fast Degradation of p-Aminophenol by a Nanostructured Iron Catalyst
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthesis of Nanostructured Iron Carbonate Biohybrids
2.2. Degradation of pAP Catalyzed by FeCO3NRs@CALB
2.3. Degradation of pAP Catalyzed by FeCO3NPs@CALB-Mentha
3. Materials and Methods
3.1. Synthesis of Nanostructured FeCO3NRs@CALB Hybrid
3.2. Preparation of the Extracted Aqueous Solution of Mentha x Piperita
3.3. Synthesis of Nanostructured FeCO3NPs@CALB-Mentha Biohybrid.
3.4. Catalytic Degradation of p-Aminophenol by Iron Nanostructured Catalyst
3.5. Reuse of FeCO3NPs@CALB-Mentha Hybrid
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Afzal Khan, S.; Hamayun, M.; Ahmed, S. Degradation of 4-aminophenol by newly isolated Pseudomonas sp. strain ST-4. Enzyme Microb. Technol. 2006, 38, 10–13. [Google Scholar] [CrossRef]
- Xu, H.; Duan, C.-F.; Zhang, Z.-F.; Chen, J.-Y.; Lai, C.-Z.; Lian, M.; Liu, L.-J.; Cui, H. Flow injection determination of p-aminophenol at trace level using inhibited luminol–dimethylsulfoxide–NaOH–EDTA chemiluminescence. Water Res. 2005, 39, 396–402. [Google Scholar] [CrossRef] [PubMed]
- Filik, H.; Hayvalı, M.; Kılıç, E.; Apak, R.; Aksu, D.; Yanaz, Z.; Çengel, T. Development of an optical fibre reflectance sensor for p-aminophenol detection based on immobilised bis-8-hydroxyquinoline. Talanta 2008, 77, 103–109. [Google Scholar] [CrossRef] [PubMed]
- Harmon, R.C.; Kiningham, K.K.; Valentovic, M.A. Pyruvate reduces 4-aminophenol in vitro toxicity. Toxicol. Appl. Pharmacol. 2006, 213, 179–186. [Google Scholar] [CrossRef] [PubMed]
- Lin, M.; Hu, X.; Ma, Z.; Chen, L. Functionalized polypyrrole nanotube arrays as electrochemical biosensor for the determination of copper ions. Anal. Chim. Acta 2012, 746, 63–69. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ghosh, P.; Ghime, D.; Lunia, D. Degradation of p-aminophenol by Fenton’s process. Influence of operational parameters. Environ. Prot. Eng. 2017, 43. [Google Scholar] [CrossRef]
- Nezamzadeh-Ejhieh, A.; Amiri, M. CuO supported Clinoptilolite towards solar photocatalytic degradation of p-aminophenol. Powder Technol. 2013, 235, 279–288. [Google Scholar] [CrossRef]
- Nezamzadeh-Ejhieh, A.; Shirvani, K. CdS Loaded an Iranian Clinoptilolite as a Heterogeneous Catalyst in Photodegradation of p-Aminophenol. J. Chem. 2013, 2013, 541736. [Google Scholar] [CrossRef]
- Shylesh, S.; Schünemann, V.; Thiel, W.R. Magnetically Separable Nanocatalysts: Bridges between Homogeneous and Heterogeneous Catalysis. Angew. Chem. Int. Ed. 2010, 49, 3428–3459. [Google Scholar] [CrossRef] [PubMed]
- Chng, L.L.; Erathodiyil, N.; Ying, J.Y. Nanostructured Catalysts for Organic Transformations. Acc. Chem. Res. 2013, 46, 1825–1837. [Google Scholar] [CrossRef] [PubMed]
- Cheng, M.; Zeng, G.; Huang, D.; Lai, C.; Liu, Y.; Xu, P.; Zhang, C.; Wan, J.; Hu, L.; Xiong, W.; et al. Salicylic acid–methanol modified steel converter slag as heterogeneous Fenton-like catalyst for enhanced degradation of alachlor. Chem. Eng. J. 2017, 327, 686–693. [Google Scholar] [CrossRef]
- Li, B.; Lai, C.; Zeng, G.; Qin, L.; Yi, H.; Huang, D.; Zhou, C.; Liu, X.; Cheng, M.; Xu, P.; et al. Facile Hydrothermal Synthesis of Z-Scheme Bi2 Fe4O9/Bi2WO6 Heterojunction Photocatalyst with Enhanced Visible Light Photocatalytic Activity. ACS Appl. Mater. Interfaces 2018, 10, 18824–18836. [Google Scholar] [CrossRef] [PubMed]
- Medicines Agency. Guideline on the Specification Limits for Residues of Metal Catalysts or Metal Reagents; EMEA/CHMP/SWP/4446/2000; Medicines Agency: London, UK, 2008. [Google Scholar]
- Sayed, F.N.; Polshettiwar, V. Facile and Sustainable Synthesis of Shaped Iron Oxide Nanoparticles: Effect of Iron Precursor Salts on the Shapes of Iron Oxides. Sci. Rep. 2015, 5, 9733. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lopez-Tejedor, D.; Benavente, R.; Palomo, J.M. Iron nanostructured catalysts: Design and applications. Catal. Sci. Technol. 2018, 8. [Google Scholar] [CrossRef]
- Preparing and Using Metal Nanoparticles. Patent WO 2014132106 A1, 4 September 2014.
- Reddy, L.H.; Arias, J.L.; Nicolas, J.; Couvreur, P. Magnetic Nanoparticles: Design and Characterization, Toxicity and Biocompatibility, Pharmaceutical and Biomedical Applications. Chem. Rev. 2012, 112, 5818–5878. [Google Scholar] [CrossRef] [PubMed]
- Benavente, R.; Lopez-Tejedor, D.; Palomo, J.M. Synthesis of a superparamagnetic ultrathin FeCO3 nanorods-enzyme bionanohybrid as a novel heterogeneous catalyst. Chem. Commun. 2018, 54, 6256–6259. [Google Scholar] [CrossRef] [PubMed]
- Shin, S.; Kim, S.-W.; Jang, J.-H.; Kim, J.-B. A simple maskless process for the fabrication of vertically aligned high density hematite and graphene/magnetite nanowires. J. Mater. Chem. C 2017, 5, 1313–1320. [Google Scholar] [CrossRef]
- Wang, F.; Wu, X.; Shen, C.; Wen, Z. Facile synthesis of Fe@Fe2O3 core-shell nanowires as O2 electrode for high-energy Li-O2 batteries. J. Solid State Electrochem. 2016, 20, 1831–1836. [Google Scholar] [CrossRef]
- Krajewski, M.; Lin, W.S.; Lin, H.M.; Brzozka, K.; Lewinska, S.; Nedelko, N.; Slawska-Waniewska, A.; Borysiuk, J.; Wasik, D. Structural and magnetic properties of iron nanowires and iron nanoparticles fabricated through a reduction reaction. Beilstein J. Nanotechnol. 2015, 6, 1652–1660. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lupan, O.; Postica, V.; Wolff, N.; Polonskyi, O.; Duppel, V.; Kaidas, V.; Lazari, E.; Ababii, N.; Faupel, F.; Kienle, L.; et al. Localized Synthesis of Iron Oxide Nanowires and Fabrication of High Performance Nanosensors Based on a Single Fe2O3 Nanowire. Small 2017, 13, 1602868. [Google Scholar] [CrossRef] [PubMed]
- Patil, M.P.; Kim, G.-D. Eco-friendly approach for nanoparticles synthesis and mechanism behind antibacterial activity of silver and anticancer activity of gold nanoparticles. Appl. Microbiol. Biotechnol. 2017, 101, 79–92. [Google Scholar] [CrossRef] [PubMed]
- Qin, L.; Zeng, G.; Lai, C.; Huang, D.; Xu, P.; Zhang, C.; Cheng, M.; Liu, X.; Liu, S.; Li, B.; et al. “Gold rush” in modern science: Fabrication strategies and typical advanced applications of gold nanoparticles in sensing. Coord. Chem. Rev. 2018, 359, 1–31. [Google Scholar] [CrossRef]
- Singh, G.; Kumar, P.A.; Lundgren, C.; van Helvoort, A.T.J.; Mathieu, R.; Wahlström, E.; Glomm, W.R. Tunability in Crystallinity and Magnetic Properties of Core-Shell Fe Nanoparticles. Part. Part. Syst. Charact. 2014, 31, 1054–1059. [Google Scholar] [CrossRef]
- Polshettiwar, V.; Asefa, T. Introduction to Nanocatalysis. In Nanocatalysis Synthesis and Applications; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2013; pp. 1–9. ISBN 9781118609811. [Google Scholar]
- Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
- Wu, X.; Xu, P.; Duan, Y.; Hu, C.; Li, G. Surface magnetization of siderite mineral. Int. J. Min. Sci. Technol. 2012, 22, 825–830. [Google Scholar] [CrossRef]
- Lafuente, B.; Downs, R.T.; Yang, M.H.; Stone, N. The power of databases: The RRUFF project. In Highlights in Mineralogical Crystallography; Armbruster, T., Danisi, R.M., Eds.; W. De Gruyter: Berlin, Germany, 2015; pp. 1–30. [Google Scholar]
- Qu, X.-F.; Yao, Q.-Z.; Zhou, G.-T. Synthesis of siderite microspheres and their transformation to magnetite microspheres. Eur. J. Mineral. 2011, 23, 759–770. [Google Scholar] [CrossRef]
- Moctezuma, E.; Leyva, E.; Aguilar, C.A.; Luna, R.A.; Montalvo, C. Photocatalytic degradation of paracetamol: Intermediates and total reaction mechanism. J. Hazard. Mater. 2012, 243, 130–138. [Google Scholar] [CrossRef] [PubMed]
Sample Availability: Samples of the compounds are not available from the authors. |
Solvent | (mM) | pH | Time (min) | pAP Degradation (%) |
---|---|---|---|---|
Acetate | 100 | 4 | 20 | 81 |
Acetate | 10 | 4 | 20 | 76 |
Adjusted Tap water | - | 4 | 17 | 66 |
Phosphate | 0.5 | 6 | 16 | 99 |
Phosphate | 0.5 | 7 | 15 | 99 |
Tap water | - | 7.4 | 16 | 99 |
Distilled H2O | - | 7 | 15 | 99 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Benavente, R.; Lopez-Tejedor, D.; Perez-Rizquez, C.; Palomo, J.M. Ultra-Fast Degradation of p-Aminophenol by a Nanostructured Iron Catalyst. Molecules 2018, 23, 2166. https://doi.org/10.3390/molecules23092166
Benavente R, Lopez-Tejedor D, Perez-Rizquez C, Palomo JM. Ultra-Fast Degradation of p-Aminophenol by a Nanostructured Iron Catalyst. Molecules. 2018; 23(9):2166. https://doi.org/10.3390/molecules23092166
Chicago/Turabian StyleBenavente, Rocio, David Lopez-Tejedor, Carlos Perez-Rizquez, and Jose M. Palomo. 2018. "Ultra-Fast Degradation of p-Aminophenol by a Nanostructured Iron Catalyst" Molecules 23, no. 9: 2166. https://doi.org/10.3390/molecules23092166
APA StyleBenavente, R., Lopez-Tejedor, D., Perez-Rizquez, C., & Palomo, J. M. (2018). Ultra-Fast Degradation of p-Aminophenol by a Nanostructured Iron Catalyst. Molecules, 23(9), 2166. https://doi.org/10.3390/molecules23092166