Activity and Thermal Stability of Cobalt(II)-Based Olefin Polymerization Catalysts Adorned with Sterically Hindered Dibenzocycloheptyl Groups
Abstract
:1. Introduction
2. Results
2.1. Synthesis and Characterization
2.2. X-Ray Crystallographic Studies
2.3. Evaluation of Cocatalyst
2.3.1. Ethylene Polymerization with (Co1–Co5)/MAO
2.3.2. Ethylene Polymerization with (Co1–Co5)/MMAO
2.4. Polyethylene Microstructural Properties
2.5. Comparison of the Current Precatalyst with Systems Reported Before
3. Materials and Methods
3.1. General Information
3.2. Synthesis of 2-acetyl-6-{1-(2,4-bis(dibenzocycloheptyl)-6-methylphenylimino)ethyl}pyridine
3.3. Synthesis of ligands L1–L5; 2-{2,4-(C15H13)2-6-MeC6H2N}-6-(ArN) C9H9N
3.3.1. Ar = 2,6-Me2C6H3 (L1).
3.3.2. Ar = 2,6-Et2C6H3 (L2).
3.3.3. Ar = 2,6-i-Pr2C6H3 (L3).
3.3.4. Ar = 2,4,6-Me3C6H2 (L4).
3.3.5. Ar = 2,6-Et2-4-MeC6H2 (L5).
3.4. Synthesis of complexes Co1–Co5; [2-{2,4-(C15H13)2-6-MeC6H2N}-6-(ArN) C9H9N]CoCl2
3.4.1. Co1 (Ar = 2,6-Me2C6H3).
3.4.2. Co2 (Ar = 2,6-Et2C6H3).
3.4.3. Co3 (Ar = 2,6-i-Pr2C6H3).
3.4.4. Co4 (Ar = 2,4,6-Me3C6H2).
3.4.5. Co5 (Ar = 2,6-Et2-4-MeC6H2).
3.5. X-Ray Crystallographic Studies
3.6. General Procedure for Ethylene Polymerization under 5/10 atm Pressure
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Small, B.L.; Brookhart, M.; Bennett, A.M.A. Highly Active Iron and Cobalt Catalysts for the Polymerization of Ethylene. J. Am. Chem. Soc. 1998, 120, 4049–4050. [Google Scholar] [CrossRef]
- Britovsek, G.J.P.; Gibson, V.C.; Kimberley, B.S.; Maddox, P.J.; McTavish, S.J.; Solan, G.A.; White, A.J.P.; Williams, D.J. Novel olefin polymerization catalysts based on iron and cobalt. Chem. Commun. 1998, 7, 849–850. [Google Scholar] [CrossRef]
- Johnson, L.K.; Killian, C.M.; Brookhart, M. New Pd(I1)- and Ni(I1)-Based Catalysts for Polymerization of Ethylene and a-Olefins. J. Am. Chem. Soc. 1995, 117, 6414–6415. [Google Scholar] [CrossRef]
- Killian, C.M.; Tempel, D.J.; Johnson, L.K.; Brookhart, M. Living Polymerization of r-Olefins Using NiII-r-Diimine Catalysts. Synthesis of New Block Polymers Based on r-Olefins. J. Am. Chem. Soc. 1996, 118, 11664–11665. [Google Scholar] [CrossRef]
- Wang, Z.; Liu, Q.; Solan, G.A.; Sun, W.-H. Recent advances in Ni-mediated ethylene chain growth: Nimine-donor ligand effects on catalytic activity, thermal stability and oligo-/polymer structure. Coord. Chem. Rev. 2017, 350, 68–83. [Google Scholar] [CrossRef]
- Edgecombe, B.D.; Stein, J.A.; Frechet, J.M.J. The Role of Polymer Architecture in Strengthening Polymer-Polymer Interfaces: A Comparison of Graft, Block, and Random Copolymers Containing Hydrogen-Bonding Moieties. Macromolecules 1998, 31, 1292–1304. [Google Scholar] [CrossRef]
- Harth, E.M.; Hecht, S.; Helms, B.; Malmstrom, E.E.; Frechet, J.M.J.; Hawker, C.J. The Effect of Macromolecular Architecture in Nanomaterials: A Comparison of Site Isolation in Porphyrin Core Dendrimers and Their Isomeric Linear Analogues. J. Am. Chem. Soc. 2002, 124, 3926–3938. [Google Scholar] [CrossRef]
- Wang, Z.; Solan, G.A.; Zhang, W.; Sun, W.-H. Carbocyclic-fused N,N,N-pincer ligands as ring-strain adjustable supports for iron and cobalt catalysts in ethylene oligo-/polymerization. Coord. Chem. Rev. 2018, 363, 92–108. [Google Scholar] [CrossRef] [Green Version]
- Zhang, W.; Sun, W.-H.; Redshaw, C. Tailoring iron complexes for ethylene oligomerization and/or polymerization. Dalton Trans. 2013, 42, 8988–8997. [Google Scholar] [CrossRef]
- Ma, J.; Feng, C.; Wang, S.; Zhao, K.-Q.; Sun, W.-H.; Redshaw, C.; Solan, G.A. Bi- and tri-dentate imino-based iron and cobalt pre-catalysts for ethylene oligo-/polymerization. Inorg. Chem. Front. 2014, 1, 14–34. [Google Scholar] [CrossRef]
- Flisak, Z.; Sun, W.-H. Progression of Diiminopyridines: From Single Application to Catalytic Versatility. ACS Catal. 2015, 5, 4713–4724. [Google Scholar] [CrossRef]
- Britovsek, G.J.P.; Gibson, V.C.; Kimberley, B.S.; Mastroianni, S.; Redshaw, C.; Solan, G.A.; White, A.J.P.; Williams, D.J. Cationic 2,6-bis(imino)pyridine iron and cobalt complexes: Synthesis, structures, ethylene polymerisation and ethylene/polar monomer co-polymerisation studies. J. Chem. Soc. Dalton Trans. 2001, 6, 1639–1644. [Google Scholar] [CrossRef]
- Yue, E.; Zeng, Y.; Zhang, W.; Sun, Y.; Cao, X.-P.; Sun, W.-H. Highly linear polyethylenes using the 2-(1-(2,4-dibenzhydrylnaphthylimino)ethyl)-6-(1-(arylimino)ethyl)pyridylcobalt chlorides: Synthesis, characterization and ethylene polymerization. Sci. China. Chem. 2016, 59, 1291–1300. [Google Scholar] [CrossRef]
- Yang, W.; Yi, J.; Ma, Z.F.; Sun, W.-H. 2D-QSAR modeling on the catalytic activities of 2-azacyclyl-6aryliminopyridylmetal precatalysts in ethylene oligomerization. Catal. Commun. 2017, 101, 40–43. [Google Scholar] [CrossRef]
- Bariashir, C.; Wang, Z.; Du, S.; Solan, G.A.; Huang, C.; Liang, T.; Sun, W.-H. Cycloheptyl-Fused NNO-Ligands as Electronically Modifiable Supports for M(II) (M5Co, Fe) Chloride Precatalysts; Probing Performance in Ethylene Oligo-/Polymerization. J. Polym. Sci. Part A Polym. Chem. 2017, 55, 3980–3989. [Google Scholar] [CrossRef]
- Chen, Q.; Suo, H.; Zhang, W.; Zhang, R.; Solan, G.A.; Liang, T.; Sun, W.-H. 1,5-Naphthyl-linked bis(imino)pyridines as binucleating scaffolds for dicobalt ethylene oligo-/polymerization catalysts: Exploring temperature and steric effects. Dalton Trans. 2019, in press. [Google Scholar] [CrossRef] [PubMed]
- Smit, T.M.; Tomov, A.K.; Britovsek, G.J.P.; Gibson, V.C.; White, A.J.P.; Williams, D.J. The effect of imine-carbon substituents in bis(imino)pyridine-based ethylene polymerisation catalysts across the transition series. Catal. Sci. Technol. 2012, 2, 643–655. [Google Scholar] [CrossRef]
- Sun, W.H.; Hao, P.; Li, G.; Zhang, S.; Wang, W.Q.; Yi, J.J.; Asma, M.; Tang, N. Synthesis and Characterization of Iron and Cobalt Dichloride Bearing 2-Quinoxalinyl- 6-Iminopyridines and Their Catalytic Behavior toward Ethylene Reactivity. J. Organomet. Chem. 2007, 692, 4506–4518. [Google Scholar] [CrossRef]
- Gao, R.; Li, Y.; Wang, F.; Sun, W.-H.; Bochmann, M. 2-Benzoxazolyl-6-[1-(arylimino)ethyl]pyridyliron(II) Chlorides as Ethylene Oligomerization Catalysts. Eur. J. Inorg. Chem. 2009, 27, 4149–4156. [Google Scholar] [CrossRef]
- Sun, W.-H.; Hao, P.; Zhang, S.; Shi, Q.; Zuo, W.; Tang, X.; Lu, X. Synthesis and characterization of iron and cobalt dichloride bearing 2-quinoxalinyl-6-iminopyridines and their catalytic behavior toward ethylene reactivity. Organometallics 2007, 26, 2720–2734. [Google Scholar] [CrossRef]
- Wang, K.; Wedeking, K.; Zuo, W.; Zhang, D.; Sun, W.-H. Iron(II) and cobalt(II) complexes bearing N-((pyridin-2-yl)methylene)-quinolin-8-amine derivatives: Synthesis and application to ethylene oligomerization. J. Organomet. Chem. 2008, 693, 1073–1080. [Google Scholar] [CrossRef]
- Wang, L.; Sun, W.H.; Han, L.; Yang, H.; Hu, Y.; Jin, X. Late transition metal complexes bearing 2,9-bis(imino)-1,10phenanthrolinyl ligands: Synthesis, characterization and their ethylene activity. J. Organomet. Chem. 2002, 658, 62–70. [Google Scholar] [CrossRef]
- Sun, W.-H.; Jie, S.; Zhang, S.; Zhang, W.; Song, Y.; Ma, H. Iron Complexes Bearing 2-Imino-1,10-phenanthrolinyl Ligands as Highly Active Catalysts for Ethylene Oligomerization. Organometallics 2006, 25, 666–677. [Google Scholar] [CrossRef]
- Pelletier, J.D.A.; Champouret, Y.D.M.; Cadarso, J.; Clowes, L.; Gañete, M.; Singh, K.; Thanarajasingham, V.; Solan, G.A. Electronically variable imino-phenanthrolinyl-cobalt complexes; synthesis, structures and ethylene oligomerisation studies. J. Organomet. Chem. 2006, 691, 4114–4123. [Google Scholar] [CrossRef]
- Jie, S.; Zhang, S.; Wedeking, K.; Zhang, W.; Ma, H.; Lu, X.; Deng, Y.; Sun, W.-H. Cobalt(II) complexes bearing 2-imino-1,10-phenanthroline ligands: Synthesis, characterization and ethylene oligomerization. C.R. Chimie 2006, 9, 1500–1509. [Google Scholar] [CrossRef]
- Jie, S.; Zhang, S.; Sun, W.H.; Kuang, X.; Liu, T.; Guo, J. Iron(II) complexes ligated by 2-imino-1,10-phenanthrolines: Preparation and catalytic behavior toward ethylene oligomerization. J. Mol. Catal. A Chem. 2007, 269, 85–96. [Google Scholar] [CrossRef]
- Jie, S.; Zhang, S.; Sun, W.H. 2-Arylimino-9-phenyl-1,10-phenanthrolinyl-iron, -cobalt and -nickel Complexes: Synthesis, Characterization and Ethylene Oligomerization Behavior. Eur. J. Inorg. Chem. 2007, 35, 5584–5598. [Google Scholar] [CrossRef]
- Xiao, L.; Gao, R.; Zhang, M.; Li, Y.; Cao, X.; Sun, W.-H. 2-(1H-2-Benzimidazolyl)-6-(1-(arylimino)ethyl)pyridyl Iron(II) and Cobalt(II) Dichlorides: Syntheses, Characterizations, and Catalytic Behaviors toward Ethylene Reactivity. Organometallics 2009, 28, 2225–2233. [Google Scholar] [CrossRef]
- Appukuttan, V.K.; Liu, Y.; Son, B.C.; Ha, C.-S.; . Suh, H.; Kim, I. Iron and Cobalt Complexes of 2,3,7,8-Tetrahydroacridine-4,5(1H,6H)-diimine Sterically Modulated by Substituted Aryl Rings for the Selective Oligomerization to Polymerization of Ethylene. Organometallics 2011, 30, 2285–2294. [Google Scholar] [CrossRef]
- Zhang, W.; Chai, W.; Sun, W.-H.; Hu, X.; Redshaw, C.; Hao, X. 2-(1-(Arylimino)ethyl)-8-arylimino-5,6,7-trihydroquinoline Iron(II) Chloride Complexes: Synthesis, Characterization, and Ethylene Polymerization Behavior. Organometallics 2012, 31, 5039–5048. [Google Scholar] [CrossRef]
- Sun, W.-H.; Kong, S.; Chai, W.; Shiono, T.; Redshaw, C.; Hu, X.; Guo, C.; Hao, X. 2-(1-(Arylimino)ethyl)-8-arylimino-5,6,7-trihydroquinolylcobalt dichloride: Synthesis and polyethylene wax formation. Appl. Catal. A. 2012, 447, 67–73. [Google Scholar] [CrossRef]
- Huang, F.; Xing, Q.; Liang, T.; Flisak, Z.; Ye, B.; Hu, X.; Yang, W.; Sun, W.H. 2-(1-Aryliminoethyl)-9-arylimino-5,6,7,8-tetrahydrocycloheptapyridyl iron(II) dichloride: Synthesis, characterization, and the highly active and tunable active species in ethylene polymerization. Dalton Trans. 2014, 43, 16818–16829. [Google Scholar] [CrossRef] [PubMed]
- Huang, F.; Zhang, W.; Yue, E.; Liang, T.; Hu, X.; Sun, W.-H. Controlling the molecular weights of polyethylene waxes using the highly active precatalysts of 2-(1-aryliminoethyl)-9-arylimino-5,6,7,8tetrahydrocycloheptapyridylcobalt chlorides: Synthesis, characterization, and catalytic behavior. Dalton Trans. 2016, 45, 657–666. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.; Huang, Y.; Solan, G.A.; Zhang, W.; Hu, X.; Hao, X.; Sun, W.-H. Gem-Dimethyl-substituted bis(imino)dihydroquinolines as thermally stable supports for highly active cobalt catalysts that produce linear PE waxes. Dalton Trans. 2019, in press. [Google Scholar] [CrossRef]
- Guo, J.; Wang, Z.; Zhang, W.; Oleynik, I.I.; Vignesh, A.; Oleynik, I.V.; Hu, X.; Sun, Y.; Sun, W.-H. Highly linear polyethylenes achieved using thermo-stable and efficient cobalt precatalysts bearing carbocyclic-fused NNN-pincer ligand. Molecules 2019, 24, 1176. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.; Liu, H.; Zhang, W.; Hao, X.; Sun, W.H. Access to highly active and thermally stable iron precatalysts using bulky 2-[1-(2,6-dibenzhydryl-4-methylphenylimino)ethyl]-6-[1-(arylimino)ethyl]pyridine ligands. Chem. Commun. 2011, 47, 3257–3259. [Google Scholar] [CrossRef]
- Cao, X.; He, F.; Zhao, W.; Cai, Z.; Hao, X.; Shiono, T.; Redshaw, C.; Sun, W.-H. 2-[1-(2,6-Dibenzhydryl-4-chlorophenylimino)ethyl]-6-[1-(arylimino)ethyl]pyridyliron(II) dichlorides: Synthesis, characterization and ethylene polymerization behavior. Polymer 2012, 53, 1870–1880. [Google Scholar] [CrossRef]
- Zhao, W.; Yu, J.; Song, S.; Yang, W.; Liu, H.; Hao, X.; Redshaw, C.; Sun, W.-H. Controlling the ethylene polymerization parameters in iron pre-catalysts of the type 2-[1-(2,4-dibenzhydryl-6-methylphenylimino) ethyl]-6-[1-(arylimino)ethyl] pyridyliron dichloride. Polymer 2012, 53, 130–137. [Google Scholar] [CrossRef]
- Wang, S.; Li, B.; Liang, T.; Redshaw, C.; Li, Y.; Sun, W.-H. Synthesis, characterization and catalytic behavior toward ethylene of 2-[1-(4,6-dimethyl-2-benzhydrylphenylimino)ethyl]-6-[1-(arylimino)ethyl]- pyridylmetal (iron or cobalt) chlorides. Dalton Trans. 2013, 42, 9188–9197. [Google Scholar] [CrossRef] [PubMed]
- Sun, W.-H.; Zhao, W.; Yu, J.; Zhang, W.; Hao, X.; Redshaw, C. Enhancing the Activity and Thermal Stability of Iron Precatalysts Using 2-(1-{2,6-bis[bis(4fluorophenyl)methyl]-4-methylphenylimino} ethyl)-6-[1-(arylimino)ethyl]pyridines. Macromol. Chem. Phys. 2012, 213, 1266–1273. [Google Scholar] [CrossRef]
- Zhao, W.; Yue, E.; Wang, X.; Yang, W.; Chen, Y.; Hao, X.; Cao, X.; Sun, W.H. Activity and Stability Spontaneously Enhanced Toward Ethylene Polymerization by Employing 2-(1-(2,4-Dibenzhydrylnaphthylimino) Ethyl)-6-(1-(Arylimino)Ethyl) Pyridyliron(II) Dichlorides. J. Polym. Sci. Part A Polym. Chem. 2017, 55, 988–996. [Google Scholar] [CrossRef]
- Yu, J.; Huang, W.; Wang, L.; Redshaw, C.; Sun, W.H. 2-[1-(2,6-Dibenzhydryl-4-methylphenylimino)ethyl]-6-[1-(arylimino)ethyl]pyridylcobalt(II) dichlorides: Synthesis, characterization and ethylene polymerization behavior. Dalton Trans. 2011, 40, 10209–10214. [Google Scholar] [CrossRef] [PubMed]
- He, F.; Zhao, W.; Cao, X.-P.; Liang, T.; Redshaw, C.; Sun, W.-H. 2-[1-(2,6-dibenzhydryl-4-chlorophenylimino)ethyl]-6-[1-aryliminoethyl]pyridyl cobalt dichlorides: Synthesis, characterization and ethylene polymerization behavior. J. Organomet. Chem. 2012, 713, 209–216. [Google Scholar] [CrossRef]
- Wang, S.; Zhao, W.; Hao, X.; Li, B.; Redshaw, C.; Li, Y.; Sun, W.-H. 2-(1-{2,6-Bis[bis(4-fluorophenyl)methyl]-4-methylphenylimino}ethyl)-6-[1(arylimino)ethyl]pyridylcobalt dichlorides: Synthesis, characterization and ethylene polymerization behavior. J. Organomet. Chem. 2013, 731, 78–84. [Google Scholar] [CrossRef]
- Lai, J.; Zhao, W.; Yang, W.; Redshaw, C.; Liang, T.; Liu, Y.; Sun, W.-H. 2-[1-(2,4-Dibenzhydryl-6-methylphenylimino)ethyl]-6-[1-(arylimino)ethyl] pyridylcobalt(II) dichlorides: Synthesis, characterization and ethylene polymerization behavior. Polym. Chem. 2012, 3, 787–793. [Google Scholar] [CrossRef]
- Zhang, W.; Wang, S.; Du, S.; Guo, C.-Y.; Hao, X.; Sun, W.-H. 2-(1-(2,4-Bis((di(4-fl uorophenyl)methyl)-6methylphenylimino)ethyl)-6-(1-(arylimino) ethyl)pyridylmetal (iron or cobalt) Complexes: Synthesis, Characterization, and Ethylene Polymerization Behavior. Macromol. Chem. Phys. 2014, 215, 1797–1809. [Google Scholar] [CrossRef]
- Mitchell, N.E.; Anderson, W.C., Jr.; Long, B.K. Mitigating Chain-Transfer and Enhancing the Thermal Stability of Co-Based Olefin Polymerization Catalysts through Sterically Demanding Ligands. J. Polym. Sci. Part A Polym. Chem. 2017, 55, 3990–3995. [Google Scholar] [CrossRef]
- Huang, C.; Huang, Y.; Ma, Y.; Solan, G.A.; Sun, Y.; Hu, X.; Sun, W.H. Cycloheptyl-fused N,N,N’-chromium catalysts with selectivity for vinyl-terminated polyethylene waxes: Thermal optimization and polymer functionalization. Dalton Trans. 2018, 47, 13487–13497. [Google Scholar] [CrossRef]
- Suo, H.; Oleynik, I.I.; Bariashir, C.; Oleynik, I.V.; Wang, Z.; Solan, G.A.; Ma, Y.; Liang, T.; Sun, W.-H. Strictly linear polyethylene using Co-catalysts chelated by fused bis(arylimino)pyridines: Probing ortho-cycloalkyl ring-size effects on molecular weight. Polymer 2018, 149, 45–54. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Solan, G.A.; Mahmood, Q.; Liu, Q.; Ma, Y.; Hao, X.; Sun, W.-H. Bis(imino)pyridines Incorporating Doubly Fused Eight-Membered Rings as Conformationally Flexible Supports for Cobalt Ethylene Polymerization Catalysts. Organometallics 2018, 37, 380–389. [Google Scholar] [CrossRef]
- Guo, L.; Zhu, D.; Zhang, W.; Zada, M.; Solan, G.A.; Hao, X.; Sun, W.-H. Remote dibenzocycloheptyl-substitution of an iminotrihydroquinolinenickel catalyst as a route to narrowly dispersed branched polyethylene waxes with alkene functionality. Eur. Polym. J. 2018, 107, 315–328. [Google Scholar] [CrossRef]
- Mahmood, Q.; Zeng, Y.; Wang, X.; Sun, Y.; Sun, W.-H. Advancing polyethylene properties by incorporating NO2 moiety in 1,2-bis(arylimino)acenaphthylnickel precatalysts: Synthesis, characterization and ethylene polymerization. Dalton Trans. 2017, 46, 6934–6947. [Google Scholar] [CrossRef] [PubMed]
- Meiries, S.; Speck, K.; Cordes, D.B.; Slawin, A.M.Z.; Nolan, S.P. [Pd(IPr*OMe)(acac)Cl]: Tuning the N-Heterocyclic Carbene in Catalytic C−N Bond Formation. Organometallics 2012, 32, 330–339. [Google Scholar] [CrossRef]
- Zada, M.; Guo, L.; Zhang, R.; Zhang, W.; Ma, Y.; Solan, G.A.; Sun, Y.; Sun, W.-H. Moderately branched ultra-high molecular weight polyethylene by using N,N′-nickel catalysts adorned with sterically hindered dibenzocycloheptyl groups. Appl. Organomet. Chem. 2019, 33, e4749. [Google Scholar] [CrossRef]
- Guo, L.; Zada, M.; Zhang, W.; Vignesh, A.; Zhu, D.; Ma, Y.; Liang, T.; Sun, W.-H. Highly linear polyethylenes tailored by 2,6-bis [1-(p-dibenzocycloheptylarylimino)ethyl]pyridylcobalt dichlorides. Dalton Trans 2019, 48, 5604–5613. [Google Scholar] [CrossRef] [PubMed]
- Britovsek, G.J.P.; Bruce, M.; Gibson, V.C.; Kimberley, B.S.; Maddox, P.J.; Mastroianni, S.; McTavish, S.J.; Redshaw, C.; Solan, G.A.; Stromberg, S.; et al. Iron and Cobalt Ethylene Polymerization Catalysts Bearing 2,6-Bis(Imino)Pyridyl Ligands: Synthesis, Structures, and Polymerization Studies. J. Am. Chem. Soc. 1999, 121, 8728–8740. [Google Scholar] [CrossRef]
- Britovsek, G.J.P.; Gibson, V.C.; Spitzmesser, S.K.; Tellmann, K.P.; White, A.J.P.; Williams, D.J. Cationic 2,6-bis(imino)pyridine iron and cobalt complexes: Synthesis, structures, ethylene polymerisation and ethylene/polar monomer co-polymerisation studies. J. Chem. Soc. Dalton Trans. 2002, 6, 1159–1171. [Google Scholar] [CrossRef]
- Cantalupo, S.A.; Ferreira, H.E.; Bataineh, E.; King, A.J.; Petersen, M.V.; Wojtasiewicz, T.; DiPasquale, A.G.; Rheingold, A.L.; Doerrer, L.H. Synthesis with Structural and Electronic Characterization of Homoleptic Fe(II)- and Fe(III)-Fluorinated Phenolate Complexes. Inorg. Chem. 2011, 50, 6584–6596. [Google Scholar] [CrossRef]
- Addison A., W.; Rao, T.N. Synthesis, Structure, and Spectroscopic Properties of Copper(II) Compounds containing Nitrogen-Sulphur Donor Ligands; the Crystal and Molecular Structure of Aqua[l,7-bis(N-methylbenzimidazol-2’-yl)2,6-dithiaheptane]copper(ii) Perchlorate. J. Chem. Soc. Dalton Trans. 1984, 7, 1349–1356. [Google Scholar] [CrossRef]
- Yuan, J.; Shi, W.-B.; Kou, H.-Z. Syntheses, crystal structures and magnetism of azide-bridged five-coordinate binuclear nickel(II) and cobalt(II) complexes. Transition Met. Chem. 2015, 40, 807–811. [Google Scholar] [CrossRef]
- Britovsek, G.J.P.; Gibson, V.C.; Hoarau, O.D.; Spitzmesser, S.K.; White, A.J.P.; Williams, D.J. Iron and Cobalt Ethylene Polymerization Catalysts: Variations on the Central Donor. Inorg. Chem. 2003, 42, 3454–3465. [Google Scholar] [CrossRef]
- Tomov, A.K.; Gibson, V.C.; Britovsek, G.J.P.; Long, R.J.; Meurs, M.V.; Jones, D.J.; Tellmann, K.P.; Chirinos, J.J. Distinguishing Chain Growth Mechanisms in Metal-catalyzed Olefin Oligomerization and Polymerization Systems: C2H4/C2D4 Co-oligomerization/Polymerization Experiments Using Chromium, Iron, and Cobalt Catalysts. Organometallics 2009, 28, 7033–7040. [Google Scholar] [CrossRef]
- Barbaro, P.; Bianchini, C.; Giambastiani, G.; Rios, I.G.; Meli, A.; Oberhauser, W.; Segarra, A.M.; Sorace, L.; Toti, A. Synthesis of New Polydentate Nitrogen Ligands and Their Use in Ethylene Polymerization in Conjunction with Iron(II) and Cobalt(II) Bis-halides and Methylaluminoxane. Organometallics 2007, 26, 4639–4651. [Google Scholar] [CrossRef]
- Pooter, M.D.; Smith, P.B.; Dohrer, K.K.; Bennett, K.F.; Meadows, M.D.; Smith, C.G.; Schouwenaars, H.P.; Geerards, R.A. Determination of the Composition of Common linear low Density Polyethylene Copolymers by 13C-NMR Spectroscopy. J. App. Polym. Sci. 1991, 42, 399–408. [Google Scholar] [CrossRef]
- Galland, G.B.; Quijada, R.; Rojas, R.; Bazan, G.; Komon, Z.J.A. NMR Study of Branched Polyethylenes Obtained with Combined Fe and Zr Catalysts. Macromolecules 2002, 35, 339–345. [Google Scholar] [CrossRef]
- Hansen, E.W.; Blom, R.B.; Bade, O.M.N.m.r. characterization of polyethylene with emphasis on internal consistency of peak intensities and estimation of uncertainties in derived branch distribution numbers. Polymer 1997, 38, 4295–4304. [Google Scholar] [CrossRef]
- Sheldrick, G.M. Crystal structure refinement with SHELXL. Acta Crystallogr. C Struct Chem. 2015, 71, 3–8. [Google Scholar] [CrossRef] [PubMed]
- Sheldrick, G.M. SHELXT—Integrated space-group and crystal structure determination. Acta Crystallogr. A Found Adv. 2015, 71, 3–8. [Google Scholar] [CrossRef] [PubMed]
Sample Availability: Samples of the organic compounds and cobalt complexes are available from the authors. |
Co3 | Co4 | |
---|---|---|
Bond Lengths (Å) | Molecule A | Molecule A |
Co(1)–N(1) | 2.043(5) | 2.033(7) |
Co(1)–N(2) | 2.214(5) | 2.188(6) |
Co(1)–N(3) | 2.228(5) | 2.191(7) |
Co(1)–Cl(1) | 2.2481(18) | 2.251(2) |
Co(1)–Cl(2) | 2.3047(18) | 2.308(2) |
N(2)–C(10) | 1.437(7) | 1.463(9) |
N(3)–C(47) | 1.453(8) | 1.428(13) |
N(1)–C(3) | 1.345(7) | 1.348(13) |
N(1)–C(7) | 1.338(7) | 1.357(12) |
N(2)–C(8) | 1.286(7) | 1.289(10) |
N(3)–C(2) | 1.274(7) | 1.289(12) |
Bond Angles (°) | ||
N(1)–Co(1)–N(2) | 74.25(17) | 73.90(3) |
N(1)–Co(1)–N(3) | 74.85(17) | 74.10(3) |
N(2)–Co(1)–N(3) | 144.51(17) | 142.10(3) |
N(1)–Co(1)–Cl(1) | 147.63(14) | 150.90(2) |
N(2)–Co(1)–Cl(1) | 98.53(13) | 99.28(18) |
N(3)–Co(1)–Cl(1) | 98.24(13) | 98.80(2) |
N(2)–Co(1)–Cl(2) | 99.45(13) | 99.87(18) |
N(3)–Co(1)–Cl(2) | 101.00(13) | 102.76(18) |
Cl(1)–Co(1)–Cl(2) | 115.82(7) | 113.91(9) |
N(1)–Co(1)–Cl(2) | 96.54(14) | 95.10(2) |
C(10)–N(2)–Co(1) | 122.50(4) | 124.4(5) |
C(47)–N(3)–Co(1) | 124.00(4) | 124.80(7) |
Complex | Molecule | Co distance, Å | α, ° | β, ° | τ5a |
---|---|---|---|---|---|
Co3 | A | 0.543 | 144.51 | 147.63 | 0.052 |
B | 0.513 | 141.15 | 154.04 | 0.215 | |
Co4 | A | 0.532 | 142.10 | 150.90 | 0.147 |
B | 0.806 | 142.70 | 150.70 | 0.133 |
Entry | T, oC | t, min | Al/Co | PE, g | Activity b | Mwc | Mw/Mnc | Tm, °C d |
---|---|---|---|---|---|---|---|---|
1 | 30 | 30 | 2000 | 3.51 | 4.68 | 4.50 | 2.80 | 135.6 |
2 | 40 | 30 | 2000 | 4.18 | 5.57 | 4.01 | 2.79 | 135.6 |
3 | 50 | 30 | 2000 | 4.82 | 6.43 | 3.05 | 3.61 | 135.5 |
4 | 60 | 30 | 2000 | 5.52 | 7.36 | 0.41 | 3.16 | 134.2 |
5 | 70 | 30 | 2000 | 5.04 | 6.72 | 0.30 | 2.58 | 131.8 |
6 | 80 | 30 | 2000 | 3.07 | 4.09 | 0.23 | 3.60 | 131.5 |
7 | 90 | 30 | 2000 | 1.04 | 1.39 | 0.20 | 5.18 | 130.7 |
8 | 60 | 30 | 1500 | 1.93 | 1.85 | 0.40 | 2.84 | 132.9 |
9 | 60 | 30 | 2500 | 5.83 | 7.77 | 0.43 | 3.22 | 132.7 |
10 | 60 | 30 | 2750 | 6.81 | 9.08 | 0.44 | 2.86 | 132.7 |
11 | 60 | 30 | 3000 | 7.51 | 10.0 | 0.52 | 2.45 | 132.6 |
12 | 60 | 30 | 3250 | 7.04 | 9.39 | 0.46 | 1.98 | 132.9 |
13 | 60 | 30 | 3500 | 5.76 | 7.68 | 0.38 | 2.50 | 132.6 |
14 | 60 | 5 | 3000 | 2.07 | 21.6 | 0.30 | 2.84 | 132.1 |
15 | 60 | 15 | 3000 | 4.25 | 11.3 | 0.50 | 3.45 | 133.1 |
16 | 60 | 45 | 3000 | 7.91 | 7.03 | 0.53 | 2.31 | 133.3 |
17 | 60 | 60 | 3000 | 8.72 | 5.81 | 0.60 | 2.88 | 132.8 |
18 e | 60 | 30 | 3000 | 3.98 | 5.10 | 0.24 | 2.91 | 131.4 |
19 f | 60 | 30 | 3000 | 0.64 | 0.85 | 0.02 | 1.82 | 123.1 |
Entry | Precatalyst | PE, g | Activity b | Mwc | Mw/Mnc | Tm, °C d |
---|---|---|---|---|---|---|
1 | Co1 | 7.51 | 10.0 | 0.52 | 2.45 | 132.6 |
2 | Co2 | 6.23 | 8.31 | 0.53 | 2.42 | 133.7 |
3 | Co3 | 5.62 | 7.49 | 1.14 | 2.84 | 135.7 |
4 | Co4 | 7.06 | 9.41 | 0.35 | 2.12 | 132.3 |
5 | Co5 | 6.70 | 8.93 | 0.61 | 2.94 | 132.9 |
Entry | T, °C | T, min | Al/Co | PE, g | Activity b | Mwc | Mw/Mn c | Tm, °C d |
---|---|---|---|---|---|---|---|---|
1 | 30 | 30 | 2000 | 3.91 | 5.21 | 3.80 | 3.70 | 135.8 |
2 | 40 | 30 | 2000 | 4.34 | 5.79 | 2.51 | 2.53 | 136.2 |
3 | 50 | 30 | 2000 | 4.71 | 6.28 | 1.98 | 2.65 | 135.8 |
4 | 60 | 30 | 2000 | 3.09 | 4.12 | 0.73 | 3.65 | 132.9 |
5 | 70 | 30 | 2000 | 2.80 | 3.73 | 0.36 | 3.02 | 134.6 |
6 | 80 | 30 | 2000 | 2.24 | 2.99 | 0.30 | 3.08 | 131.6 |
7 | 90 | 30 | 2000 | 1.42 | 1.89 | 0.25 | 2.91 | 131.3 |
8 | 50 | 30 | 1000 | 3.48 | 4.64 | 0.97 | 3.68 | 135.2 |
9 | 50 | 30 | 1250 | 5.24 | 6.99 | 2.02 | 3.43 | 135.4 |
10 | 50 | 30 | 1500 | 5.92 | 7.89 | 2.16 | 3.92 | 135.3 |
11 | 50 | 30 | 1750 | 5.03 | 6.71 | 2.38 | 3.64 | 135.7 |
12 | 50 | 30 | 2500 | 4.01 | 5.35 | 1.85 | 3.35 | 135.7 |
13 | 50 | 30 | 3000 | 3.76 | 5.01 | 1.61 | 2.12 | 134.9 |
14 | 50 | 5 | 1500 | 3.60 | 28.8 | 1.69 | 2.70 | 135.6 |
15 | 50 | 15 | 1500 | 4.65 | 12.4 | 1.75 | 2.83 | 135.5 |
16 | 50 | 45 | 1500 | 6.73 | 5.98 | 2.20 | 2.65 | 135.4 |
17 | 50 | 60 | 1500 | 8.64 | 5.76 | 2.25 | 3.89 | 135.3 |
18 e | 50 | 30 | 1500 | 2.76 | 3.68 | 0.84 | 3.78 | 133.7 |
19 f | 50 | 30 | 1500 | 0.35 | 0.47 | 0.08 | 2.36 | 128.7 |
Entry | Precatalyst | PE, g | Activity b | Mwc | Mw/Mnc | Tm, °C d |
---|---|---|---|---|---|---|
1 | Co1 | 5.92 | 7.89 | 2.38 | 3.92 | 135.3 |
2 | Co2 | 5.53 | 7.37 | 5.78 | 6.62 | 135.7 |
3 | Co3 | 5.04 | 6.72 | 6.46 | 3.17 | 136.8 |
4 | Co4 | 5.74 | 7.65 | 3.70 | 5.79 | 136.8 |
5 | Co5 | 5.42 | 7.23 | 3.92 | 3.19 | 136.7 |
Identification Code | Co3 | Co4 |
---|---|---|
CCDC number | 1905876 | 1905877 |
Empirical formula | 2(C58H56Cl2CoN3) | 2(C55H50Cl2CoN3) |
Formula weight | 924.88 | 883.31 |
Temperature (K) | 173.1500 | 173.1500 |
Wavelength (Å) | 0.71073 | 0.71073 |
Crystal system | monoclinic | orthorhombic |
Space group | P21/c | Pna21 |
a (Å) | 26.6132(7) | 16.5906(3) |
b (Å) | 24.0122(6) | 12.1091(3) |
c (Å) | 17.1072(4) | 49.9111(9) |
α (°) | 90 | 90 |
β (°) | 105.153(3) | 90 |
γ (°) | 90 | 90 |
Volume (Å3) | 10552.1(5) | 10027.0(4) |
Z | 8 | 4 |
D calcd (g/cm3) | 1.164 | 1.170 |
μ (mm-1) | 0.464 | 0.486 |
F (000) | 3888.0 | 3700.0 |
Crystal size (mm3) | 0.376 × 0.105 × 0.082 | 0.476 × 0.118 × 0.056 |
θ range (°) | 2.994 to 50 | 3.264 to 55 |
Limiting indexes | −31 ≤ h ≤ 31, −28 ≤ k ≤ 28, −20 ≤ l ≤ 20 | −21 ≤ h ≤ 21, −15 ≤ k ≤ 15, −64 ≤ l ≤ 64 |
No. of rflns collected | 121754 | 135076 |
No. of unique rflns [R(int)] | 18602 (0.1031) | 23020 (0.0956) |
Completeness to θ (%) | 1.00 | 1.98 |
Data/restraints/parameters | 18602/445/1167 | 23020/177/1149 |
Goodness of fit on F2 | 1.041 | 0.988 |
Final R indexes [I > = 2σ (I)] | R1 = 0.0965 wR2 = 0.2394 | R1 = 0.0691, wR2 = 0.1588 |
R indexes (all data) | R1 = 0.1397 wR2 = 0.2729 | R1 = 0.1134, wR2 = 0.1841 |
Largest diff. peak and hole (e Å–3) | 1.36/–0.82 | 0.60/–0.28 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zada, M.; Guo, L.; Ma, Y.; Zhang, W.; Flisak, Z.; Sun, Y.; Sun, W.-H. Activity and Thermal Stability of Cobalt(II)-Based Olefin Polymerization Catalysts Adorned with Sterically Hindered Dibenzocycloheptyl Groups. Molecules 2019, 24, 2007. https://doi.org/10.3390/molecules24102007
Zada M, Guo L, Ma Y, Zhang W, Flisak Z, Sun Y, Sun W-H. Activity and Thermal Stability of Cobalt(II)-Based Olefin Polymerization Catalysts Adorned with Sterically Hindered Dibenzocycloheptyl Groups. Molecules. 2019; 24(10):2007. https://doi.org/10.3390/molecules24102007
Chicago/Turabian StyleZada, Muhammad, Liwei Guo, Yanping Ma, Wenjuan Zhang, Zygmunt Flisak, Yang Sun, and Wen-Hua Sun. 2019. "Activity and Thermal Stability of Cobalt(II)-Based Olefin Polymerization Catalysts Adorned with Sterically Hindered Dibenzocycloheptyl Groups" Molecules 24, no. 10: 2007. https://doi.org/10.3390/molecules24102007
APA StyleZada, M., Guo, L., Ma, Y., Zhang, W., Flisak, Z., Sun, Y., & Sun, W. -H. (2019). Activity and Thermal Stability of Cobalt(II)-Based Olefin Polymerization Catalysts Adorned with Sterically Hindered Dibenzocycloheptyl Groups. Molecules, 24(10), 2007. https://doi.org/10.3390/molecules24102007