Abelmoschus esculentus (L.): Bioactive Components’ Beneficial Properties—Focused on Antidiabetic Role—For Sustainable Health Applications
Abstract
:1. A Mini Overview of Okra Abelmoschus esculentus (L.) Features
2. Biologically Active Components in Okra: Study Approach and Current and Innovative Directions
2.1. Main Plant Compounds and Their Interactions Assessment
2.2. Integrated Research, Emerging Technologies, and Chemometrics
3. An Updated Overview of Potential Beneficial Effects Associated to Okra: Focus on Antidiabetic Properties
Evidences of Current Research
4. Use and Applications of Okra
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Carney, J.; Richard, N.R. The Shadow of Slavery: African’s Botanical Legacy in the Atlantic World; University of Califonia Press: Berkeley, CA, USA, 2009. [Google Scholar]
- Kumar, D.S.; Tony, D.E.; Kumar, A.P.; Kumar, K.A.; Rao, D.B.S.; Nadendla, R. A review on: Abelmoschus Esculentus (okra). Int. Res. J. Pharm. App. Sci. 2013, 3, 129–132. [Google Scholar]
- Dhaliwal, M.S. Okrra (Abelmoschus esculentus) L (Moench). In Handbook of Vegetable Crops, 3rd ed.; Kalyani Publishers: New Delhi, India, 2010. [Google Scholar]
- Ndunguru, J.; Rajabu, A. Effect of okra mosaic virus disease on the above-ground morphological yield components of okra in Tanzania. Sci. Hortic. 2004, 99, 225–235. [Google Scholar] [CrossRef]
- Naveed, A.; Khan, A.A.; Khan, I.A. Generation mean analysis of water stress tolerance in okra (Abelmoschus esculentus L.). Pak. J. Bot. 2009, 41, 195–205. [Google Scholar]
- Saifullah, M.; Rabbani, M.G. Evaluation and characterization of okra (Abelmoschus esculentus L. Moench.) genotypes. SAARC J. Agric. 2009, 7, 92–99. [Google Scholar]
- Tripathi, K.K.; Warrier, R.; Govila, O.P.; Ahuja, V. Biology of Abelmoschus esculentus L. (okra). Series of Crop Specific Biology Documents. Ministry of Environment and Forests Government of India: New Delhi, India, 2011. [Google Scholar]
- BeMiller, J.N.; Whistler, R.L.; Barkalow, D.G.; Chen, C.-C. Chapter 9—Aloe, chia, flaxseed, okra, psyllium seed, quince seed, and tamarind gums. In Industrial Gums, 3rd ed.; Whistler, R.L., BeMiller, J.N., Eds.; Academic Press: New York, NY, USA, 1993; pp. 227–256. [Google Scholar]
- Sengkhamparn, N.; Sagis, L.M.C.; De Vries, R.; Schols, H.A.; Sajjaanantakul, T.; Voragen, A.G.J. Physicochemical properties of pectins from okra (Abelmoschus esculentus (L.) Moench). Food. Hydrocoll. 2010, 24, 35–41. [Google Scholar] [CrossRef]
- Costantino, A.J.; Romanchik-Cerpovicz, J.E. Physical and sensory measures indicate moderate fat replacement in frozen dairy dessert is feasible using okra gum as a milk-fat ingredient substitute. J. Am. Diet. Assoc. 2004, 104, 44. [Google Scholar] [CrossRef]
- Romanchik Cerpovicz, J.E.; Costantino, A.C.; Gunn, L.H. Sensory evaluation ratings and melting characteristics show that okra gum is an acceptable milk-fat ingredient substitute in chocolate frozen dairy dessert. J. Am. Diet. Assoc. 2006, 106, 594–597. [Google Scholar] [CrossRef]
- Archana, G.; Azhagu Saravana, P.; Babu, K.; Sudharsan, K.; Sabina, R.; Palpandi Raja, M.; Sukumar Sivarajan, M. Evaluation of fat uptake of polysaccharide coatings on deep-fat fried potato chips by confocal laser scanning microscopy. Int. J. Food Prop. 2015, 19, 1583–1592. [Google Scholar] [CrossRef]
- Hu, S.-M.; Lai, H.-S. Developing low-fat banana bread by using okra gum as a fat replacer. J. Culin. Sci. Technol. 2016, 15, 36–42. [Google Scholar] [CrossRef]
- Yuennan, P.; Sajjaanantakul, T.; Goff, H.D. Effect of okra cell wall and polysaccharide on physical properties and stability of ice cream. J. Food Sci. 2014, 79, E1522–E1527. [Google Scholar] [CrossRef]
- Moyin-Jesu, E.I. Use of plant residues for improving soil fertility, pod nutrients, root growth and pod weight of Okra (Abelmoschus esculentus). Biores. Tech. 2007, 98, 2057–2064. [Google Scholar] [CrossRef] [PubMed]
- Habtamu, F.; Ratta, N.; Haki, G.D.; Woldegiorgis, A.Z.; Beyene, F. Nutritional quality and health benefits of okra (Abelmoschus esculentus): A review. J. Food Sci. Qual. Manag. 2014, 33, 87–96. [Google Scholar]
- Mihretu, Y.; Wayessa, G.; Adugna, D. Multivariate Analysis among Okra (Abelmoschus esculentus (L.) Moench) Collection in South Western Ethiopia. J. Plant Sci. 2014, 9, 43–50. [Google Scholar]
- Maganha, E.G.; Halmenschlager, R.C.; Rosa, R.M.; Henriques, J.A.P.; Ramos, A.L.P.; Saffi, J. Pharmacological evidences for the extracts and secondary metabolites from plants of the genus Hibiscus. Food Chem. 2010, 118, 1–10. [Google Scholar] [CrossRef]
- Benchasr, S. Okra (Abelmoschusesculentus (L.) Moench) as a valuable vegetable of the World. Ratar. Povrt. 2012, 49, 105–112. [Google Scholar]
- Messing, J.; Thole, C.; Niehues, M.; Shevtsova, A.; Glocker, E.; Boren, T.; Hensel, A. Antiadhesive properties of Abelmoschus esculentus (Okra) immature fruit extract against Helicobacter pylori adhesion. PLoS ONE 2014, 9, e84836. [Google Scholar] [CrossRef] [PubMed]
- Roy, A.; Shrivastava, S.L.; Mandal, S.M. Functional properties of Okra Abelmoschus esculentus L. (Moench): Traditional claims and scientific evidences. Plant. Sci. Today 2014, 1, 121–130. [Google Scholar] [CrossRef]
- Jain, N.; Jain, R.; Jain, V.; Jain, S.A. Review on: Abelmoschusesculentus. Pharmacia 2012, 1, 84–89. [Google Scholar]
- Gemede, H.F.; Haki, G.D.; Beyene, F.; Woldegiorgis, A.Z.; Rakshit, S.K. Proximate, mineral, and antinutrient compositions of indigenous Okra (Abelmoschus esculentus) pod accessions: Implications for mineral bioavailability. Food Sci. Nutr. 2015, 4, 223–233. [Google Scholar] [CrossRef]
- Petropoulos, S.; Fernandes, Â.; Barros, L.; Ferreira, I.C.F.R. Chemical composition, nutritional value and antioxidant properties of Mediterranean okra genotypes in relation to harvest stage. Food Chem. 2018, 242, 466–474. [Google Scholar] [CrossRef] [Green Version]
- Arapitsas, P. Identification and quantification of polyphenolic compounds from okra seeds and skins. Food Chem. 2008, 110, 1041–1045. [Google Scholar] [CrossRef] [PubMed]
- Adelakun, O.E.; Oyelade, O.J.; Ade-Omowaye, B.I.O.; Adeyemi, I.A.; Van de Venter, M. Chemical composition and the antioxidative properties of Nigerian Okra Seed (Abelmoschus esculentus Moench) Flour. Food Chem. Toxicol. 2009, 47, 1123–1126. [Google Scholar] [CrossRef]
- Adelakun, O.E.; Oyelade, O.J. Chemical and Antioxidant Properties of Okra (Abelmoschus esculentus Moench) Seed. In Nuts and Seeds in Health and Disease Prevention; Preedy, V.R., Watson, R.R., Patel, V.B., Eds.; Academic Press: Cambridge, MA, USA, 2011; pp. 841–846. [Google Scholar]
- Jarret, R.L.; Wang, M.L.; Levy, I.J. Seed oil and fatty acid content in okra (Abelmoschus esculentus) and related species. J. Agric. Food Chem. 2011, 59, 4019–4024. [Google Scholar] [CrossRef] [PubMed]
- Dong, Z.; Zhang, J.-G.; Tian, K.-W.; Pan, W.-J.; Wei, Z.-J. The fatty oil from okra seed: Supercritical carbon dioxide extraction, composition and antioxidant activity. Curr. Top. Nutr. Res. 2014, 12, 75–84. [Google Scholar]
- Hu, L.; Yu, W.; Li, Y.; Prasad, N.; Tang, Z. Antioxidant activity of extract and its major constituents from okra seed on rat hepatocytes injured by carbon tetrachloride. Biomed. Res. Int. 2014, 2014, 341291. [Google Scholar] [CrossRef] [PubMed]
- Steyn, N.P.; McHiza, Z.; Hill, J.; Davids, Y.D.; Venter, I.; Hinrichsen, E.; Opperman, M.; Rumbelow, J.; Jacobs, P. Nutritional contribution of street foods to the diet of people in developing countries: A systematic review. Public Health Nutr. 2014, 17, 1363–1367. [Google Scholar] [CrossRef] [PubMed]
- Wei, C.; Yang, X.; Wang, D.; Fang, F.; Lai, J.; Wang, F.; Wu, T. Fatty acid composition and evaluation on antioxidation activities of okra seed oil under ultrasonic wave extraction. J. Chin. Cereals Oils Assoc. 2016, 31, 89–93. [Google Scholar]
- Sunilson, J.A.J.; Jayaraj, P.; Mohan, M.S.; Kumari, A.A.G.; Varatharajan, R. Antioxidant and hepatoprotective effect of the roots of Hibiscus esculentus Linn. Int. J. Green Pharm. 2008, 2, 200–203. [Google Scholar] [CrossRef]
- Idris, S.; Yisa, J.; Itodo, A. Proximate and mineral composition of the leaves of Abelmoschusesculentus. Int. J. Trop. Agric. Food Sys. 2009, 3, 50037. [Google Scholar]
- Caluete, M.E.E.; De Souza, L.M.P.; Dos Santos Ferreira, E.; De Franca, A.P.; De Akneuda Gadelha, C.A.; De Souza Aquino, J.; Santi-Gadelha, T. Nutritional, antinutritional, phytochemical status of okra leaves (Abelmoschus esculentus) subjected to different processes. Afr. J. Biotechnol. 2014, 14, 683–687. [Google Scholar]
- Liao, H.; Dong, W.; Shi, X.; Liu, H.; Yuan, K. Analysis and comparison of the active components and antioxidant activities of extracts from Abelmoschus esculentus L. Pharmacogn. Mag. 2012, 8, 156–161. [Google Scholar] [CrossRef] [PubMed]
- Fan, S.; Zhang, Y.; Sun, Q.; Yu, L.; Li, M.; Zheng, B.; Wu, X.; Yang, B.; Li, Y.; Huang, C. Extract of okra lowers blood glucose and serum lipids in high-fat diet-induced obese C57BL/6 mice. J. Nutr. Biochem. 2014, 25, 702–709. [Google Scholar] [CrossRef]
- Ying, H.; Jiang, H.; Liu, H.; Chen, F.; Du, Q. Ethyl acetate-n-butanol gradient solvent system for high-speed countercurrent chromatography to screen bioactive substances in okra. J. Chromatogr. A 2014, 1359, 117–123. [Google Scholar] [CrossRef] [PubMed]
- Adetuyi, F.O.; Ibrahim, T.A. Effect of fermentation time on the phenolic, flavonoid and vitamin C contents and antioxidant activities of okra (Abelmoschus esculentus) seeds. Niger. Food J. 2014, 32, 128–137. [Google Scholar] [CrossRef]
- Ahmed, B.T.; Kumar, S.A. Antioxidant and antidiabetic properties of Abelmoschus esculentus extract—An in vitro assay. Res. J. Biotechnol. 2016, 11, 34–41. [Google Scholar]
- Tian, Z.H.; Miao, F.T.; Zhang, X.; Wang, Q.H.; Lei, N.; Guo, L.C. Therapeutic effect of okra extract on gestational diabetes mellitus rats induced by streptozotocin. Asian Pac. J. Trop. Med. 2015, 8, 1038–1042. [Google Scholar] [CrossRef] [PubMed]
- Durazzo, A. Study Approach of Antioxidant Properties in Foods: Update and Considerations. Foods 2017, 6, 17. [Google Scholar] [CrossRef]
- Durazzo, A.; Lucarini, M. A current shot and re-thinking of antioxidant research strategy. Braz. J. Anal. Chem. 2017, in press. [Google Scholar]
- Heo, H.; Kim, Y.; Chung, D.; Kim, D. Antioxidant capacities of individual and combined phenolics in a model system. Food Chem. 2007, 104, 87–92. [Google Scholar] [CrossRef]
- Tabart, J.; Kevers, C.; Pincemail, J.; Defraigne, J.O.; Dommes, J. Comparative antioxidant capacities of phenolic compounds measured by various tests. Food Chem. 2009, 113, 1226–1233. [Google Scholar] [CrossRef]
- Reber, J.D.; Eggett, D.L.; Parker, T.L. Antioxidant capacity interactions and a chemical/structural model of phenolic compounds found in strawberries. Int. J. Food Sci. Nutr. 2011, 62, 445–452. [Google Scholar] [CrossRef] [PubMed]
- Durazzo, A.; Turfani, V.; Azzini, E.; Maiani, G.; Carcea, M. Phenols, lignans and antioxidant properties of legume and sweet chestnut flours. Food Chem. 2013, 140, 666–671. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Jiménez, J.; Torres, J.L. Analysis of non-extractable phenolic compounds in foods: The current state of the art. J. Agric. Food Chem. 2011, 59, 12713–12724. [Google Scholar] [CrossRef] [PubMed]
- Saura-Calixto, F. Concept and health-related properties of non- extractable polyphenols: The missing dietary polyphenols. J. Agric. Food Chem. 2012, 60, 11195–11200. [Google Scholar] [CrossRef] [PubMed]
- Durazzo, A. Extractable and non-extractable polyphenols: An overview. In Non-Extractable Polyphenols and Carotenoids: Importance in Human Nutrition and Health. Food Chemistry, Function and Analysis Series; Saura-Calixto, F., Pérez-Jiménez, J., Eds.; Royal Society of Chemistry: London, UK, 2018; ISBN 2398-0656. [Google Scholar]
- Durazzo, A.; Turfani, V.; Narducci, V.; Azzini, E.; Maiani, G.; Carcea, M. Nutritional characterisation and bioactive components of commercial carobs flours. Food Chem. 2014, 153, 109–113. [Google Scholar] [CrossRef] [PubMed]
- Diaconeasa, Z.; Leopold, L.; Rugină, D.; Ayvaz, H.; Socaciu, C. Antiproliferative and Antioxidant Properties of Anthocyanin Rich Extracts from Blueberry and Blackcurrant Juice. Int. J. Mol. Sci. 2015, 16, 2352–2365. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Panadda, K.; Walairorn, T.; Noppakun, P.; Maitree, S.; Piyanete, C. Antioxidative activities and phenolic content of extracts from Okra (Abelmoschus esculentus L.). Res. J. Biol. Sci. 2010, 5, 310–313. [Google Scholar]
- Geng, S.; Liu, Y.; Ma, H.; Chen, C. Extraction and antioxidant activity of phenolic compounds from okra flowers. Trop. J. Pharm. Res. 2015, 14, 807–814. [Google Scholar] [CrossRef]
- Graham, J.O.; Agbenorhevi, J.K.; Kpodo, F.M. Total phenol content and antioxidant activity of okra seeds from different genotypes. Am. J. Food Nutr. 2017, 5, 90–94. [Google Scholar] [CrossRef]
- Ukalskiene, M.; Slapšytè, G.; Dedonyte, V.; Lazutka, J.R.; Mierauskiene, J.; Venskutonis, P.R. Genotoxicity and antioxidant activity of five Agrimonia and Filipendula species plant extracts evaluated by comet and micronucleus assays in human lymphocytes and Ames Salmonella/microsome test. Food Chem. Toxicol. 2018, 113, 303–313. [Google Scholar] [CrossRef]
- Doreddula, S.K.; Bonam, S.R.; Gaddam, D.P.; Rao Desu, B.S.; Ramarao, N.; Pandy, V. Phytochemical analysis, antioxidant, antistress, and nootropic activities of aqueous and methanolic seed extracts of ladies finger (Abelmoschus esculentus L.) in mice. Sci. World J. 2014, 2014, 519848. [Google Scholar] [CrossRef] [PubMed]
- Xia, F.; Li, C.; Zhao, N.; Li, H.; Chang, Q.; Liu, X.; Liao, Y.; Pan, R. Rapid determination of active compounds and antioxidant activity of okra seeds using Fourier Transform Near Infrared (FT-NIR) spectroscopy. Molecules 2018, 23, 550. [Google Scholar] [CrossRef]
- Zhang, J.; Feng, X.; Liu, X.; He, Y. Identification of hybrid okra seeds based on Near-Infrared h imaging technology. Appl. Sci. 2018, 8, 1793. [Google Scholar] [CrossRef]
- Wang, K.; Li, M.; Wen, X.; Chen, X.; He, Z.; Ni, Y. Optimization of ultrasound-assisted extraction of okra (Abelmoschus esculentus (L.) Moench) polysaccharides based on response surface methodology and antioxidant activity. Int. J. Biol. Macromol. 2018, 114, 1056–1063. [Google Scholar] [CrossRef] [PubMed]
- Pande, N.; Jaspal, D.K.; Ambekar, J.; Jayachandran, V.P. Ecofriendly synthesis and applications of silver nanoparticles. J. Chem. Pharm. Res. 2014, 6, 403–410. [Google Scholar]
- De Alvarenga Pinto Cotrim, M.; Mottin, A.C.; Ayres, E. Preparation and characterization of okra mucilage (Abelmoschus esculentus) edible films. Macromol. Symp. 2016, 367, 90–100. [Google Scholar] [CrossRef]
- Araújo, A.; Galvão, A.; Filho, C.S.; Mendes, F.; Oliveira, M.; Barbosa, F.; Filho, M.S.; Bastos, M. Okra mucilage and corn starch bio-based film to be applied in food. Polym. Test. 2018, 71, 352–361. [Google Scholar] [CrossRef]
- Vayssade, M.; Sengkhamparn, N.; Verhoef, R.; Delaigue, C.; Goundiam, O.; Vigneron, P.; Voragen, A.G.J.; Schols, H.A.; Nagel, M.D. Antiproliferative and proapoptotic actions of okra pectin on B16F10 melanoma cells. Phytother. Res. 2010, 24, 982–989. [Google Scholar] [CrossRef] [PubMed]
- Hossen, M.A.; Jahan, I.; Mamun, M.A.M.; Sakir, J.A.M.S.; Shamimuzzaman, M.; Uddi, M.J.; Haque, M.E. CNS depressant and analgesic activities of Okra (Abelmoschus esculentus Linn.). Mol. Clin. Pharmacol. 2013, 4, 44–52. [Google Scholar]
- Monte, L.G.; Santi-Gadelha, T.; Reis, L.B.; Braganhol, E.; Prietsch, R.F.; Dellagostin, O.A.; E Lacerda, R.R.; Gadelha, C.A.; Conceição, F.R.; Pinto, L.S. Lectin of Abelmoschusesculentus (okra) promotes selective antitumor effects in human breast cancer cells. Biotechnol. Lett. 2014, 36, 461–469. [Google Scholar] [CrossRef]
- Shammi, S.J.; Islam, R.; Zaman, A.U.; Majumder, R.; Alam, B. Comparative pharmacological studies of Abelmoschuse sculentus Linn. fruits and seeds. Glob. J. Pharmacol. 2014, 8, 98–106. [Google Scholar]
- Xia, F.; Zhong, Y.; Li, M.; Chang, Q.; Liao, Y.; Liu, X.; Pan, R. Antioxidant and anti-fatigue constituents of okra. Nutrients 2015, 7, 8846–8858. [Google Scholar] [CrossRef] [PubMed]
- Mairuae, N.; Connor, J.R.; Lee, S.Y.; Cheepsunthorn, P.; Tongjaroenbuangam, W. The effects of okra (Abelmoschus esculentus Linn.) on the cellular events associated with Alzheimer’s disease in a stably expressed HFE neuroblastoma SH-SY5Y cell line. Neurosci. Lett. 2015, 603, 6–11. [Google Scholar] [CrossRef] [PubMed]
- Solomon, S.; Muruganantham, N.; Senthamilselvi, M. Anticancer activity of Abelmoschus esculentus (flower) against human liver cancer. Int. J. Pharmacol. Biol. Sci. 2016, 6, 154–157. [Google Scholar] [CrossRef]
- Kuruwita Arachchige, S.V.; Uluwaduge, D.I.; Premakumara, S.; Wijayabandara, J. Cardio protective activity of Abelmoschus esculentus (Okra). Int. J. Food Sci. Nutr. 2018, 3, 39–43. [Google Scholar]
- Islam, M.T. Phytochemical information and pharmacological activities of Okra (Abelmoschus esculentus): A literature-based review. Phytother Res. 2018. [Google Scholar] [CrossRef]
- Islam, S.; Chand Debnath, K.; Shaon, F.T.U.; Das, M.; Hasan, M.F. The role of active constituents of Abelmoschus esculentus (okra) on tumor biology: A review. Int. J. Sci. Res. Methodol. 2018, 10, 111–116. [Google Scholar]
- World Health Organization. Diabetes facts. 2016. Available online: http://www.who.int/mediacentre/factsheets/fs312/en/index.html (accessed on 15 December 2018).
- Dubey, P.; Mishra, S. A review on: Diabetes and okra (Abelmoschus esculentus). J. Med. Plants Stud. 2017, 5, 23–26. [Google Scholar]
- Sabitha, V.; Ramachandran, S.; Naveen, K.R.; Panneerselvam, K. Antidiabetic and antihyperlipidemic potential of Abelmoschus esculentus (L.) Moench. in streptozotocin-induced diabetic rats. J. Pharm. Bioallied Sci. 2011, 3, 397–402. [Google Scholar]
- Sabitha, V.; Panneerselvam, K.; Ramachandran, S. In vitro α–glucosidase and α–amylase enzyme inhibitory effects in aqueous extracts of Abelmoscus esculentus(L.) Moench. Asian Pac. J. Trop. Biomed. 2012, 2, S162–S164. [Google Scholar] [CrossRef]
- Khosrozadeh, M.; Heydari, N.; Heydari, N. The Effect of Abelmoschus esculentus on blood levels of glucose in diabetes mellitus. Iran. J. Med. Sci. 2016, 41, S63. [Google Scholar] [PubMed]
- Sengkhamparn, N.; Bakx, E.J.; Verhoef, R.; Schols, H.A.; Sajjaanantakul, T.; Voragen, A.G. Okra pectin contains an unusual substitution of its rhamnosyl residues with acetyl and alpha-linked galactosyl groups. Carbohydr. Res. 2009, 334, 1842–1851. [Google Scholar] [CrossRef] [PubMed]
- Kpodo, F.M.; Agbenorhevi, J.K.; Alba, K.; Bingham, R.J.; Oduro, I.N.; Morris, G.A.; Kontogiorgos, V. Pectin isolation and characterization from six okra genotypes. Food Hydrocoll. 2017, 72, 323–330. [Google Scholar] [CrossRef]
- Xu, K.; Guo, M.; Du, J. Molecular characteristics and rheological properties of water-extractable polysaccharides derived from okra (Abelmoschus esculentus L.). Int. J. Food Prop. 2017, 20, S899–S909. [Google Scholar] [CrossRef]
- Liu, J.; Zhao, Y.; Wu, Q.; John, A.; Jiang, Y.; Yang, J.; Liu, H.; Yanga, B. Structure characterisation of polysaccharides in vegetable “okra” and evaluation of hypoglycemic activity. Food Chem. 2018, 242, 211–216. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Jiao, H.; Cheng, Y.; Xu, K.; Jia, X.; Shi, Q.; Guo, S.; Wang, M.; Du, L.; Wang, F. In vitro and in vivo immunomodulatory activity of okra (Abelmoschus esculentus L.) polysaccharides. J. Med. Food 2016, 19, 253–265. [Google Scholar] [CrossRef] [PubMed]
- Ilango, K.B.; Mishra, M.; Devi, S.; Rajsekaran, A.; Senthil kumar, M.; Subburaju, T. In vitro and in vivo evaluation of okra polysaccharide-based colon-targeted drug delivery systems. Int. J. Pharm. Sci. Rev. Res. 2010, 5, 138–145. [Google Scholar]
- Sheu, S.C.; Lai, M.H. Composition analysis and immuno-modulatory effect of okra (Abelmoschus esculentus L.) extract. Food Chem. 2012, 134, 196–1911. [Google Scholar] [CrossRef]
- Thöle, C.; Brandt, S.; Ahmed, N.; Hensel, A. Acetylated rhamnogalacturonans from immature fruits of Abelmoschusesculentus inhibit the adhesion of Helicobacter pylori to human gastric cells by interaction with outer membrane proteins. Molecules 2015, 20, 16770–16787. [Google Scholar] [CrossRef]
- Gao, H.; Zhang, W.; Wu, Z.; Wang, H.; Hui, A.; Meng, L.; Chen, P.; Xian, Z.; He, Y.; Li, H.; et al. Preparation, characterization and improvement in intestinal function of polysaccharide fractions from okra. J. Funct. Foods 2018, 50, 147–157. [Google Scholar] [CrossRef]
- Wahyuningsih, S.P.A.; Pramudya, M.; Putri, I.P.; Winarni, D.; Savira, N.I.I.; Darmanto, W. Crude polysaccharides from okra pods (Abelmoschus esculentus) grown in Indonesia enhance the immune response due to bacterial infection. Adv. Pharmacol. Sci. 2018, 2018, 8505383. [Google Scholar] [CrossRef] [PubMed]
- Peng, C.H.; Chyau, C.C.; Wang, C.J.; Lin, H.T.; Huang, C.N.; Ker, Y.B. Abelmoschus esculentus fractions potently inhibited the pathogenic targets associated with diabetic renal epithelial to mesenchymal transition. Food Funct. 2016, 7, 728–740. [Google Scholar] [CrossRef] [PubMed]
- Thanakosai, W.; Phuwapraisirisan, P. First identification of α-glucosidase inhibitors from okra (Abelmoschus esculentus) seeds. Nat. Prod. Commun. 2013, 8, 1085–1088. [Google Scholar] [PubMed]
- Anjani, P.P.; Damayanthi, E.; Rimbawan, R.; Handharyani, E. Potential of okra (Abelmoschus esculentus L.) extract to reduce blood glucose and malondialdehyde (MDA) liver in streptozotocin-induced diabetic rats. J. Gizi. Pangan. 2018, 13, 47–54. [Google Scholar]
- Shui, G.; Peng, L.L. An improved method for the analysis of major antioxidants of Hibiscus esculentus Linn. J. Chromat. A 2004, 1048, 17–24. [Google Scholar] [CrossRef]
- Prabhune, A.; Sharma, M.; Ojha, B. Abelmoschus esculentus (Okra) potential natural compound for prevention and management of Diabetes and diabetic induced hyperglycemia: Review. Int. J. Herbal Med. 2017, 5, 65–68. [Google Scholar]
- Khatun, H.; Rahman, A.; Biswas, M.; Islam, A.U. Water soluble fraction of Abelmoschus esculentus L. interacts with glucose and metformin hydrochloride and alters their absorption kinetics after co administration in rats. ISRN Pharm. 2011, 2011, 260537. [Google Scholar]
- Choi, H.N.; Kang, M.J.; Lee, S.J.; Kim, J.I. Ameliorative effect of myricetin on insulin resistance in mice fed a high-fat, high-sucrose diet. Nutr. Res. Pract. 2014, 8, 544–549. [Google Scholar] [CrossRef]
- Ozcan, F.; Ozmen, A.; Akkaya, B.; Aliciguzel, Y.; Aslan, M. Beneficial effect of myricetin on renal functions in streptozotocin-induced diabetes. Clin. Exp. Med. 2012, 12, 265–272. [Google Scholar] [CrossRef]
- Kandasamy, N.; Ashokkumar, N. Protective effect of bioflavonoid myricetin enhances carbohydrate metabolic enzymes and insulin signaling molecules in streptozotocin-cadmium induced diabetic nephrotoxic rats. Toxicol. Appl. Pharmacol. 2014, 279, 173–185. [Google Scholar] [CrossRef]
- Abi, E.; Abi, I.; Ladan, M.J. Hypoglycaemic effect of Abelmoschus Esculentus extracts in alloxan-induced diabetic wistar rats. Endocrinol. Diabetes Res. 2017, 3. [Google Scholar] [CrossRef]
- Muhammad, I.; Matazu, K.I.; Yaradua, A.I.; Nasir, A.; Matazu, N.U.; Zainab, A.S.; AbdulRahman, M.B.; Bilbis, L.S.; Abbas, A.Y. Antidiabetic activity of Abelmoschus esculentus (Ex-Maradi Okra) fruit in alloxan-induced diabetic rats. NJBMB 2017, 32, 44–52. [Google Scholar]
- Abbas, A.Y.; Muhammad, I.; Rahman, A.M.B.; Bilbis, L.S.; Saidu, Y.; Onu, A. Possible antidiabetic mechanism of action of ex-maradi okra fruit variety (Abelmoscus esculentus) on alloxan induced diabetic rats. Nig. J. Basic Appl. Sci. 2017, 25, 101–113. [Google Scholar] [CrossRef]
- Nguekouo, P.T.; Kuate, D.; Kengne, A.P.N.; Woumbo, C.Y.; Tekou, F.A.; Oben, J.E. Effect of boiling and roasting on the antidiabetic activity of Abelmoschus esculentus (Okra) fruits and seeds in type 2 diabetic rats. J. Food Biochem. 2018, 42, e12669. [Google Scholar] [CrossRef]
- Majd, N.E.; Tabandeh, M.R.; Shahriari, A.; Soleimani, Z. Okra (Abelmoscus esculentus) improved islets structure, and down-regulated PPARs gene expression in pancreas of high-fat diet and streptozotocin-induced diabetic rats. Cell J. 2018, 20, 31–40. [Google Scholar]
- Moise, M.M.; Benjamin, L.M.; Doris, T.M.; Dalida, K.N.; Augustin, N.O. Role of Mediterranean diet, tropical vegetables rich in antioxidants, and sunlight exposure in blindness, cataract and glaucoma among African type 2 diabetics. Int. J. Ophthalmol. 2012, 5, 231–237. [Google Scholar] [PubMed]
- Muhammad, I.; Matazu, I.K.; Yaradua, I.A.; Yau, S.; Nasir, A.; Bilbis, S.L.; Abbas, Y.A. Development of okra-based antidiabetic nutraceutical formulation from Abelmoschus esculentus (L.) Moench (Ex-maradi Variety). Trop. J. Nat. Prod. Res. 2018, 2, 80–86. [Google Scholar] [CrossRef]
- Santini, A.; Tenore, G.C.; Novellino, E. Nutraceuticals: A paradigm of proactive medicine. Eur. J. Pharm. Sci. 2017, 96, 53–61. [Google Scholar] [CrossRef]
- Santini, A.; Novellino, E. Nutraceuticals: Shedding light on the grey area between pharmaceuticals and food. Expert Rev. Clin. Pharmacol. 2018, 11, 545–547. [Google Scholar] [CrossRef]
- Qasem, A.A.A.; Alamri, M.S.; Mohamed, A.A.; Hussain, S.; Mahmood, K.; Ibraheem, M.A. Effect of okra gum on pasting and rheological properties of cake-batter. Food Meas. 2017, 11, 827–834. [Google Scholar] [CrossRef]
- Romanchik-Cerpovicz, J.; Perez, E.; Moon, A.; Cerpovicz, P. Analysis of Gluten-Free Rice Flour Tortillas Prepared with Okra Gum. J. Acad. Nutr. Diet. 2018, 118, A44. [Google Scholar] [CrossRef]
- Farooq, U.; Malviya, R.; Sharma, P.K. Extraction and characterization of okra mucilage as pharmaceutical excipient. Acad. J. Plant Sci. 2013, 6, 168–172. [Google Scholar]
- Moosavi, S.A.; Aghaalikhani, M.; Ghobadian, B.; Fayyazi, E. Okra: A potential future bioenergy crop in Iran. Renew Sust. Energ. Rev. 2018, 93, 517–524. [Google Scholar] [CrossRef]
- Lee, C.S. Extraction of Bio-Flocculant from Okra Using Hydrothermal and Microwave Extraction Methods Combined with a Techno-Economic Assessment. Ph.D. Thesis, University of Nottingham, Nottingham, UK, 24 November 2017. [Google Scholar]
- Gogoi, N.; Gogoi, M.; Choudhury, S. Utilization of agro waste-okra and its potentiality. AJHS 2017, 12, 250–256. [Google Scholar] [CrossRef]
Animal Models | Treatment | Studied Components of Okra Extract or Material Supplemented | Main Targeted Results | Ref. |
---|---|---|---|---|
Alloxan-induced diabetic Wistar rats | Animals were administered Abelmoschus esculentus peel (AEP), Abelmoschus esculentus seed (AES), and Abelmoschus esculentus seed and peel (AESP), all at 100 mg/kg and distilled water for the control. The last group had metformin at 100 mg/kg. Blood glucose was measured using the on days 5, 10 and 15. | No data accessible | The Abelmoschus esculentus peel, Abelmoschus esculentus seed, and Abelmoschus esculentus seed and peel (AESP) groups showed a significant decrease in blood glucose (p < 0.05) compared to the metformin group. AESP most significantly (p < 0.05) reduced blood glucose (96.84 ± 9.09) compared to metformin group (182.70 ± 34.81) on day 15. | [98] |
Alloxan-induced diabetic rats | The rats were randomly divided into four large groups: (Whole Okra (WO), Okra Peel (OP), and Okra Seed (OS) and Control group (C)). Each one in subgroups based on dose of 100, 200, and 300 mg/kg/day. The control groups were Metformin (MC) (500 mg/kg), Diabetic (DC), and Normal (NC) Control groups. After a day of treatment blood samples were collected. | No data | All parts of the okra fruits (WO, OP, and OS) showed significant (p < 0.05) reduction in blood glucose level, glycated hemoglobin and improvement on lipid profile compared with the diabetic nontreated control and comparable with metformin positive control. | [99] |
Alloxan-induced diabetic rats | 24 Diabetic rat and eight normal rats were grouped as follows: -Normal rats Fasted (NF); -Diabetic rats Fasted (DF); -Normal rats, fasted and re-fed, untreated (NFRU); -Diabetic rats, fasted and re-fed, untreated (DFRU); -Diabetic rats, fasted, re-fed, and treated with 300 mg/kg Whole Okra fruit (WO); -Diabetic rats, fasted, re-fed, and treated with 300 mg/kg Okra peels (OP); -Diabetic rats, fasted, re-fed and treated with 300 mg/kg Okra seed (OS); -Diabetic rats, fasted, re-fed, and treated with 500 mg/kg metformin. | No data | Various parts of okra fruit have the ability to stimulate glycogen synthesis in the liver and delay intestinal absorption of glucose with very significant glucose dialysis retardation index (GDRI) and high glucose adsorption capacity (GAC). Histological examination of the pancreatic tissue after administration of okra fruit revealed evidence of pancreatic islets cells regeneration. | [100] |
Streptozotocin and high-fat diet-induced type 2 diabetes Wistar rats | Animals were randomly assigned to six groups of 10 rats each, and treated for 28 days with either metformin or suspensions of one of the following, untreated fruits (UTF), boiled fruits, untreated seeds, and roasted seeds. Controls were made up of untreated non diabetic (T−) and diabetic (T+) animals. Fasting blood glucose was measured on a weekly basis. | Fiber Total phenolic content Free radical scavenging activity (DPPH) | Daily administration of processed and UTF and seed suspensions significantly decreased (p < 0.05) the blood glucose level of rats. Boiling and roasting do not significantly influence the antidiabetic potential of A. esculentus fruits and seeds. | [101] |
Streptozotocin-induced diabetic rats | Animals were divided into six groups: normal control (N); diabetic control (DM); diabetic treated with green okra extract with the dosage of 5 mg/kg BW quercetin (GOE I) and 10 mg/kg BW quercetin (GOE II); diabetes treated with purple okra extract with the dosage of 5 mg/kg BW quercetin (POE I) and 10 mg/kg BW quercetin (POE II). The GOE and POE dissolved with Twin 1% were administered orally to the treatment group animals for 14 days. | Total Phenolic Quercetin | Administration of GOE I, GOE II, POE I, and POE II in diabetic rats showed significant (p < 0.05) reduction in blood glucose level (115.25 mg/dL; 86 mg/dL; 180.75 mg/dL; 91 mg/dL) and improve level of malondialdehyde. | [91] |
High Fat Diet (HFD)/Streptozotocin(STZ)-induced diabetic rats | Animals were randomly divided into five equal groups as follows, group I: rats were fed with standard diet, group II: HFD-STZ-induced diabetic rats, group III: HFD-STZ-induced diabetic rats received A. esculentus (200 mg/kg). The A. esculentus powder was mixed with normal diet and administrated orally. Group IV: HFD-STZ-induced diabetic rats received metformin (200 mg/kg); group V: rats received normal diet and A. esculentus (200 mg/kg). Groups II, III, and IV were fed with HFD for four weeks, whereas groups I and V consumed normal diet during the same period. | Total phenolic content (extract); Total flavonoid content (extract); carbohydrate, protein, ash (dried plant). | Okra supplementation significantly decreased the elevated levels of FBS, total cholesterol, and TG and attenuated the homeostasis model assessment of basal insulin resistance (HOMA-IR) index in diabetic rats. The expression levels of PPAR-γ and PPAR-α genes that were elevated in diabetic rats, attenuated in okra-treated rats (p < 0.05). | [102] |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Durazzo, A.; Lucarini, M.; Novellino, E.; Souto, E.B.; Daliu, P.; Santini, A. Abelmoschus esculentus (L.): Bioactive Components’ Beneficial Properties—Focused on Antidiabetic Role—For Sustainable Health Applications. Molecules 2019, 24, 38. https://doi.org/10.3390/molecules24010038
Durazzo A, Lucarini M, Novellino E, Souto EB, Daliu P, Santini A. Abelmoschus esculentus (L.): Bioactive Components’ Beneficial Properties—Focused on Antidiabetic Role—For Sustainable Health Applications. Molecules. 2019; 24(1):38. https://doi.org/10.3390/molecules24010038
Chicago/Turabian StyleDurazzo, Alessandra, Massimo Lucarini, Ettore Novellino, Eliana B. Souto, Patricia Daliu, and Antonello Santini. 2019. "Abelmoschus esculentus (L.): Bioactive Components’ Beneficial Properties—Focused on Antidiabetic Role—For Sustainable Health Applications" Molecules 24, no. 1: 38. https://doi.org/10.3390/molecules24010038
APA StyleDurazzo, A., Lucarini, M., Novellino, E., Souto, E. B., Daliu, P., & Santini, A. (2019). Abelmoschus esculentus (L.): Bioactive Components’ Beneficial Properties—Focused on Antidiabetic Role—For Sustainable Health Applications. Molecules, 24(1), 38. https://doi.org/10.3390/molecules24010038