Evaluation of Phytochemical and Antioxidant Properties of 15 Italian Olea europaea L. Cultivar Leaves
Abstract
:1. Introduction
2. Results and Discussion
2.1. Phenolic Compound Analysis
2.2. Antioxidant Activity
3. Materials and Methods
3.1. Plant Material and Sample Preparation
3.2. HPLC ESI/MS-TOF Analysis of Leaf Extracts
3.3. Total Phenol Content (TPC) and Antioxidant Activity
3.4. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- De la Rosa, R.; Angiolillo, A.; Guerrero, C.; Pellegrini, M.; Rallo, L.; Besnard, G.; Bervillé, A.; Martín, A.; Baldoni, L. A first linkage map of olive (Olea europaea L.) cultivars using RAPD, AFLP, RFLP and SSR markers. Theor. Appl. Genet. 2003, 106, 1273–1282. [Google Scholar] [CrossRef] [PubMed]
- Gemas, V.J.; Almadanim, M.C.; Tenreiro, R.; Martins, A.; Fevereiro, P. Genetic diversity in the Olive tree (Olea europaea L. subsp. europaea) cultivated in Portugal revealed by RAPD and ISSR markers. Gen. Res Crop. Evol. 2004, 51, 501–511. [Google Scholar] [CrossRef]
- Mataix, J.; Barbancho, F.J. Olive oil in the mediterranean food. In Olive Oil and Health; Quiles, J.L., Ramírez-Tortosa, M.C., Yaqoob, P., Eds.; CABI Publishing: Cambridge, UK, 2006. [Google Scholar]
- Talhaoui, N.; Taamalli, A.; Gómez-Caravaca, A.M.; Fernández-Gutiérrez, A.; Segura-Carretero, A. Phenolic compounds in olive leaves: Analytical determination, biotic and abiotic influence, and health benefits. Food Res. Int. 2015, 77, 92–108. [Google Scholar] [CrossRef]
- Orak, H.H.; Karamać, M.; Amarowicz, R.; Orak, A.; Penkacik, K. Genotype-Related Differences in the Phenolic Compound Profile and Antioxidant Activity of Extracts from Olive (Olea europaea L.) Leaves. Molecules 2019, 24, 1130. [Google Scholar] [CrossRef]
- Sahin, S.; Bilgin, M. Olive tree (Olea europaea L.) leaf as a waste by-product of table olive and olive oil industry: A review. J. Sci. Food Agric. 2018, 98, 1271–1279. [Google Scholar] [CrossRef]
- Ryan, D.; Antolovich, M.; Prenzler, P.; Robards, K.; Lavee, S. Biotransformations of phenolic compounds in Olea europaea L. Sci. Hortic.-Amsterdam 2002, 92, 147–177. [Google Scholar] [CrossRef]
- Taamalli, A.; Arráez Román, D.; Zarrouk, M.; Segura-Carretero, A.; Fernández Gutiérrez, A. Classification of “Chemlali” accessions according to the geographical area using chemometric methods of phenolic profiles analysed by HPLC-ESI-TOF-MS. Food Chem. 2012, 132, 561–566. [Google Scholar] [CrossRef]
- Benavente-García, O.; Castillo, J.; Lorente, J.; Ortunõ, A.; Del Rio, J.A. Antioxidant activity of phenolics from Olea europaea L. leaves. Food Chem. 2000, 68, 457–462. [Google Scholar] [CrossRef]
- Silva, S.; Gomes, L.; Leitão, F.; Coelho, A.V.; Vilas Boas, L. Phenolic Compounds and Antioxidant Activity of Olea europaea L. Fruits and Leaves. Food Sci. Technol. Int. 2006, 12, 385–396. [Google Scholar] [CrossRef]
- Susalit, E.; Agus, N.; Effendi, I.; Tjandrawinata, R.R.; Nofiarny, D.; Perrinjaquet Moccetti, T.; Verbruggen, M. Olive (Olea europaea) leaf extract effective in patients with stage-1 hypertension: comparison with Captopril. Phytomedicine 2011, 18, 251–258. [Google Scholar] [CrossRef] [PubMed]
- Bouallagui, Z.; Han, J.; Isoda, H.; Sayadi, S. Hydroxytyrosol rich extract from olive leaves modulates cell cycle progression in MCF-7 human breast cancer cells. Food Chem. Toxicol. 2011, 49, 179–184. [Google Scholar] [CrossRef]
- Sudjana, A.N.; D’Orazio, C.; Ryan, V.; Rasool, N.; Ng, J.; Islam, N.; Riley, T.V.; Hammer, K.A. Antimicrobial activity of commercial Olea europaea (olive) leaf extract. Int. J. Antimicrob. Agents 2009, 33, 461–463. [Google Scholar] [CrossRef] [PubMed]
- Lee, O.H.; Lee, B.Y. Antioxidant and antimicrobial activities of individual and combined phenolics in Olea europaea leaf extract. Bioresour. Technol. 2010, 101, 3751–3754. [Google Scholar] [CrossRef]
- Dekanski, D.; Ristic, S.; Radonjic, N.; Petronijevic, N.; Dekanski, A.; Mitrovic, D. Olive leaf extract modulates cold restraint stress-induced oxidative changes in rat liver. J. Serb. Chem. Soc. 2011, 76, 1207–1218. [Google Scholar] [CrossRef]
- Raederstorff, D. Antioxidant activity of olive polyphenols in humans: a review. Int. J. for Vitam. Nutr. Res. 2009, 79, 152–165. [Google Scholar] [CrossRef]
- Conti, B.; Colzani, B.; Papetti, A.; Mascherpa, D.; Dorati, R.; Genta, I.; Gazzani, G. Adhesive microbeads for the targeting delivery of anticaries agents of vegetable origin. Food Chem. 2013, 138, 898–904. [Google Scholar] [CrossRef] [PubMed]
- Papetti, A.; Mascherpa, D.; Carazzone, C.; Stauder, M.; Spratt, D.A.; Wilson, M.; Pratten, J.; Ciric, L.; Lingström, P.; Zaura, E.; et al. Identification of organic acids in Cichorium intybus inhibiting virulence-related properties of oral pathogenic bacteria. Food Chem. 2013, 138, 1706–1712. [Google Scholar] [CrossRef]
- Hassan, L.G.; Umar, K.J.; Atiku, I. Nutritional evaluation of Albizia lebbeck (L.) pods as source of feeds for livestock. Am. J. Food Technol. 2007, 2, 435–439. [Google Scholar]
- Ranalli, A.; Gomes, T.; Delcuratolo, D.; Contento, S.; Lucera, L. Improving virgin olive oil quality by means of innovative extracting biotechnologies. J. Agric. Food Chem. 2003, 23, 2597–2602. [Google Scholar] [CrossRef]
- Guinda, Á.; Pérez Camino, M.C.; Lanzón, A. Supplementation of Olis with oleanolic acid from the olive leaf (Olea europaea L.). Eur. J. Lipid Sci. Tech. 2004, 106, 22–26. [Google Scholar] [CrossRef]
- Briante, R.; La Cara, F.; Febbraio, F.; Patumi, M.; Nucci, R. Bioactive derivatives from oleuropein by a biotransformation on Olea europaea leaf extracts. J. Biotechnol. 2002, 93, 109–119. [Google Scholar] [CrossRef]
- Taamalli, A.; Abaza, L.; Arràez Romàn, D.; Segura Carretero, A.; Gutierrez Mokhtar Zarrouk, A.F.; BenmYoussef, N. Characterisation of Phenolic Compounds by HPLC-TOF/IT/MS in Buds and Open Flowers of “Chemlali” Olive Cultivar. Phytochem. Anal. 2013, 24, 504–512. [Google Scholar] [CrossRef]
- Fu, S.; Arráez-Roman, D.; Segura-Carretero, A.; Menéndez, J.A.; Menéndez-Gutiérrez, M.P.; Micol, V.; Fernández-Gutiérrez, A. Qualitative screening of phenolic compounds in olive leaf extracts by hyphenated liquid chromatography and preliminary evaluation of cytotoxic activity against human breast cancer cells. Anal. Bioanal. Chem. 2010, 397, 643–654. [Google Scholar] [CrossRef] [PubMed]
- Talhaoui, N.; Gómez-Caravaca, A.M.; León, L.; De la Rosa, R.; Segura-Carretero, A.; Fernández-Gutiérrez, A. Determination of phenolic compounds of ‘Sikitita’ olive leaves by HPLC-DAD-TOF-MS. Comparison with its parents ‘Arbequina’ and‘Picual’ olive leaves. LWT Food Sci. Technol. 2014, 58, 28–34. [Google Scholar] [CrossRef]
- Talhaoui, N.; Gomez-Caravaca, A.M.; Rolda, C.; Leo, L.; De La Rosa, R.; Fernandez-Gutierrez, A.; Segura-Carretero, A. Chemo-metric analysis for the evaluation of phenolic patterns in olive leaves from six cultivars at different growth stages. J. Agric. Food Chem. 2015, 63, 1722–1729. [Google Scholar] [CrossRef]
- Lozano-Sánchez, J.; Segura-Carretero, A.; Menéndez, J.; Oliveras-Ferraros, C.; Cerretani, L.; Fernández-Gutiérrez, A. Prediction of extra virgin olive oil varieties through their phenolic profile. Potential cytotoxic activity against human breast cancer cells. J. Agric. Food Chem. 2010, 58, 9942–9955. [Google Scholar] [CrossRef]
- Quirantes-Pine, R.; Zurek, G.; Barrajon-Catalan, E.; Bassmann, C.; Micol, V.; Segura-Carretero, A.; Fernandez-Gutierrez, A. A metabolite-profiling approach to assess the uptake and metabolism of phenolic compounds from olive leaves in SKBR3 cells by HPLC-ESI-QTOF-MS. J. Pharm. Biomed. Anal. 2013, 72, 121–126. [Google Scholar] [CrossRef] [PubMed]
- Petridis, A.; Therios, I.; Samouris, G. Genotypic Variation of Total Phenol and Oleuropein Concentration and Antioxidant Activity of 11 Greek Olive. Hortscience 2012, 47, 339–342. [Google Scholar] [CrossRef]
- Erbay, Z.; Icier, F. Reviews International the Importance and Potential Uses of Olive Leaves. Food Rev. Int. 2010, 26, 319–334. [Google Scholar] [CrossRef]
- Olmo-García, L.; Bajoub, A.; Benlamaalam, S.; Hurtado-Fernández, E.; Bagur-González, M.G.; Chigr, M.; Mbarki, M.; Fernández-Gutiérrez, A.; Carrasco-Pancorbo, A. Establishing the Phenolic Composition of Olea europaea L. Leaves from Cultivars Grown in Morocco as a Crucial Step Towards Their Subsequent Exploitation. Molecules 2018, 23, 2524. [Google Scholar] [CrossRef]
- Taamalli, A.; Arráez Román, D.; Gómez Caravaca, A.M.; Zarrouk, M.; Segura Carretero, A. Geographical Characterization of Tunisian Olive Tree Leaves (cv. Chemlali) Using HPLC-ESI-TOF and IT/MS Fingerprinting with Hierarchical Cluster Analysis. J. Anal. Methods Chem. 2018, 2018, 6789704. [Google Scholar] [CrossRef]
- Irakli, M.; Chatzopoulou, P.; Ekateriniadou, L. Optimization of ultrasound-assisted extraction of phenolic compounds: Oleuropein, phenolic acids, phenolic alcohols and flavonoids from olive leaves and evaluation of its antioxidant activities. Ind. Crop. Prod. 2018, 124, 382–388. [Google Scholar] [CrossRef]
- Jemai, H.; El Feki, A.; Sayadi, S. Antidiabetic and antioxidant effects of Hydroxytyrosol and oleuropein from olive leaves in alloxan-diabetic rats. J. Agric. Food Chem. 2009, 57, 8798–8804. [Google Scholar] [CrossRef] [PubMed]
- Luvisi, A.; Aprile, A.; Sabella, E.; Vergine, M.; Nicolì, F.; Nutricati, E.; Miceli, A.; Negro, C.; De Bellis, L. Xylella fastidiosa subsp. pauca (CoDiRO strain) infection in four olive (Olea europaea L.) cultivars: Profile of phenolic compounds in leaves and progression of leaf scorch symptoms. Phytopathol. Mediterr. 2017, 56, 259–273. [Google Scholar] [CrossRef]
- Da Silva, L.P.; Pereira, E.; Pires, T.C.S.P.; Alves, M.J.; Pereira, O.R.; Barros, L.; Ferreira, I.C.F.R. Rubus ulmifolius Schott fruits: A detailed study of its nutritional, chemical and bioactive properties. Food Res. Int. 2019, 119, 34–43. [Google Scholar] [CrossRef] [PubMed]
- Flores, P.; Hellín, P.; Fenoll, J. Determination of organic acids in fruits and vegetables by liquid chromatography with tandem-mass spectrometry. Food Chem. 2012, 132, 1049–1054. [Google Scholar] [CrossRef]
- Marrubini, G.; Appelblad, P.; Gazzani, G.; Papetti, A. Determination of free quinic acid in food matrices by Hydrophilic Interaction Liquid Chromatography with UV detection. J. Food Compos. Anal. 2015, 44, 80–85. [Google Scholar] [CrossRef]
- Wallis, C.M.; Wallingford, A.K.; Chen, J. Grapevine rootstock effects on scion sap phenolic levels, resistanceto Xylella fastidiosa infection, and progression of Pierce’s disease. Front. Plant Sci. 2013, 4, 502. [Google Scholar] [CrossRef]
- Makowska-Wazs, J.; Galanty, A.; Gdula-Argasi, J.; Tyszka-Czochara, M.; Szewczyk, A.; Nunes, R.; Carvalho, I.S.; Michalik, M.; Paśko, P. Identification of Predominant Phytochemical Compounds and Cytotoxic Activity of Wild Olive Leaves (Olea europaea L. ssp. sylvestris) Harvested in South Portugal. Chem. Biodivers 2017, 14, e1600331. [Google Scholar] [CrossRef]
- Pereira, A.P.; Ferreira, I.C.F.R.; Marcelino, F.; Valentão, P.; Andrade, P.B.; Seabra, R.; Estevinho, L.; Bento, A.; Pereira, J.A. Phenolic Compounds and Antimicrobial Activity of Olive (Olea europaea L. Cv. Cobrançosa) Leaves. Molecules 2007, 12, 1153–1162. [Google Scholar] [CrossRef]
- Ranalli, A.; Contento, S.; Lucera, L.; Di Febo, M.; Marchegiani, D.; Di Fonzo, V. Factors affecting the contents of iridoid oleuropein in olive leaves (Olea europaea L.). J. Agric. Food Chem. 2006, 54, 434–440. [Google Scholar] [CrossRef]
- Vita, F.; Franchina, F.A.; Taiti, C.; Locato, V.; Pennazza, G.; Santonico, M.; Purcaro, G.; De Gara, L.; Mancuso, S.; Mondello, L.; et al. Environmental conditions influence the biochemical properties of the fruiting bodies of Tuber magnatum Pico. Sci. Rep. 2018, 8, 7243. [Google Scholar] [CrossRef]
- Abaza, L.; Youssef, N.B.; Manai, H.; Haddada, F.M.; Methenni, K.; Zarrouk, M. Chétoui olive leaf extracts: influence of the solvent type on phenolics and antioxidant activities. Grasas Aceites 2011, 62, 96–104. [Google Scholar] [CrossRef]
- Brahmi, F.; Mechri, B.; Dabbou, S.; Dhibi, M.; Hammami, M. The efficacy of phenolics compounds with different polarities as antioxidants from olive leaves depending on seasonal variations. Ind. Crop. Prod. 2012, 38, 146–152. [Google Scholar] [CrossRef]
- Xie, P.-j.; Huang, L.-x.; Zhang, C.-h.; Zhang, Y.-l. Phenolic compositions, and antioxidant performance of olive leaf and fruit (Olea europaea L.) extracts and their structure–activity relationships. J. Funct. Food. 2015, 16, 460–471. [Google Scholar] [CrossRef]
- Moudache, M.; Colon, M.; Nerín, C.; Zaidi, F. Phenolic content and antioxidant activity of olive by-products and antioxidant film containing olive leaf extract. Food Chem. 2016, 212, 521–527. [Google Scholar] [CrossRef]
- Özcan, M.M.; Matthäus, B. A review: Benefit and bioactive properties of olive (Olea europaea L.) leaves. Eur. Food Res. Technol. 2017, 243, 89–99. [Google Scholar]
- Gullón, B.; Gullón, P.; Eibes, G.; Cara, C.; De Torres, A.; López-Linares, J.C.; Ruiz, E.; Castro, E. Valorisation of olive agro-industrial by-products as a source of bioactive compounds. Sci. Total Environ. 2018, 645, 533–542. [Google Scholar] [CrossRef]
- Japon-Lujan, R.; Luque de Castro, M.D. Liquid–liquid extraction for the enrichment of edible oils with phenols from olive leaf extracts. J. Agric. Food Chem. 2008, 56, 2505–2511. [Google Scholar] [CrossRef]
- Ciriminna, R.; Meneguzzo, F.; Fidalgo, A.; Ilharco, L.M.; Pagliaro, M. Extraction, benefits and valorization of olive polyphenols. Eur. J. Lipid Sci. Technol. 2016, 118, 503–511. [Google Scholar] [CrossRef]
- Nicolì, F.; Negro, C.; Nutricati, E.; Vergine, M.; Aprile, A.; Sabella, A.; Damiano, G.; De Bellis, L.; Luvisi, A. Accumulation of Azelaic Acid in Xylella fastidiosa-Infected Olive Trees: A Mobile Metabolite for Health Screening. Phytopathology 2018, 109, 318–325. [Google Scholar] [CrossRef]
- Sabella, E.; Luvisi, A.; Aprile, A.; Negro, C.; Vergine, M.; Nicolì, F.; Miceli, A.; De Bellis, L. Xylella fastidiosa induces differential expression of lignification related-genes and lignin accumulation in tolerant olive trees cv. Leccino. J. Plant Physiol. 2018, 220, 60–68. [Google Scholar] [CrossRef]
- Nicolì, F.; Vergine, M.; Negro, C.; Luvisi, A.; Nutricati, E.; Aprile, A.; Rampino, P.; Sabella, E.; De Bellis, L.; Miceli, A. Salvia clandestina L.: unexploited source of danshensu. Nat. Prod. Res. 2019, 19, 1–4. [Google Scholar] [CrossRef] [PubMed]
- Vergine, M.; Nicolì, F.; Negro, C.; Luvisi, A.; Nutricati, E.; Accogli, A.R.; Sabella, E.; Miceli, A. Phytochemical profiles and antioxidant activity of Salvia species from Southern Italy. Rec. Nat. Prod. 2019, 13, 205–215. [Google Scholar] [CrossRef]
- Singleton, V.L.; Rossi, J.A. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am. J. Enol. Viticult. 1965, 16, 144–158. [Google Scholar]
- Bondet, V.; Brand-Williams, W.; Berset, C. Kinetics and Mechanisms of Antioxidant Activity Using the DPPH• free Radical Method. LWT Food Sci. Technol. 1997, 30, 609–615. [Google Scholar] [CrossRef]
- Ou, B.; Hampsch-Woodill, M.; Prior, R.L. Development and Validation of an Improved Oxygen Radical Absorbance Capacity Assay Using Fluorescein as the Fluorescent Probe. J. Agric. Food Chem. 2001, 49, 4619–4626. [Google Scholar] [CrossRef]
- Dasgupta, N.; De, B. Antioxidant Activity of Piper Betle, L. Leaf Extract in Vitro. Food Chem. 2004, 88, 219–224. [Google Scholar] [CrossRef]
Sample Availability: Samples of the compounds are available from the authors. |
Compound | RT (min) a | (M−H)− | m/z Exp b | m/z Clc c | Diff. (ppm) d | Score e | Ref. |
---|---|---|---|---|---|---|---|
*Quinic acid | 0.365 | C7H11O6 | 191.0510 | 191.0561 | −5.89 | 90.44 | [23,24,25] |
*Hydroxytyrosol glucoside | 2.965 | C14H19O8 | 315.1095 | 315.1085 | −1.26 | 96.62 | [23,24,25] |
Secologanoside isomer 1 | 3.960 | C16H21O11 | 389.1095 | 389.1089 | −1.11 | 88.91 | [23,24,25] |
Secologanoside isomer 2 | 6.116 | C16H21O11 | 389.1101 | 389.1089 | −2.62 | 96.13 | [24,26] |
*Rutin | 6.230 | C27H29O16 | 609.1474 | 609.1461 | −2.15 | 90.20 | [24,26] |
Elenoic acid glucoside | 6.630 | C17H23O11 | 403.1262 | 403.1246 | −3.68 | 80.90 | [24,26] |
*Verbascoside | 6.950 | C29H35O15 | 623.2013 | 623.1618 | −0.05 | 93.73 | [26,27] |
Oleuropein aglycone | 7.194 | C16H25O10 | 377.1459 | 377.1453 | −1.23 | 92.94 | [24] |
*Quercitrin | 7.944 | C21H19O11 | 447.0960 | 447.0933 | −6.05 | 89.44 | [27] |
Hydroxyoleuropein | 9.036 | C25H31O14 | 555.1773 | 556.1803 | −2.04 | 97.55 | [24,27] |
*Luteolin 7-O glucoside isomer 1 | 9.119 | C21H19O11 | 447.0952 | 447.0933 | −3.93 | 77.64 | [24,25] |
*Luteolin rutinoside | 9.517 | C27H29O15 | 593.1517 | 593.1512 | −0.87 | 97.79 | [25] |
*Luteolin 7-O glucoside isomer 2 | 9.998 | C21H19O11 | 447.0948 | 447.0933 | −3.03 | 96.13 | [23,24,25] |
Apigenin 7 glucoside | 10.010 | C21H19O10 | 431.0988 | 431.0984 | −0.79 | 97.82 | [23,24,25] |
Oleuropein diglucoside isomer 1 | 10.545 | C31H41O8 | 701.2307 | 701.2298 | −0.60 | 93.83 | [23,24,25] |
Chrysoerinol 7 glucoside | 10.650 | C22H21O11 | 461.1071 | 461.1089 | 4.06 | 79.09 | [23] |
Oleuropein diglucoside isomer 2 | 10.728 | C31H41O8 | 701.2306 | 701.2298 | −0.49 | 94.85 | [23,24,25] |
Oleuropein diglucoside isomer 3 | 10.893 | C31H41O8 | 701.2291 | 701.2298 | 3.20 | 98.67 | [23,24,25] |
2-methoxy oleuropein isomer 1 | 11.175 | C26H33O14 | 569.1898 | 569.1876 | −3.76 | 85.77 | [25] |
2-methoxy oleuropein isomer 2 | 11.258 | C26H32O14 | 569.1899 | 569.1876 | −3.64 | 97.16 | [25] |
*Oleuropein | 11.406 | C15H9O13 | 539.1772 | 539.1770 | 0.03 | 97.14 | [23,24,25,27] |
*Luteolin | 11.939 | C15H9O6 | 285.0419 | 285.0405 | −4.87 | 97.08 | [23,24,25,27] |
*Quercetin | 12.036 | C15H9O7 | 301.0351 | 301.0354 | 1.10 | 96.04 | [24,25,28] |
Ligstroside | 12.611 | C25H31O12 | 523.1823 | 523.1821 | −0.03 | 97.55 | [26] |
*Apigenin 7 glucoside | 14.263 | C15H9O5 | 269.0461 | 269.0455 | −1.77 | 98.70 | [23] |
Diosmetin | 14.694 | C16H11O6 | 299.0566 | 299.0561 | −1.43 | 98.50 | [23] |
Standard Compound | Slope | Intercept | r2 | LOD (µg mL−1) | LOQ (µg mL−1) | RSD (%) |
---|---|---|---|---|---|---|
Quinic acid | 2.19 × 105 | −7.17 × 104 | 0.999 | 1.81 | 6.03 | 0.82 |
Hydroxytyrosol | 1.95 × 105 | −2.57 × 105 | 0.999 | 2.60 | 8.66 | 0.78 |
Luteolin 7-O glucoside | 1.37 × 106 | 1.53 × 106 | 0.988 | 1.25 | 4.15 | 0.77 |
Oleuropein | 1.81 × 106 | 5.01 × 105 | 0.997 | 0.77 | 2.56 | 0.81 |
Luteolin | 1.61 × 106 | 3.91 × 106 | 0.989 | 0.13 | 0.45 | 0.74 |
Verbascoside | 2.60 × 105 | 3.08 × 105 | 0.984 | 0.15 | 0.50 | 0.87 |
Cultivar | Quinic Acid | Hydroxytyrosol Glucoside | Luteolin 7-O Glucoside | 2-Methoxy Oleuropein * | Oleuropein | Luteolin | Verbascoside |
---|---|---|---|---|---|---|---|
Apollo | 21.31 ± 0.29b | 8.17 ± 0.07e | 39.78 ± 0.03a | 10.51 ± 0.15c | 24.48 ± 0.07d | 2.66 ± 0.10b | 0.16 ± 0.02cd |
Ascolanatenera | 12.71 ± 0.04h | 10.96 ± 0.05d | 32.75 ± 0.08c | 7.80 ± 0.05g | 22.06 ± 0.08f | 0.15 ± 0.02f | 0.18 ± 0.04bc |
Carolea | 13.93 ± 0.01e | 17.34 ± 0.10b | 35.05 ± 0.06b | 12.71 ± 0.03b | 28.30 ± 0.07b | 0.10 ± 0.01f | 0.13 ± 0.01defg |
Cellina di Nardò | 11.25 ± 0.07i | 57.75 ± 0.11a | 23.31 ± 0.22g | 22.14 ± 0.09a | 9.69 ± 0.02p | 2.62 ± 0.0b | 0.20 ± 0.04ab |
Cipressino | 13.31 ± 0.06f | 3.58 ± 0.01il | 29.13 ± 0.07e | 9.42 ± 0.05d | 25.52 ± 0.03c | 0.21 ± 0.01f | 0.22 ± 0.05a |
Itrana | 25.19 ± 0.04a | 1.13 ± 0.02q | 31.56 ± 0.09d | 8.42 ± 0.14f | 30.46 ± 0.12a | 1.54 ± 0.0c | 0.11 ± 0.01fg |
Maurino | 14.81 ± 0.03d | 2.05 ± 0.05o | 27.88 ± 0.10f | 4.08 ±0.07m | 18.53 ± 0.07h | 3.02 ± 0.0a | 0.10 ± 0.02g |
Minerva | 6.05 ± 0.02n | 2.42 ± 0.03n | 15.95 ± 0.05n | 3.32 ± 0.10o | 17.38 ± 0.17l | 1.06 ± 0.0de | 0.18 ± 0.02bc |
Moraiolo | 9.20 ± 0.07m | 11.88 ± 0.08c | 20.12 ± 0.02i | 5.56 ± 0.04h | 14.61 ±0.01m | 1.41 ±0.03cd | 0.14 ± 0.04def |
Nociara | 10.22 ± 0.02l | 7.14 ± 0.02g | 35.13 ± 0.10b | 3.92 ± 0.05n | 9.89 ± 0.10o | 0.18 ± 0.01f | 0.10 ± 0.02g |
Ogliarola | 6.24 ± 0.07n | 7.90 ± 0.01f | 8.69 ± 0.16o | 8.82 ± 0.02e | 7.49 ± 0.04q | 0.21 ± 0.01f | 0.14 ± 0.02def |
Pendolino | 12.55 ± 0.06h | 1.69 ± 0.15p | 17.84 ± 0.04m | 2.55 ± 0.05q | 12.58 ± 0.09n | 0.88 ± 0.02e | 0.15 ± 0.02cde |
Ravece | 13.02 ± 0.01g | 3.72 ± 0.04i | 15.85 ± 0.06n | 3.07 ± 0.08p | 18.12 ± 0.03i | 0.09 ± 0.01f | 0.13±0.01defg |
Sant Agostino | 16.50 ± 0.02c | 3.48 ± 0.01m | 21.57 ± 0.03h | 5.28 ± 0.01i | 23.55 ± 0.03e | 0.16 ± 0.01f | 0.11 ± 0.01fg |
Taggiasca | 12.54 ± 0.02h | 4.58 ± 0.07h | 18.14 ± 0.09l | 4.14 ± 0.02l | 21.74 ± 0.05g | 0.95 ± 0.01e | 0.12 ± 0.02efg |
Cultivars | Attitude | Principal Area of Cultivation |
---|---|---|
Apollo | olive oil | Tuscany (Central Italy) |
Ascolana tenera | oil and table olive | Abruzzo (Southern Italy) |
Carolea | oil and table olive | Calabria, Basilicata (Southern Italy) |
Cellina di Nardò | oil and table olive | Apulia (Southern Italy) |
Cipressino | olive oil | Apulia, Sardinia (Southern Italy) |
Itrana | oil and table olive | Lazio (Central Italy) |
Maurino | olive oil and pollinator | Tuscany (Central Italy) |
Minerva | olive oil | Tuscany (Central Italy) |
Moraiolo | olive oil | Tuscany, Umbria (Central Italy) |
Nociara | olive oil | Apulia (Southern Italy) |
Ogliarola | olive oil | Apulia (Southern Italy) |
Pendolino | olive oil and pollinator | Tuscany (Central Italy) |
Ravece | oil and table olive | Campania (Southern Italy) |
Sant’Agostino | oil and table olive | Apulia (Southern Italy) |
Taggiasca | oil and table olive | Liguria (Northern Italy) |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nicolì, F.; Negro, C.; Vergine, M.; Aprile, A.; Nutricati, E.; Sabella, E.; Miceli, A.; Luvisi, A.; De Bellis, L. Evaluation of Phytochemical and Antioxidant Properties of 15 Italian Olea europaea L. Cultivar Leaves. Molecules 2019, 24, 1998. https://doi.org/10.3390/molecules24101998
Nicolì F, Negro C, Vergine M, Aprile A, Nutricati E, Sabella E, Miceli A, Luvisi A, De Bellis L. Evaluation of Phytochemical and Antioxidant Properties of 15 Italian Olea europaea L. Cultivar Leaves. Molecules. 2019; 24(10):1998. https://doi.org/10.3390/molecules24101998
Chicago/Turabian StyleNicolì, Francesca, Carmine Negro, Marzia Vergine, Alessio Aprile, Eliana Nutricati, Erika Sabella, Antonio Miceli, Andrea Luvisi, and Luigi De Bellis. 2019. "Evaluation of Phytochemical and Antioxidant Properties of 15 Italian Olea europaea L. Cultivar Leaves" Molecules 24, no. 10: 1998. https://doi.org/10.3390/molecules24101998
APA StyleNicolì, F., Negro, C., Vergine, M., Aprile, A., Nutricati, E., Sabella, E., Miceli, A., Luvisi, A., & De Bellis, L. (2019). Evaluation of Phytochemical and Antioxidant Properties of 15 Italian Olea europaea L. Cultivar Leaves. Molecules, 24(10), 1998. https://doi.org/10.3390/molecules24101998