Mediterranean Wild Edible Plants: Weeds or “New Functional Crops”?
Abstract
:1. Introduction
2. Wild Edible Plants in the Mediterranean Basin
3. Toxicity of Wild Edible Plants
4. Exploiting the Possibilities of Cultivation of Some Wild Mediterranean Edible Species: Preliminary Results, Perspectives and Opportunities
4.1. Germination Test
4.2. The Cultivation
4.3. Perspective and Opportunities for Wild Edible Species Cultivation
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Petropoulos, S.A.; Karkanis, A.; Martins, N.; Ferreira, I.C.F.R. Edible halophytes of the Mediterranean basin: Potential candidates for novel food products. Trends Food Sci. Technol. 2018, 74, 69–84. [Google Scholar] [CrossRef]
- Morales, P.; Ferreira, I.C.; Carvalho, A.M.; Sánchez-Mata, C.; Cámara, M.; Fernández-Ruiz, V.; Pardo-de-Santayana, M.; Tardío, J. Mediterranean non-cultivated vegetables as dietary sources of compounds with antioxidant and biological activity. Food Sci. Technol. 2014, 55, 389–396. [Google Scholar] [CrossRef] [Green Version]
- Maggini, R.; Kiferle, C.; Guidi, L.; Pardossi, A.; Raffaelli, A. Growing medicinal plants in hydroponic culture. Acta Hortic. 2012, 952, 697–704. [Google Scholar] [CrossRef]
- Tomasi, N.; Pinton, R.; Dalla Costa, L.; Cortella, G.; Terzano, R.; Mimmo, T.; Scampicchio, M.; Cesco, S. New ‘solutions’ for floating cultivation system of ready-to-eat salad: A review. Trends Food Sci. Technol. 2015, 46, 267–276. [Google Scholar] [CrossRef]
- Dürr, C.; Dickie, J.B.; Yang, X.-Y.; Pritchard, H.W. Ranges of critical temperature and water potential values for the germination of species worldwide: Contribution to a seed trait database. Agric. Forest Meteorol. 2015, 200, 222–232. [Google Scholar] [CrossRef] [Green Version]
- Mira, S.; Veiga-Barbosa, L.; González-Benito, M.E.; Pérez-García, F. Inter-population variation in germination characteristics of Plantago lanceolate seeds: effects of temperature, osmotic stress and salinity. Mediterr. Bot. 2018, 39, 89–96. [Google Scholar] [CrossRef]
- Egea-Gilabert, C.; Niñirola, D.; Conesa, E.; Candela, M.E.; Fernandez, J.A. Agronomical use as baby leaf salad of Silene vulgaris based on morphological, biochemical and molecular traits. Sci. Hortic. 2013, 152, 35–43. [Google Scholar] [CrossRef]
- Morita, T.; Ushiroguchi, T.; Hayashi, N.; Matsuura, H.; Itakura, Y.; Fuwa, T. Steroidal saponins from elephant garlic, bulbs of Allium ampeloprasum L. Chem. Pharm. Bull. 1988, 36, 3480–3486. [Google Scholar] [CrossRef] [PubMed]
- Wichtl, M. Testo Atlante di Fitoterapia; Utet: Turin, Italy, 2006; ISBN 8802073155. [Google Scholar]
- Kim, S.; Kim, D.-B.; Jin, W.; Park, J.; Yoon, W.; Lee, Y.; Kim, S.; Lee, S.; Kim, S.; Lee, O.-H.; et al. Comparative studies of bioactive organosulphur compounds and antioxidant activities in garlic (Allium sativum L.), elephant garlic (Allium ampeloprasum L.) and onion (Allium cepa L.). Nat. Prod. Res. 2018, 32, 1193–1197. [Google Scholar] [CrossRef] [PubMed]
- Rahimi-Madiseh, M.; Heidarian, E.; Kheiri, S.; Rafieian-Kopaei, M. Effect of hydroalcoholic Allium ampeloprasum extract on oxidative stress, diabetes mellitus and dyslipidemia in alloxan-induced diabetic rats. Biomed. Pharmacother. 2017, 86, 363–367. [Google Scholar] [CrossRef] [PubMed]
- Najda, A.; Błaszczyk, L.; Winiarczyk, K.; Dyduch, J.; Tchórzewska, D. Comparative studies of nutritional and health-enhancing properties in the "garlic-like" plant Allium ampeloprasum var. ampeloprasum (GHG-L.) and A. sativum. Sci. Hortic. 2016, 201, 247–255. [Google Scholar] [CrossRef]
- Ferrara, L.; Dosi, R.; Di Maro, A.; Guida, V.; Cefarelli, G.; Pacifico, S.; Mastellone, C.; Fiorentino, A.; Rosati, A.; Parente, A. Nutritional values, metabolic profile and radical scavenging capacities of wild asparagus (A. acutifolius L.). J. Food Compost. Anal. 2011, 24, 326–333. [Google Scholar] [CrossRef]
- Tardío, J.; De Cortes Sánchez-Mata, M.; Morales, R.; Molina, M.; García-Herrera, P.; Fernández-Ruiz, V.; Cámara, M.; Pardo-De-Santayana, M.; Matallana-González, M.C.; Ruiz-Rodríguez, B.M.; et al. Ethnobotanical and food composition monographs of selected Mediterranean wild edible plants. In Mediterranean Wild Edible Plants: Ethnobotany and Food Composition Tables; de Cortes Sánchez-Mata, M., Tardío, J., Eds.; Springer: New York, NY, USA, 2016; pp. 273–470. ISBN 978-1-4939-3327-3. [Google Scholar]
- García-Herrera, P.; Sánchez-Mata, M.C.; Cámara, M.; Tardío, J.; Olmedilla-Alonso, B. Carotenoid content of wild edible young shoots traditionally consumed in Spain (Asparagus acutifolius L., Humulus lupulus L., Bryonia dioica Jacq. and Tamus communis L.). J. Sci. Food. Agric. 2013, 93, 1692–1698. [Google Scholar] [CrossRef]
- Guarrera, P.M.; Savo, V. Perceived health properties of wild and cultivated food plants in local and popular traditions of Italy: A review. J. Ethnopharmacol. 2013, 146, 659–680. [Google Scholar] [CrossRef] [PubMed]
- Gupta, M.; Singh, S. Borago officinalis L. An important medicinal plant of Mediterranean region: A review. Int. J. Pharm. Sci. Rev. Res. 2010, 5, 27–34. [Google Scholar]
- Pereira, C.; Barros, L.; Carvalho, A.M.; Ferreira, I. Use of UFLC-PDA for the analysis of organic acids in thirty-five species of food and medicinal plants. Food Anal. Method 2013, 6, 1337–1344. [Google Scholar] [CrossRef]
- Dresler, S.; Szymczak, G.; Wójcik, M. Comparison of some secondary metabolite content in the seventeen species of the Boraginaceae family. Pharm. Biol. 2017, 55, 691–695. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mohajer, S.; Taha, R.M.; Ramli, R.B.; Mohajer, M. Phytochemical constituents and radical scavenging properties of Borago officinalis and Malva sylvestris. Ind. Crops Prod. 2016, 94, 673–681. [Google Scholar] [CrossRef]
- Sinkovič, L.; Demšar, L.; Žnidarčič, D.; Vidrih, R.; Hribar, J.; Treutter, D. Phenolic profiles in leaves of chicory cultivars (Cichorium intybus L.) as influenced by organic and mineral fertilizers. Food Chem. 2015, 166, 507–513. [Google Scholar] [CrossRef] [PubMed]
- Zlatíc, N.M.; Stankovíc, M.S. Variability of secondary metabolites of the species Cichorium intybus L. from different habitats. Plants 2017, 6, 38. [Google Scholar] [CrossRef] [PubMed]
- Bischoff, T.A.; Kelley, C.J.; Karchesy, Y.; Laurantos, M.; Nguyen-Dinh, P.; Arefi, A.G. Antimalarial activity of Lactucin and Lactucopicrin: sesquiterpene lactones isolated from Cichorium intybus L. J. Ethnopharmacol. 2004, 95, 455–457. [Google Scholar] [CrossRef] [PubMed]
- Esiyok, D.; Ötles, S.; Akcicek, E. Herbs as a food source in Turkey. Asian Pac. J. Cancer Prev. 2004, 5, 334–339. [Google Scholar] [PubMed]
- Bennett, N.R.; Rosa, A.S.E.; Mellon, F.A.; Kroon, P.A. Ontogenic profiling of glucosinolates, phenolics, flavonoids and other secondary metabolites in Eruca sativa (salad rocket), Diplotaxis erucoides (wall rocket), Diplotaxis tenuifolia (wild rocket), and Bunias orientalis (turkish rocket). J. Agric. Food Chem. 2006, 54, 4005–4015. [Google Scholar] [CrossRef] [PubMed]
- Heimler, D.; Isolani, L.; Vignolini, P.; Tombelli, S.; Romani, A. Polyphenol content and antioxidative activity in some species of freshly consumed salads. J. Agric. Food Chem. 2007, 55, 1724–1729. [Google Scholar] [CrossRef] [PubMed]
- Di Gioia, F.; Avato, P.; Serio, F.; Argentieri, M.P. Glucosinolate profile of Eruca sativa, Diplotaxis tenuifolia and Diplotaxis erucoides grown in soil and soilless systems. J. Food Compost. Anal. 2018, 69, 197–204. [Google Scholar] [CrossRef]
- Pasini, F.; Verardo, V.; Caboni, M.F.; D’Antuono, L.F. Determination of glucosinolates and phenolic compounds in rocket salad by HPLC-DAD–MS: Evaluation of Eruca sativa Mill. and Diplotaxis tenuifolia L. genetic resources. Food Chem. 2012, 133, 1025–1033. [Google Scholar] [CrossRef]
- Barros, L.; Carvalho, A.M.; Ferreira, I.C. The nutritional composition of fennel (Foeniculum vulgare): Shoots, leaves, stems and inflorescences. LWT-Food Sci. Technol. 2010, 43, 814–818. [Google Scholar] [CrossRef]
- Ghanem, M.T.M.; Radwan, H.M.A.; Mahdy, E.M.; Elkholy, Y.M.; Hassanein, H.D.; Shahat, A.A. Phenolic compounds from Foeniculum vulgare (subsp. Piperitum) (Apiaceae) herb and evaluation of hepatoprotective antioxidant activity. Pharmacogn. Res. 2012, 4, 104–108. [Google Scholar] [CrossRef]
- Grae, I. Nature’s Color. Dyes from Plants; MacMillan Pub Co.: New York, NY, USA, 1974; ISBN 0020123906. [Google Scholar]
- Parejo, I.; Jáuregui, O.; Sánchez-Rabaneda, F.; Viladomat, F.; Bastida, J.; Codina, C. Separation and characterization of phenolic compounds in fennel (Foeniculum vulgare) using liquid chromatography-negative electrospray ionization tandem mass spectrometry. J. Agric. Food Chem. 2004, 52, 3679–3687. [Google Scholar] [CrossRef] [PubMed]
- Rasul, A.; Akhtar, N.; Iqbal, M.T.; Khan, B.A.; Madni, A.U.; Murtaza, G.; Waqas, M.K.; Mahmood, T. Sebumetric and mexametric evaluation of a fennel based cream. Scienceasia 2002, 38, 262–267. [Google Scholar] [CrossRef]
- Roby, M.H.H.; Sarhan, M.A.; Selim, K.A.; Khalel, K.I. Antioxidant and antimicrobial activities of essential oil and extracts of fennel (Foeniculum vulgare Mill.) and chamomile (Matricaria chamomilla L.). Ind. Crops Prod. 2013, 44, 437–445. [Google Scholar] [CrossRef]
- Conforti, F.; Sosa, S.; Marrelli, M.; Menichini, F.; Statti, G.A.; Uzunov, D.; Tubaro, A.; Menichini, F. The protective ability of Mediterranean dietary plants against the oxidative damage: The role of radical oxygen species in inflammation and the polyphenol, flavonoid and sterol contents. Food Chem. 2009, 112, 587–594. [Google Scholar] [CrossRef]
- Dif, M.M.; Benchiha, H.; Mehdadi, Z.; Benali-Toumi, F.; Benyahia, M.; Bouterfas, K. Quantification study of polyphenols in different organs of Papaver rhoeas L. Phytother 2015, 13, 314–319. [Google Scholar] [CrossRef]
- Xiang, L.; Xing, D.; Wang, W.; Wang, R.; Ding, Y. Alkaloids from Portulaca oleracea L. Phytochemistry 2005, 66, 2595–2601. [Google Scholar] [CrossRef] [PubMed]
- Guil-Guerrero, J.L.; Rodrìguez-Garcìa, I. Lipids classes, fatty acids and carotenes of the leaves of six edible wild plants. Eur. Food Res. Technol. 1999, 209, 313–316. [Google Scholar] [CrossRef]
- Okafor, I.A.; Ezejindu, D.N. Phytochemical studies on Portulaca oleracea (Purslane) plant. G.J.B.A.H.S. 2014, 3, 132–136. [Google Scholar]
- Oliveira, I.; Valentão, P.; Lopes, R.; Andrade, P.B.; Bento, A.; Pereira, J.A. Phytochemical characterization and radical scavenging activity of Portulaca oleracea L. leaves and stems. Microchem. J. 2009, 92, 129–134. [Google Scholar] [CrossRef]
- Yan, J.; Sun, L.R.; Zhou, Z.Y.; Chen, Y.C.; Zhang, W.M.; Dai, H.F.; Tan, J.W. Homoisoflavonoids from the medicinal plant Portulaca oleracea. Phytochemistry 2012, 80, 37–41. [Google Scholar] [CrossRef] [PubMed]
- Mohamed, A.I.; Hussein, A.S. Chemical composition of purslane (Portulaca oleracea). Plant Foods Hum. Nutr. 1992, 45, 1–9. [Google Scholar] [CrossRef]
- Guil, J.L.; Rodríguez-Garcí, I.; Torija, E. Nutritional and toxic factors in selected wild edible plants. Plant Foods Hum. Nutr. 1997, 51, 99–107. [Google Scholar] [CrossRef] [PubMed]
- Iranshahy, M.; Javadi, B.; Iranshahi, M.; Jahanbakhsh, S.P.; Mahyari, S.; Hassani, F.V.; Karimi, G. A review of traditional uses, phytochemistry and pharmacology of Portulaca oleracea L. J. Ethnopharmacol. 2017, 205, 158–172. [Google Scholar] [CrossRef] [PubMed]
- Lee, N.J.; Choi, J.H.; Koo, B.S.; Ryu, S.Y.; Han, Y.H.; Lee, S.I.; Lee, D.U. Anti- mutagenicity and cytotoxicity of the constituents from the aerial parts of Rumex acetosa. Biol. Pharm. Bull. 2005, 28, 2158–2161. [Google Scholar] [CrossRef] [PubMed]
- Bicker, J.; Petereit, F.; Hensel, A. Proanthocyanidins and a phloroglucinol derivative from Rumex acetosa L. Fitoterapia 2009, 80, 483–495. [Google Scholar] [CrossRef] [PubMed]
- Aritomi, M.; Kiyota, I.; Mazaki, T. Flavonoid constituents in leaves of Rumex acetosa Linnaeus and R. Japonicus Houttuyn. Chem. Pharm. Bull. 1965, 13, 1470–1471. [Google Scholar] [CrossRef] [PubMed]
- Kucekova, Z.; Mlcek, J.; Humpolicek, P.; Rop, O.; Valasek, P.; Saha, P. Phenolic compounds from Allium schoenoprasum, Tragopogon pratensis and Rumex acetosa and their antiproliferative effects. Molecules 2011, 16, 9207–9217. [Google Scholar] [CrossRef] [PubMed]
- Esmaeili, A.; Masoudi, S.; Masnabadi, N.; Rustaiyan, A.H. Chemical constituents of the essential oil of Sanguisorba minor Scop. Leaves from Iran. J. Med. Plants 2010, 9, 67–70. [Google Scholar]
- Ranfa, A.; Bodesmo, M.; Cappelli, C.; Quaglia, M.; Falistocco, E.; Burini, G.; Coli, R.; Maurizi, A. Aspetti fitoecologici e nutrizionali di alcune specie vegetali spontanee in Umbria per la conoscenza, recupero e valorizzazione di risorse ambientali; Tipografia Grifo: Perugia, Italy, 2011; ISBN 8887652228, 9788887652222. [Google Scholar]
- Viano, J.; Masotti, V.; Gaydou, E.M. Nutritional value of Mediterranean sheep’s burnet (Sanguisorba minor ssp. muricata). J. Agr. Food. Chem. 1999, 47, 4645–4648. [Google Scholar] [CrossRef]
- Guarrera, P.M.; Savo, V. Wild food plants used in traditional vegetables mixtures in Italy. J. Ethnopharmacol. 2016, 185, 202–234. [Google Scholar] [CrossRef] [PubMed]
- Gatto, M.A.; Ippolito, A.; Linsalata, V.; Cascarano, N.A.; Nigro, F.; Vanadia, S.; Di Venere, D. Activity of extracts from wild edible herbs against postharvest fungal diseases of fruit and vegetables. Postharvest Biol. Technol. 2011, 61, 72–82. [Google Scholar] [CrossRef]
- Zengin, G.; Mahomoodally, M.F.; Aktumsek, A.; Ceylan, R.; Uysal, S.; Mocan, A.; Yilmaz, M.A.; Picot-Allain, C.M.N.; Ćirić, A.; Glamočlija, J.; et al. Functional constituents of six wild edible Silene species: A focus on their phytochemicals profiles and bioactive properties. Food Biosci. 2018, 23, 75–82. [Google Scholar] [CrossRef]
- Rad, J.S.; betatemi, M.H.; Rad, M.S.; Sen, D.J. Phytochemical and antimicrobial evaluation of the essential oils and antioxidant activity of aqueous extracts from flower and stem of Sinapis arvensis L. Am. J. Adv. Drug Deliv. 2013, 1, 1–10. [Google Scholar] [CrossRef]
- Mojab, F.; Kamalinejad, M.; Ghaderi, N.; Vahidipour, H.R. Phytochemical screening of some species of Iranian plants. Iran J. Pharm. Res. 2003, 2, 77–82. [Google Scholar]
- Amin Mir, M.; Sawhney, S.S.; Jassal, M.M.S. Qualitative and quantitative analysis of phytochemicals of Taraxacum officinale. J. Pharm. Pharmacol. 2012, 2, 1–5. [Google Scholar]
- Gomez, M.K.; Singh, J.; Acharya, P.; Jayaprakasha, G.K.; Patil, B.S. Identification and quantification of phytochemicals, antioxidant activity, and bile acid-binding capacity of garnet stem dandelion (Taraxacum officinale). J. Food Sci. 2018, 83, 1569–1578. [Google Scholar] [CrossRef] [PubMed]
- Ivanov, I.G. Polyphenols content and antioxidant activities of Taraxacum officinale F.H. Wigg (Dandelion) leaves. Int. J. Pharmacogn. Phytochem. Res. 2014, 6, 889–893. [Google Scholar]
- Sengul, M.; Yildiz, H.; Gungor, N.; Cetin, B.; Eser, Z.; Ercisli, S. Total phenolic content, antioxidant and antimicrobial activities of some medicinal plants. Pak. J. Pharm. Sci. 2009, 22, 102–106. [Google Scholar] [PubMed]
- Schütz, K.; Carle, R.; Schieber, A. Taraxacum-A review on its phytochemical and pharmacological profile. J. Ethnopharmacol. 2006, 107, 313–323. [Google Scholar] [CrossRef] [PubMed]
- Duma, M.; Alsina, I.; Zeipina, S.; Lepse, L.; Dubova, L. Leaf vegetables as source of phytochemicals. In Proceedings of the 9th Baltic Conference on Food Science and Technology “Food for Consumer Well-being” FOODBALT, Jelgava, Latvia, 8–9 May 2014; pp. 262–265. [Google Scholar]
- Guerriero, G.; Berni, R.; Muñoz-Sanchez, J.A.; Apone, F.; Abdel-Salam, E.M.; Qahtan, A.A.; Alatar, A.A.; Cantini, C.; Cai, G.; Hausman, J.-F.; et al. Production of plant secondary metabolites: Examples, tips and suggestions for biotechnologists. Genes 2018, 9, 2–22. [Google Scholar] [CrossRef] [PubMed]
- Marchetti, N.; Bonetti, G.; Brandolini, V.; Cavazzini, A.; Maietti, A.; Meca, G.; Mañes, J. Stinging nettle (Urtica dioica L.) as a functional food additive in egg pasta: Enrichment and bioaccessibility of Lutein and β-carotene. J. Funct. Foods 2018, 47, 547–553. [Google Scholar] [CrossRef]
- Gülçin, I.; Küfrevioğlu, Ö.I.; Oktay, M.; Büyükokuroğlu, M.E. Antioxidant, antimicrobial, antiulcer and analgesic activities of nettle (Utica dioica L.). J. Ethnopharmacol. 2004, 90, 205–215. [Google Scholar] [CrossRef] [PubMed]
- Uncini Manganelli, R.E.; Camangi, F.; Tomei, P.E. L’uso delle erbe nella tradizione rurale della Toscana, 1st ed.; ARSIA, EFFEEMME LITO srl: Firenze, Italy, 2002; ISBN 88-8295-028-X. [Google Scholar]
- Della, A.; Paraskeva-Hadjichambi, D.; Hadjichambis, A.C. An ethnobotanical survey of wild edible plants of Paphos and Larnaca countryside of Cyprus. J. Ethnobiol. Ethnomed. 2006, 2, 2–34. [Google Scholar] [CrossRef] [PubMed]
- Lentini, F.; Venza, F. Wild food plants of popular use in Sicily. J. Ethnobiol. Ethnomed. 2007, 3, 15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rivera, D.; Obón, C.; Inocencio, C.; Heinrich, M.; Verde, A.; Fajardo, J.; Llorach, R. The ethnobotanical study of local Mediterranean food plants as medicinal resources in Southern Spain. J. Physiol. Pharmacol. 2005, 56, 97–114. [Google Scholar] [PubMed]
- Bianco, V.V.; Santamaria, P.; Elia, A. Nutritional value and nitrate content in edible wild species used in southern Italy. Acta Hortic. 1998, 467, 71–90. [Google Scholar] [CrossRef]
- Tanji, A.; Nassif, F. Edible Weeds in Morocco. Weed Technol. 1995, 9, 617–620. [Google Scholar] [CrossRef]
- Vasas, A.; Orbán-Gyapai, O.; Hohmann, J. The Genus Rumex: Review of traditional uses, phytochemistry and pharmacology. J. Ethnopharmacol. 2015, 175, 198–228. [Google Scholar] [CrossRef] [PubMed]
- Enríquez, J.A. Estudio biológico y agronómico de Silene vulgaris. Ph.D. Thesis, Universidad Politécnica de Cartagena, Cartagena, Spain, 2006. [Google Scholar]
- Pinela, J.; Carvalho, A.M.; Ferreira, I.C. Wild edible plants: Nutritional and toxicological characteristics, retrieval strategies and importance for today's society. Food Chem. Toxicol. 2017, 110, 165–188. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kristanc, L.; Kreft, S. European medicinal and edible plants associated with subacute and chronic toxicity part I: Plants with carcinogenic, teratogenic and endocrine-disrupting effects. Food Chem. Toxicol. 2016, 92, 150–164. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Mata, M.C.; Cabrera Loera, R.D.; Morales, P.; Fernández-Ruiz, V.; Cámara, M.; Díez Marqués, C.; Pardo-de-Santayana, M.; Tardío, J. Wild vegetables of the Mediterranean area as valuable sources of bioactive compounds. Genet. Resour. Crop Evol. 2012, 59, 431–443. [Google Scholar] [CrossRef]
- Disciglio, G.; Tarantino, A.; Frabboni, L.; Gagliardi, A.; Giuliani, M.; Tarantino, E.; Gatta, G. Qualitative characterisation of cultivated and wild edible plants: Mineral elements, phenols content and antioxidant capacity. Ital. J. Agron. 2017, 12, 383–394. [Google Scholar] [CrossRef]
- Santos, R.V.; Machado, R.M.A.; Alves-Pereira, I.; Ferreira, R.M.A. The influence of nitrogen fertilization on growth, yield, nitrate and oxalic acid concentration in purslane (Portulaca oleracea). Acta Hortic. 2016, 1142, 299–304. [Google Scholar] [CrossRef]
- Radman, S.; Žutić, I.; Fabek, S.; Šic Žlabur, J.; Benko, B.; Toth, N.; Čoga, L. Influence of nitrogen fertilization on chemical composition of cultivated nettle. Emirates J. Food Agric. 2015, 27, 889–896. [Google Scholar] [CrossRef]
- Shaheen, S.; Ahmed, M.; Harron, N. Edible Wild Plants: An Alternative Approach to Food Security; Springer: Cham, Switzerland, 2017; ISBN 978-3-319-63036-6. [Google Scholar]
- Pêgo, R.G.; Nunes, U.R.; Massad, M.D. Seed physiological quality and field performance of rocket plants. Cienc. rural 2011, 41, 1341–1346. [Google Scholar] [CrossRef]
- Putra, P.A.; Yuliando, H. Soilless culture system to support water use efficiency and product quality: A review. Agric. Agric. Sci. Procedia 2015, 3, 283–288. [Google Scholar] [CrossRef]
- Santamaria, P. Nitrate in vegetables: Toxicity, content, intake and EC regulation. J. Sci. Food Agric. 2006, 86, 10–17. [Google Scholar] [CrossRef]
- Gonnella, M.; Serio, F.; Conversa, G.; Santamaria, P. Production and nitrate content in lamb’s lettuce grown in floating system. Acta Hortic. 2004, 644, 61–68. [Google Scholar] [CrossRef]
- Urlić, B.; Dumičić, G.; Romić, M.; Ban, S.G. The effect of N. and NaCl on growth, yield, and nitrate content of salad rocket (Eruca sativa Mill.). J. Plant Nutr. 2017, 18, 2611–2618. [Google Scholar] [CrossRef]
- Carvalho, A.M.; Barata, A.M. The consumption of wild edible plants. In Wild Plants, Mushrooms and Nuts: Functional Food Properties and Applications; John Wiley & Sons: New York, NY, USA, 2017; pp. 159–198. ISBN 9781118944622. [Google Scholar]
- Ju, Y.; Zhuo, J.; Liu, B.; Long, C. Eating from the wild: Diversity of wild edible plants used by Tibetans in Shangri-la region, Yunnan, China. J. Ethnobiol. Ethnomed. 2013, 9, 28. [Google Scholar] [CrossRef] [PubMed]
- Łuczaj, L.; Dolina, K. A hundred years of change in wild vegetable use in Southern Herzegovina. J. Ethnopharmacol. 2015, 166, 297–304. [Google Scholar] [CrossRef] [PubMed]
- Mattalia, G.; Quave, C.; Pieroni, A. Traditional uses of wild food and medicinal plants among Brigasc, Kyé, and Provençal communities on the Western Italian Alps. Genet. Resour. Crop Evol. 2013, 60, 587–603. [Google Scholar] [CrossRef]
- Quave, C.L.; Pieroni, A. A reservoir of ethnobotanical knowledge informs resilient food security and health strategies in the Balkans. Nat. Plants 2015, 1, 14021. [Google Scholar] [CrossRef] [PubMed]
- Stryamets, N.; Elbakidze, M.; Ceuterick, M.; Angelstam, P.; Axelsson, R. From economic survival to recreation: Contemporary uses of wild food and medicine in rural Sweden, Ukraine and NW Russia. J. Ethnobiol. Ethnomedic. 2015, 11, 53. [Google Scholar] [CrossRef] [PubMed]
- Delang, C.O. The role of wild food plants in poverty alleviation and biodiversity conservation in tropical countries. Progr. Dev. Stud. 2006, 6, 275–286. [Google Scholar] [CrossRef]
- Sunderland, T.C.H. Food security: Why is biodiversity important? Int. Forest. Rev. 2011, 13, 265–274. [Google Scholar] [CrossRef]
- FAO; IFAD. The State of Food Insecurity in the World 2015. Meeting the 2015 International Hunger Targets: Taking Stock of Uneven Progress; FAO: Rome, Italy, 2015; pp. 1–56. [Google Scholar]
- Pardo-de-Santayana, M.; Tardío, J.; Morales, R. The gathering and consumption of wild edible plants in the Campoo (Cantabria, Spain). Int. J. Food Sci. Nutr. 2005, 56, 529–542. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Species | Family | Plant Part | Bioactive Phytoconstituents | Properties | References |
---|---|---|---|---|---|
Allium ampeloprasum | Liliaceae | bulbs, leaves | specific saponins (ampelosides Bs1, -Bf1, -Bf2, prosapogenin of aginoside, agigenin 3-O-β-glucopyranosyl(1→3)-β-glucopyranosyl(1→4)-β-galactopyranoside, (25R)-26-O-β-glucopyranosyl-22-hydroxy-5α-furostane-2α,3β,6β, 26-tetraol-3-O-β-glucopyranosil-22-hydroxy-5α-furostane-2α,3β,6β, 26-tetraol-3-O-β-glucopyranosyl(1→4)-β-galactopyranoside), allin, alliicin, γ-glutamyl peptides, S-alk(en)yl-l-ysteine sulphoxides (isoalliin, methiin, cycloalliin) α-limonene, β-pinene, 9-octadecanoic acid, hexadecanoic acid, trans-caryophylene, dimethyl-trisulfid, caryophylene oxide, phenolic acids, flavonoids, tannins | antifungal and antibacterial, antioxidant, hypoglycemic and hypolipidemic, against gastrointestinal disorders | [8,9,10,11,12] |
Asparagus acutifolius L. | Asparagaceae | shoots | flavonoids, phenolic acids (caffeic acid, kaempferol, catechol, quercetin, isorhamnetin), carotenoids (lutein, β-carotene, neoxanthin, violaxanthin), steroidal saponins | radical scavenging and antioxidant, diuretic | [13,14,15,16] |
Borago officinalis L. | Boraginaceae | leaves, shoots and roots | mucilage, tannins, saponins, flavonoids allantoin, rosmarinic acid, vitamin C, vitamin B1-B2-B3 | antioxidant and pharmacological | [17,18,19,20] |
Cichorium intybus L. | Asteraceae | leaves | flavonoids, terpenoids, carotenoids, hydroxicinnamic acids (HCA1-HCA2-HCA3-HCA4-HCA5-HCA6-HCA7-HCA8-HCA9-HCA10-HCA11), caffeic acid, caftaric acid, benzoic acid derivate (BAD), chlorogenic acid, some gallic acid derivatives (GAD1-GAD2), flavonols, anthocyanin, some unknown phenolic compounds, coumarins, sesquiterpene lactones, lactucin, lactucopicrin, α-linolenic acid, apigenin, astragalin, betain, tannins, cichoriin, inulin, kaempferol, quercetin, rutin, taraxasterol, vanillic acid, 2 new coumarin glycoside esters (cichoriin-69-p-hydroxyphenylacetate and benzyl-β-glucopyranoside) | antioxidant, antimalarial, digestive, anticancer | [21,22,23,24] |
Diplotaxis tenuifolia (L.) DC. | Brassicaceae | leaves | flavonoids, polyphenols, glucosinolates (desulphoglucosinolates, pentylglucosinolate), glucoraphanin, glucoerucin, diglucothiobeinin, glucosativin, allyl sulphyde, sinapine, diplotaxilene, butylene | antioxidant, anticancer | [25,26,27,28] |
Foeniculum vulgare Mill. | Apiaceae | shoots, leaves, stem, inflorescences | 21 fatty acids (caproic acid, undecanoic acid, myristic acid, myristicoleic acid, capric acid, caprylic acid, lauric acid, pentadecanoic acid, heptadecanoic acid, oleic, linoleic and α-linoleic acid, stearic acid, eicosanoic acid, cis-11,14-eicosadienoic acid, arachidic acid, lignoceric acid), chlorogenic acid, reochlorogenic acid, gallic acid, caffeic acid, ferulic acid-7-O-glucoside, p-cumaric acid, quercetin-7-O-glucoside, dicaffeoylquinic acid, ferulic acid-7-O-glucoside, hesperidin, cinnamic acid, rosmarinic acid, quercetin, apigenin, eriodictyol-7-rutinoside, limonene-10-ol, isorhamnetin-3-O-glucoside, cis-miyabenol, dillapional, exo-fenchyl acetate, quercetin-3-glucoronide, quercetin-3-arabinoside, isoquercetin, kaempferol-3-arabinoside, isoquercetin, kaempferol-3-arabinoside, isorhamnetin glucoside, 3,4-dihydroxyphethylalchohol-6-O-caffeoyl-β-d-glucopyranoside, 3’,8’-binaringenin | antioxidant, hepatic activity, sebum-reducing agent, antimicrobial | [29,30,31,32,33,34] |
Malva sylvestris L. | Malvaceae | flowers | anthocyanins (malvidin), vitamin C, alkaloids, saponins, flavonoids, tannins, phenolic compounds | reduction of coronary heart disease, antioxidant, anticancer, improved visual acuity | [20,24] |
Papaver rhoeas L. | Papaveraceae | leaves, flowers | vitamin C, α-tocopherols, fumaric acid, citric acid, malic acid, tannins flavonoids | measles treatment, anti-nervousness, anti-insomnia, digestive, against respiratory disorders, anti-baldness, against eye infection | [2,35,36] |
Portulaca oleracea L. | Portulacaceae | leaves, stems, roots, seeds | carotenoids, vitamin C, α-tocopherols, specific alkaloids (5-hydroxy-a-p-coumaricacyl-2,3-dihydro-1H-indole-2-carboxylicacid-6-O-β-d-glucopyranoside; 5-hydroxy-1-ferulicacyl-2,3-dihydro-1H-indole-2-carboxylic acid-6-O-β-d-glucopyranoside; 5-hydroxy-1-(p-coumaric acyl-7’-O-β-d-glucopyranose)-2,3-dihydro-1H-indole-2-carboxylicacid-6-O-β-d-glucopyranoside; 5-hydroxy-1-(ferulicacyl-7’-O-β-d-glucopyranose)-2,3-dihydro-1H-indole-2-carboxylicacid-6-O-β-d-glucopyranoside; 8,9-dihydroxy-1,5,6,10b-tetrahydro-2H-pirrolo[2,1-a]isoquinolin-3-one; oleracein A–E; (3R)-3,5-bis(3-methoxy-4-hydroxyphenyl)-2,3-dihydro-2(1H)-pyridinone and 1,5-dimetyl-6-phenyl-1,2-dihydro-1,2,4-triazin3(2H)-one), Oleracone, Oleracin I, Oleracin II (novel alkaloids), other alkaloids (trollisine, aurantiamide acetate, aurantiamide, scopoletin, dopamine, noradrenaline, N-trans.feruloyltyramine), saponines, phenolic acids (3-caffeoylquinic acid, 5-caffeoylquinic acid), coumarins, flavonoids (kaempferol, apigenin, luteolin, myricetin, quercetin), 4 homoisoflavonoids (portulacanones A–D), tannins, terpenoids (Portuloside A-B, portulene, lupeol; (3S)-3-O-(β-d-glucopyranosil-3,7-dimethylocta-1,6-dien-3-ol; (3S)-3-O-(β-d-glucopyranosil)-3,7-dimethylocta-1,5-dien-3,7-diol; (2α,3α)-3-{[4-O-(β-d-glucopyranosyl)- β-d-xylopyranosyl}-2,23-dihydroxy-30-methoxy-30-oxoolean-12-en-28-oic acid; (2α,3α)-2,23,30-trihydroxy-3-[β-d-xylopyranosil)oxy]olean-12-en-28-oic acid; friedelane), organic acids (α-linolenic acid, palmitic acid, linolenic acid), portulacerebroside A, melatonin | food coloring agents, antioxidant and radical scavenging, anti-inflammatory, analgesic, antifungal, antibacterial, antiscorbutic, depurative, diuretic and febrifuge. Fresh juice is used in the treatment of strangury, coughs, sores. Both leaves and plant juice are effective in the treatment of skin diseases and insect stings. The infusion of leaves is used against stomach aches and headaches | [37,38,39,40,41,42,43,44] |
Rumex acetosa L. | Polygonaceae | leaves and shoots | 6-methyl-1,3,8-trichlorodibenzofuran, chrysophanol, physcion/parietin, emodin-8-O-β-d-glucopiranoside, naphthalene-1,8-diol, catechin/epicatechin, epicatechina-3-O-gallate, vitexine, vanillic acid, sinapic acid, procyanidin B2 3'-O-gallate, pulmatin, gallocatechin/epigallocatechin, procianidin B2, geraniin, corilagin, ellagic acid, rosmarinic acid, pyrogallol | anti-mutagenic and anti-proliferative activities | [45,46,47,48] |
Sanguisorba minor Scop. | Rosaceae | leaves | linalool, nonanal, dodecane, tridecane, α-damascenone, tetradecane, β-caryophyllene, hexadecane, heptadecane, octadecane, (E-E)-farnesyl acetate, nonadecane, eicosane, heneicosane, docosane, β-sitosterol, caffeic acid, kaempferol, quercetin | digestive properties, antioxidant, astringency, carminative, diuretic | [16,49,50,51,52] |
Silene vulgaris (Moench) Garcke | Caryophyllaceae | leaves | linoleinc and α-linolenic acids, vitamin C, silenan SV, vitamin E, quinic acid, malic acid, trans-aconitic acid, chlorogenic acid, protocatechuic acid, p-coumaric acid, hesperidin, rutin, hyperoside | antifungal, anti-enzymatic, antimicrobial and antioxidant, immunomodulatory | [7,53,54] |
Sinapis arvensis L. | Brassicaceae | essential oils, flowers and leaves | monoterpenes, sesquiterpenes, nitriles aldehydes, sulphur-containing compounds benzylisothiocyanate, cubenol, dimethyltrisulfide, 6,10,14-trimethylpentadecane-2-one, indole, 1-butenylisoithiocyanate, thymol, octadecane, spathulenal, hexadecane, 1-epi-cubenol, octadecanol 2-phenilisothiocyanate, δ-cadinene, 9-methylthiononanonitrile, nonadecane, octadecanal, flavonoids (low amount), alkaloids, saponins | tonic, diuretic, expectorant, febrifuge, stomachic, antiscorbutic, antioxidant, spices | [55,56] |
Taraxacum officinale Web. | Asteraceae | flowers, roots, stems and leaves | tetrahydroridentine B7, taraxacolide-1-O-β-d-glucopyranoside, taraxeryl acetate/taraxerol acetate, taraxic acid, taraxacoside, taraxasterin/taraxasterol/taraxol/β-amirin, taraxafolide, 4,13,11,15-tetrahydroredentine, 11β,13-di-hydrolattucine, ixerin D, arnidiol/faradiol, dihydroconiferine, sitosterol, stigmasterol, apigenin-7-glucoside, luteolin-7-glucoside, luteolin 7-O-rutinoside, quercetin 7-O-glucoside, taraxastane carotenoids, saponins, alkaloids, flavonoids 4 anthocyanins: cyanidin-3-glucoside, cyanidin-3-(6-malonyl)-glucoside A-1; cyanidin-3-(6-malonyl)-glucoside A-2), peonidin-3-(malonyl) glucoside, cicoric acid, sinapic acid, caffeic acid, ferulic acid, p-hydroxyphenylacetic acid, chlorogenic acid, p-cumaric acid | analgesic, antirheumatic, cholagogue, diuretic, laxative, hypocholesterole eupeptic, digestive, antioxidant | [16,57,58,59,60,61] |
Urtica dioica L. | Urticaceae | leaves and young sprouts | carotenoids (lutein and β-carotene), anthocyanins, hydroxycinnamic acid derivates (chlorogenic acid, dihydrosinapoyl alcohol) vitamin C, flavonoids, lignans | antioxidant, against stomach ache, against rheumatic pain, against colds and cough, against liver insufficiency and hypertensive, anti-inflammatory and diuretic | [62,63,64,65] |
Species. | Edible Part | Traditional Recipes | References |
---|---|---|---|
Allium ampeloprasum | leaves and bulbs | mixture of salads, omelet, boiled vegetables, soup | [66] |
Asparagus acutifolius | young shoots | boiled with oil and vinegar, omelet, risotto, soup | [66] |
Borago officinalis | tender rosette | boiled with olive oil, salt, lemon and vinegar; stewed, omelet, soup, home-made pie | [67,68,69] |
Cichorium intybus | tender leaves | fresh salads, in pan with olive oil and garlic, pies, ravioli, soup | [66] |
Diplotaxis tenuifolia | fresh leaves | mixed salads, pies, pasta, omelet, cheeses, pizza | [70] |
Foeniculum vulgare | fruits, seeds, leaves | salads, snacks, boiled, grilled, stewed vegetables, bread, soup | [29,66] |
Malva sylvestris | fresh leaves | ravioli, omelet, meatball, soup | [66] |
Papaver rhoeas | basal rosette leaves | salads, ravioli, bread, soup | [66] |
Portulaca oleracea | leaves | salads | [71] |
Rumex acetosa | young leaves, stems | salads, fried, sautéed with butter and lard, pies, raw snacks | [72] |
Sanguisorba minor | young leaves | salads, boiled vegetables, soup and pureed soup | [66] |
Silene vulgaris | old leaves | salads, boiled, fried, sautéed with garlic, omelet | [73] |
Sinapis arvensis | leaves | spice as mustard | [67] |
Taraxacum officinale | basal leaves | salad, in pan with olive oil and garlic, ravioli, soup, pie | [66] |
Urtica dioica | leaves, young sprouts | risotto, pie, ravioli, boiled, cooked in pan with olive oil and lemon, omelet, soup and pasta | [66] |
Species | Toxic Compounds | Concentration | References |
---|---|---|---|
Allium ampeloprasum. | oxalic acid | 11.13 ± 0.48 and 6.32 ± 0.65 mg/100·g (two different populations) | [76] |
Borago officinalis | pyrrolizidine alkaloid: amabiline, thesinine, intermedine, and lycopsamine | n.d. 3 | [52,74] |
Cichorium intybus | nitrate | 75 mg kg−1 FW 1 | [77] |
oxalic acid | 8.68 ± 0.05 and 3.00 ± 0.71 mg/100 g (two different populations) | [76] | |
Diplotaxis tenuifolia | nitrate | 3874 mg kg−1 FW 1 | [77] |
Foeniculum vulgare | phenylpropanoids: trans-anethole and estragole | 2.3–4.9% (aerial parts) | [74] |
phenylpropanoid: estragole | 0.8 – > 80% | [74] | |
phenylpropanoid: estragole | from 11.9 to 56.1% in unripe seeds to 61.8% in ripe seed | [74] | |
oxalic acid | 123.82 ± 8.75 and 402.83 ± 21.87 mg/100 g (two different populations) | [76] | |
Papaver rhoeas | nitrate | >2.500 mg·kg−1 FW 1 | [70] |
oxalic acid | 490.00 ± 27.05 and 428.65 ± 63.63 mg/100 g (two different populations) | [76] | |
Portulaca oleracea | nitrate | 48.98 (leaf) and 43.90 mg g−1 (steam) DW 2 | [78] |
oxalic acid | 1.27 (leaf) and 0.55 mg g−1 (steam) DW 2 | [78] | |
Rumex acetosa | oxalates and hydroxyanthracene derivatives: chrysophanol, physcion, emodin, aloe-emodin, rhein, barbaloin (aloin A and B), and sennosides A and B | n.d. 3 | [74] |
Silene vulgaris | triterpenoid saponins | n.d. 3 | [74] |
silenosides A, B | n.d.3 | [76] | |
and C oxalic acid | 201.79 ± 15.98 and 218.73 ± 17.56 mg/100 g (two different populations) | ||
Sinapis arvensis | nitrate | 3028 mg kg−1 FW 1 | [77] |
Taraxacum officinale | sesquiterpene lactone taraxinic acid β-glucopyranosyl ester | n.d. 3 . | [61] |
Urtica dioica | nitrate | 849–1631 mg kg−1 FW 1 | [79] |
Germination (%) | Mean Germination Time (Days) | |||
---|---|---|---|---|
Species | Light | Dark | Light | Dark |
Portulaca oleracea | 64 ± 8 c | 51 ± 2 c | 3.3 ± 0.3 d | 3.7 ± 0.7 bc |
Rumex acetosa | 96 ± 4 a | 92 ± 1 a | 3.5 ± 0.4 cd | 3.5 ± 0.2 c |
Sanguisorba minor | 97 ± 5 a | 99 ± 2 a | 3.7 ± 0.2 cd | 3.9 ± 0.3 bc |
Silene vulgaris | 79 ± 6 ab | 76 ± 8 b | 5.3 ± 0.6 b | 5.0 ± 0.8 b |
Taraxacum officinale | 59 ± 5 c | 45 ± 6 c | 4.3 ± 0.4 c | 4.4 ± 0.6 bc |
Urtica dioica | 11 ± 2 d | 9 ± 6 d | 7.8 ± 1.0 a | 8.5 ± 1.5 a |
Eruca sativa (data of [81]) | 88 ± 6 a | n.d.1 | n.d.1 | n.d. 1 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ceccanti, C.; Landi, M.; Benvenuti, S.; Pardossi, A.; Guidi, L. Mediterranean Wild Edible Plants: Weeds or “New Functional Crops”? Molecules 2018, 23, 2299. https://doi.org/10.3390/molecules23092299
Ceccanti C, Landi M, Benvenuti S, Pardossi A, Guidi L. Mediterranean Wild Edible Plants: Weeds or “New Functional Crops”? Molecules. 2018; 23(9):2299. https://doi.org/10.3390/molecules23092299
Chicago/Turabian StyleCeccanti, Costanza, Marco Landi, Stefano Benvenuti, Alberto Pardossi, and Lucia Guidi. 2018. "Mediterranean Wild Edible Plants: Weeds or “New Functional Crops”?" Molecules 23, no. 9: 2299. https://doi.org/10.3390/molecules23092299
APA StyleCeccanti, C., Landi, M., Benvenuti, S., Pardossi, A., & Guidi, L. (2018). Mediterranean Wild Edible Plants: Weeds or “New Functional Crops”? Molecules, 23(9), 2299. https://doi.org/10.3390/molecules23092299